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SUMMARY

Approximate converted PS- reflection coefficients for weak
contrast interfaces separating isotropic viscoelastic media have
been derived in this paper. This problem has been investigated
by others but the changes in the attenuation angles across the
boundary have been neglected. In this paper, we remove this
limitation by deriving a formula for the PS-wave reflection co-
efficient considering the Snell’s law which relates the transmit-
ted attenuation angle for S waves in terms of incident attenu-
ation angle. The AVO equation that we obtained is a complex
function which for small angles has four terms from zeroth
order up to the third order in sinθP. Viscoelastic converted
PS-wave AVO comparing to the elastic converted PS-wave has
two more term which are zeroth and second order in sinθP.
These extra terms come from the inhomogeneity of the waves.
We also compare the approximate linearized solutions with the
exact solutions of Zoeppritz equations for three rock contrast
model.

INTRODUCTION

The aim of reflection seismology is to estimate the rock prop-
erty from the reflected seismic waves from subsurface inter-
faces (Castagna and Backus, 1994). In fact, it is very difficult
to extract the sensitivity of the reflected waves to the changes
in medium properties. This obstacle can be removed by lin-
earization of the reflection coefficients respect to the changes
in physical properties of the earth. This linearization proce-
dure is based upon two assumptions, the properties between
two layers change slightly and the incident angle significantly
be smaller that the critical angle. In the case of isotropic elas-
tic medium weak contrast reflection coefficients linearly de-
pend to the fractional changes in density, P-wave and S-wave
velocities weighted by trigonometric functions of incident an-
gle. In the case that the medium is viscoelastic the reflection
coefficients get more complicated, and due to the complexity
of ray parameter and polarizations the coefficients are complex
(Ursin and Stovas, 2002; Moradi and Innanen, 2016; Krebes,
1984, 1983). In this case linearized AVO equations not only
depend on the changes in elastic properties across the bound-
ary but also depend on the changes in P- and S-wave quality
factors weighted by trigonometric functions of incident phase
and attenuation angles. One feature of our approach in deriv-
ing the linearized AVO equation is that we apply Snell’s law
and its linearized form in the linearization. This is typically
ignored and it is assumed that attenuation angle not to change
across the boundary (Behura and Tsvankin, 2009a,b).

AVO analysis of converted PS-wave is extensively used in seis-
mic exploration and reservoir characterization (Ata et al., 1994;
Stewart et al., 2003, 2002). In this paper we show that in con-
trast to PP-wave AVO analysis, viscoelastic amplitude varia-
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Figure 1: Diagram illustrating the imaginary part of complex
ray parameter scales by 103 as a function of phase and attenu-
ation angles for VP = 2Km/s and QP = 8.

tion with offset for PS-wave is sensitive only to the fractional
changes in density, S-wave velocity and S-wave quality factor.
The resulted AVO equation is a complex function with four
term proportional to the orders in sinθP from zero to third. The
significance of our result is that it is possible to estimate the
quality factor and the attenuation angle dependency of reser-
voir rocks. This is expected to be of practical important in the
characterization of viscosity in unconventional reservoirs.

VISCOELASTIC WAVES

In viscoelastic media there are three types of waves: P, Type-
I S, and Type-II S. In the case that propagation and attenua-
tion vectors are not in the same direction wave is called inho-
mogeneous otherwise called homogeneous (Borcherdt, 2009).
Polarization vectors for inhomogeneous P and SI-waves is el-
liptical and for homogeneous is linear. This elliptical motion
reduces to a linear motion in the limit of homogenous case. SI-
wave is the generalization of the elastic SV waves. Similarly,
SII-wave in the case that attenuation goes to zero reduces to
the elastic SH-wave. SII-wave has a linear motion perpendicu-
lar to the propagation attenuation plane for both homogeneous
and inhomogeneous cases. In the case that the incident wave is
an inhomogeneous P-wave, the reflected wave can be the inho-
mogeneous P- or SI-wave. For an inhomogeneous wave, ray
parameter and slowness vector not only depend to the phase
angle but also depend to the attenuation angle. For example
ray parameter is given by

p =
1

VE

[
sinθ

(
1− i

Q−1

2

)
+

i
2

Q−1 cosθ tanδ

]
, (1)

where, VE is either P-wave or S-wave velocity, θ is the phase
angle and δ is the attenuating angle between propagation and
attenuation vectors. In Figure 1 we plot the imaginary part of
the inhomogeneous ray parameter versus phase and attenua-
tion angles.
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DECOMPOSED LOW CONTRAST PS-REFLECTION CO-
EFFICIENT

By solving the Zoeppritz equation for two half spaces involv-
ing low-loss viscoelastic media we can obtain the exact PP-
and PS-reflection coefficients (Moradi and Innanen, 2015, 2016).
To linearize the reflectivity in terms of changes in elastic and
anelastic properties we consider to the incident angle smaller
that 30◦ and weak contrast, also in the case of converted P-
wave, using the Snell’s law, average in S-wave attenuation an-
gle for small angle of incident is written as a function of inci-
dent phase and attenuation angles (Appendix A). In this case
the weak contrast converted PS-wave reflectivity is given by

RVE
PS = iAAIH

PS +(AE
PS + iAAH

PS )sinθP + iBAIH
PS sin2

θP

+(BE
PS + iBAH

PS )sin3
θP. (2)

Here, superscripts VE, E, AH and AIH respectively refer to
the viscoelastic, elastic, anelastic-homogeneous and anelastic-
inhomogeneous terms, θP is the angle of incident inhomoge-
neous P-wave and δP is the incident attenuation angle. Addi-
tionally coefficients in (2) are
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comparing to the PP-wave reflection coefficient, we observe
that the converted PS-wave is not sensitive to the changes in
P-wave velocity and P-wave quality factor. We can also de-
compose the PS-reflectivity into elastic, homogenous and in-
homogeneous terms as follows

RPS(θP,δP) = RE
PS(θP)+ iRAH

PS (θP)+ iRAIH
PS (θP,δP), (3)

with following components

RE
PS(θP) = AE

PS sinθP +BE
PS sin3

θP,

RAH
PS (θP) = AAH

PS sinθP +BAH
PS sin3

θP,

RAIH
PS (θP,δP,δS) = AAIH

PS +BAIH
PS sin2

θP.

In above equations, ∆ρ/ρ is fractional change in density, with
∆ρ = ρ2−ρ1 and ρ =(ρ2+ρ1)/2; ∆VS/VS is fractional change
in S-wave velocity, with ∆VS = VS2 −VS1 and VS = (VS2 +

0 0.1 0.2
−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0
Shale/Salt          

R
E P

S

 

 

Exact
Low−cont

0 0.1 0.2
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
Shale/Limestone(gas)

   
   

   
 

0 0.1 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Limestone/Salt      

   
   

   
 

0 0.1 0.2
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

R
E P

S
N

 

 

Exact
Low−cont

0 0.1 0.2
−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

−0.22

   
   

   
  

0 0.1 0.2
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

   
   

   
  

0 0.1 0.2
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

R
A

H
P

S

 

 

Exact
Low−cont

0 0.1 0.2
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

   
   

   
  

0 0.1 0.2
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

   
   

   
  

0 0.1 0.2
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

R
A

H
P

S
N

 

 

Exact
Low−cont

0 0.1 0.2
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

   
   

   
   

0 0.1 0.2
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

   
   

   
   

0 0.1 0.2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

sin2θ
P

R
A

IH
P

S

 

 

Exact
Low−cont

0 0.1 0.2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

sin2θ
P

   
   

   
   

0 0.1 0.2
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

sin2θ
P

   
   

   
   

Figure 2: Comparison of the exact solutions of viscoelas-
tic Zoeppritz’s equation(solid line) and a linearized(circle-dot
line) for three two-half-space models introduced in table 1. In
all cases we assume that δP = 60◦.
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Rock Type Material VP(m/s) VS(m/s) ρ(g/cm3)

Shale/Salt Shale 3811 2263 2.40
Salt 4573 2729 2.05

Shale/Limestone(gas) Shale 3811 2263 2.40
Limestone 5043 2957 2.49

Limestone/Salt Limestone 5335 2957 2.65
Salt 4573 2729 2.05

Table 1: Elastic parameters for three half-space models:
shale/salt, gas shale/limestone, and limestone/salt (Jerez,
2003; Ikelle and Amundsen, 2005). For all three models
∆QP = ∆QS = 2.

VS1)/2; ∆QS/QS is fractional change in S-wave quality factor,
with ∆QS = QS2 −QS1 and QS = (QS2 +QS1)/2. In addition
θP = (θP2 +θP1)/2 where θP1 is the incident phase angle and
θP2 is the transmitted phase angle; δP = (δP2 + δP1)/2 where
δP1 is the incident attenuation angle and δP2 is the transmit-
ted attenuation angle. Subscript 1 refers to the upper layer and
subscript 2 refers to the lower layer.

Elastic term is sensitive to changes in density and S-wave ve-
locity. Anelastic-homogeneous term is sensitive to the changes
in density, S-wave velocity and its quality factor. These two
terms are zero in the case of normal incident. The anelastic in-
homogeneous term is affected by only changes in density and
S-wave velocity, this term also depends on the incident atten-
uation angle and is non zero at the normal incidence case. In
Figure 2, we plot the exact versus linearized elastic, anelas-
tic homogeneous and anelastic inhomogeneous terms for three
two-half space models in table 1. We can see that elastic and
homogenous terms are not linear in terms of sin2

θP, however
the inhomogeneous terms is linear. We also defined the nor-
malized elastic and homogeneous reflectivities as

RE
PSN(θP) =

RE
PS(θP)

sinθP
, RAH

PSN(θP) =
RAH

PS (θP)

sinθP
, (4)

It can be seen from the Figure 2 that the exact and approximate
normalized elastic and homogenous reflection coefficients are
linear in terms of sin2

θP. These normalized function are es-
sential for the nonlinear PP-PS joint inversion.

CONCLUSIONS

In contrast to the elastic case, the linearization in an attenu-
ative media is more complicated in two ways. First, due to
the seismic amplitude damping, the polarization and slowness
vectors are complex. As a result the reflectivity is complex.
Second, besides the incident phase angle the attenuation an-
gle across the boundary is changed, this fact is demonstrated
by the Snell’s law. Taking into account these facts, the lin-
earized AVO equations include the terms related to the changes
in S-wave quality factors and the attenuation angle. In this re-
search, the variation of the converted seismic PS-wave with
offset is obtained for an isotropic low-loss viscoelastic media.
We show that complex amplitude variation with angle of in-
cident is sensitive to the changes in elastic and anelastic rock
properties. The real part of the PS-wave AVO equation is a
linear function of fractional changes in density and S-wave ve-
locity. The imaginary part which is due to the anelasticity in

medium is sensitive to changes in density, S-wave velocity and
S-wave quality factor.

In terms of powers of sinθP, converted PS-wave has four terms
from zeroth to third order. Comparing to the elastic case, the
extra terms are due to the inhomogeneity of the waves. We
examine our AVO equation with three two-half space models.
As a result the elastic and homogeneous terms are not linear
respect to sin2

θP, however the inhomogeneous term for small
angles (θP < 30◦) is perfectly linear for both exact and approx-
imate cases.

APPENDIX A

LINEARIZED SNELL’S LAW FOR VISCOELASTIC WAVES

Snell’s law relates the reflected and transmitted phase and at-
tenuation angles to the incident phase and attenuation angles
(Moradi and Innanen, 2016)

tanδS =

(
VS

VP

) sinθP − QS
QP

[sinθP − cosθP tanδP]√
1−
(

VS
VP

)2
sin2

θP

. (A-1)

In the case of converted P-wave, using the Snell’s law, average
in S-wave attenuation angle for small angle of incident can be
written as a function of incident phase and attenuation angles

Q−1
S tanδS =
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VP
Q−1

P tanδP

+
VS
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S −Q−1
P )sinθP

− 1
2
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[
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(
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]
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P tanδP sin2
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+
1
2

(
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VP

)3
(Q−1

S −Q−1
P )sin3

θP (A-2)

ACKNOWLEDGMENTS

We thank the sponsors of CREWES for their support. We also
gratefully acknowledge support from NSERC (Natural Sci-
ence and Engineering Research Council of Canada) through
the grant CRDPJ 461179-13.



Converted PS-wave

REFERENCES

Ata, E., R. J. Michelena, M. Gonzales, H. Cerquone, M. Carry,
and S. Corpoven, 1994, Exploiting PS converted waves:
Part 2, application to a fractured reservoir: Presented at the
1994 SEG Annual Meeting, Society of Exploration Geo-
physicists.

Behura, J., and I. Tsvankin, 2009a, Reflection coefficients in
attenuative anisotropic media: Geophysics, 74, WB193–
WB202.

——–, 2009b, Role of the inhomogeneity angle in anisotropic
attenuation analysis: Geophysics, 74, WB177–WB191.

Borcherdt, R. D., 2009, Viscoelastic waves in layered media:
Cambridge University Press.

Castagna, J., and M. Backus, 1994, Offset dependent reflectiv-
ity: Theory and practice of AVO analysis: Investigations in
geophysics.

Ikelle, L. T., and L. Amundsen, 2005, Introduction to
Petroleum Seismology: Society of Exploration Geophysi-
cists.

Jerez, J. R. d. J. C., 2003, An AVO method toward direct detec-
tion of. lithologies combining P-P and P-S reflection data:
Master’s thesis, Texas A&M University.

Krebes, E. S., 1983, The viscoelastic reflection/transmission
problem: two special cases: Bull. Seis. Soc. Am., 73, 1673–
1683.

——–, 1984, On the reflection and transmission of viscoelas-
tic waves-some numerical results: Geophysics, 49, 1374–
1380.

Moradi, S., and K. A. Innanen, 2015, Linearized AVO in vis-
coelastic media, in SEG Technical Program Expanded Ab-
stracts 2015: Society of Exploration Geophysicists, 600–
606.

——–, 2016, Viscoelastic amplitude variation with offset
equations with account taken of jumps in attenuation angle:
Geophysics, 81, R1–R13.

Stewart, R. R., J. E. Gaiser, R. J. Brown, and D. C. Lawton,
2002, Converted-wave seismic exploration: Methods: Geo-
physics, 67, 1348–1363.

——–, 2003, Converted-wave seismic exploration: Applica-
tions: Geophysics, 68, 40–57.

Ursin, B., and A. Stovas, 2002, Reflection and transmission
responses of a layered isotropic viscoelastic medium: Geo-
physics, 67, 307–323.


