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Summary 

 

Full waveform inversion (FWI) is a machine learning 

algorithm with the goal to find the Earth’s model 

parameters that minimize the difference of acquired and 

synthetic shots. In this work, we are introducing a new 

interpretation of the gradient as the residual impedance 

inversion of the acquired data. Its estimation is forward 

modeling and wavelet free, reducing its costs drastically, as 

the inverted model could be obtained on a personal laptop 

without the need of parallel processing. The new method 

was applied, with great success, on the acoustic Marmousi 

simulation. The inverted model, when using the same 

starting point, is comparable to the results when using the 

migrated residuals. This approximation also opened the 

possibility to change the order of migration and the stack 

steps, during the gradient estimation, to use a post-stack 

depth migration, and results are promising. In the end, we 

are proposing a new FWI approximation that is cheap and 

stable, and could be applied on a real seismic survey in a 

processing center that has enough computer power to run a 

PSDM or even just a post-stack depth migration. 

 

Introduction 

 

Seismic inversion techniques are the ones that use intrinsic 

information contained in the data to determine rock 

properties by matching a model that "explains" the data. 

Some examples are the variation of amplitude per offset, or 

AVO (Shuey, 1985; Fatti et al., 1994), the traveltime 

differences between traces, named traveltime tomography 

(Langan et al., 1984; Bishop and Spongberg, 1984; Cutler 

et al., 1984), or even by matching synthetic data to the 

observed data, as it is done in full waveform inversion 

(Tarantola, 1984; Virieux and Operto, 2009; Margrave et 

al., 2010; Pratt et al., 1998), among others. These 

inversions can compute rock parameters as P and S waves 

velocities, density, viscosity and others. In this paper, we 

are focusing only on the inversion of the P wave velocity 

(acoustic). 

Full waveform inversion (FWI) is a machine learning based 

method, with the objective to estimate the Earth’s model 

parameters that minimize the difference between observed 

(acquired) data and synthetic shots (Margrave et al., 2011). 

This is accomplished by iteratively updating the starting 

model with a scaled gradient and then creating new 

synthetic shots with the new model. 

The method was proposed in the early 80’s (Pratt et al., 

1998) but it was considered too expensive in computational 

terms. Lailly (1983) and Tarantola (1984) simplified the 

methodology by using the steepest-descent method (or 

gradient method) in the time domain to minimize the 

objective function without explicitly calculate the partial 

derivatives. They estimated the gradient by 

backpropagating the residuals using a reverse-time 

migration (RTM). Pratt et al. (1998) develop a matrix 

formulation for the full waveform inversion in the 

frequency domain, and presented efficient strategies to 

compute the gradient and the inverse of the Hessian matrix, 

for both the Gauss-Newton and the Newton 

approximations. The FWI is shown to be more efficient if 

applied in a multi-scale method, where lower frequencies 

are inverted first and they are increased on later iterations 

(Pratt et al., 1998; Virieux and Operto, 2009; Margrave et 

al., 2010). An overview of the FWI theory and studies are 

compiled by Virieux and Operto (2009). Lindseth (1979) 

showed that an impedance inversion from seismic data is 

not effective due to the lack of low frequencies during the 

acquisition but could be compensated by the match with a 

sonic-log profile. Margrave et al. (2010) used a gradient 

method and matched it with sonic logs profiles to 

compensate the absence of the low frequency, and to 

calibrate the model update by computing the step length 

and a phase rotation (avoiding cycle skipping). They also 

proposed the use of a PSPI (phase-shift-plus-interpolation) 

migration (Ferguson and Margrave, 2005) instead of the 

RTM, so the iterations are done in time domain but only 

selected frequency bands are migrated, using a 

deconvolution imaging condition (Margrave et al., 2011; 

Wenyong et al., 2013) as a better reflectivity estimation, 

same strategy used by Guarido et al. (2015a;2015b). 

Guarido et al. (2016) show the need of the application of an 

impedance inversion step in the gradient and use a band-

limited impedance inversion (BLIMP) method using the 

algorithm implemented by Ferguson and Margrave (1996). 

Warner and Guasch (2014) use the deviation of the Wiener 

filters of the real and estimated data as the object function 

with great results. 

We are proposing a new approximation for the FWI, where 

the gradient is interpreted as a residual impedance of the 

current model and the impedance inversion of the acquired 

data. On each iteration, the data is PSPI migrated (Ferguson 

and Margrave, 2005), with a deconvolution imaging 

condition, using the current model and applying a BLIMP 

inversion on the stacked data. A conjugate gradient is also 

used to improve the quality of the gradient and to reduce 

the number of iterations (Zhou et al., 1995; Vigh and Starr, 

2008). The step length is computed by a least-squares 

minimization (Pica et al., 1990). To compute the residuals 

on the standard methodology, a finite difference forward 

modelling algorithm is used to create the synthetic shots. 

The results of the new approximation are comparable with 
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the classic method (steepest descent). We went further and 

inverted the order of the migration and stack processing 

steps, and computed the gradient using a zero-offset PSPI 

migration (post-stack). The preliminary tests results are 

promising, with a huge gap for improvements. 

 

Theory 

 

The objective of the FWI methodology is to minimize an 

objective function. Here we minimize the residuals Δd(m), 

that is the difference between observed data d0 and 

synthetic data d(m), in the current model model m (here P 

wave velocity): 

                   (1)  

Minimizing the objective function C(m) with respect to the 

model m, we can to the steepest-descent formula (Pratt et 

al.,1998): 

                       (2)  

where α is the step length, g is the gradient and n is the n-th 

iteration. This equation shows that a model update can be 

obtained by adding a scaled gradient to the current model. 

This routine is kept until stopping criteria is reached. The 

gradient should be, due to the theory, computed by a 

reverse time migration of the residuals (Tarantola, 1984; 

Pratt et al., 1998; Virieux and Operto, 2009), but we 

decided to use the phase-shift-plus-interpolation (PSPI) 

migration, by the assumption that FWI is a set of 

processing tools and any pre-stack depth migration could 

be used to back-propagate the residuals. Later, the BLIMP 

algorithm uses the initial model as pilot to apply an 

impedance inversion of the gradient. The first iterations use 

only the low frequency on the data while the higher 

frequencies are included on later iterations. 

By interpreting the gradient computation steps (migration, 

stack, and impedance inversion) as seismic processing 

tools, equation 2 can be rewritten in terms of the operators 

M for migration, S for stacking and I for impedance 

inversion, leading to: 

                 (3)  

where dn is the synthetic shot. Guarido et al. (2016) assume 

that all three operators are linear (true for migration and 

stack and approximate for impedance inversion), and the 

gradient can be interpreted as a residual difference of the 

processed acquired data and the processed synthetic data 

(both migrated using the current model). The second one, 

on a perfect case, is the current model itself (the migrated, 

stacked and impedance inversion of the synthetic data). 

This explanation is better visualized in equation 4: 

           (4)  

Interpreting the gradient as the residual difference of the 

processed acquired data and the current model saves us to 

compute a synthetic data at each shot position. Source 

estimation is also not required. Two forward modeling are 

still required on the step length process. But, as it is only an 

amplitude matching, it is unnecessary to compute the 

correct wavelet.  

We can make the method even cheaper if we invert the 

order of the migration and stacking operators on equation 4. 

This would result on using a stacked session as input and a 

post-stack migration at each iteration: 

                    (5)  

Two forward modeling are still required to estimate the 

step length. However, the costs drop significantly. 

 

Examples 

 

Simulations are done on the Marmousi velocity model 

(figure 1a). Simulated acquired data are generated by a 2D 

acoustic finite difference code using a Ricker wavelet with 

5Hz of dominant frequency (even though the dominant 

frequency of the data is 12Hz) on 104 different positions. 

Starting model (figure 1b) is a smoothed version of the real 

Marmousi. For the classic FWI method (figure1c), forward 

modeling is done using current model (initial model on first 

iteration and updated model subsequently) and the same 

wavelet as the acquired data (we are just applying the FWI 

on a synthetic simulation. No real data was tested).  

First iteration uses only low frequency content, and the 

initial band is from 4Hz to 6Hz. The same frequency band 

is repeated until convergence is reached (objective function 

varies less than 0.001% for three consecutive iterations). 

Then the frequency band is changed by fixing the minimum 

frequency in 4Hz and increasing the maximum one by 2Hz. 

This routine is repeated until the maximum frequency of 

30Hz.   

Acquired data is backpropagated using a PSPI migration 

algorithm, then muted and stacked (Guarido et al. 2015b), 

resulting on a reflection coefficient model, in depth, that 

has the same size of the velocity model. It represents the 

usual gradient estimation and it is often assumed to be an 

equivalent to velocity when multiplied by the step length. 

So, in many cases, the step length can be interpreted as an 

impedance inversion operator. We decided to convert the 

reflection coefficients model to velocity by applying an 

impedance inversion. As data lack in low frequencies (1 to 

3Hz), we use the BLIMP algorithm, assuming the initial 

model is a good pilot, to fulfill the missing frequency 

content. This means that the initial model must contain the 

low frequency (linear trend) of the study are. Later, the step 

length is estimated. 

Figure 1 shows the Marmousi model (a), initial model (b), 

inverted model based on equation 3 (c), where residuals are 

computed as the difference between acquired and synthetic 



FWI without tears: a forward modeling free gradient 

data with an impedance inversion applied to the gradient, 

and, finally, the resulted model based on equation 4 (d), the 

forward modeling free gradient with a PSDM. For both 

inversions, the step length is estimated as proposed by Pica 

et al. (1990). The resulted models are comparable and show 

great resolution. 

Model of figure 1c (using synthetic data to estimate the 

gradient) has more geological structures than the model of 

figure 1d (forward modeling free gradient), better noticed 

on deeper areas. In the shallow and mid depth, the models 

are comparable. This means that the regular FWI still 

works better, mostly on higher frequencies, on a synthetic 

simulation. However, it still requires a very good source 

estimation so the residuals are stable. The forward 

modeling free gradient does not require the source, and we 

believe it would be more stable when applied on real data.  

Another advantage of the forward modeling free method is 

the computing requirement and processing time, which is 

reduced by about 70%. 

Figure 2a is the stacked session used as input data for the 

post-stack FWI method, based on equation 5, and resulted 

model is shown on figure 2b. There is a loss of resolution if 

compared to the previous results. However, most of the 

major layers were correctly inverted and placed. Shallow 

and mid-depth areas are comparable to previous models. It 

is also possible to note some borders effects. They are due 

to the step length be estimated using the central shot as 

control point for the whole model. This effect could be 

reduced if more control points, closer to the borders, are 

included. 

The differences between methods are, mostly, the costs 

associated to each one. For the classic method, to run the 

full inversion routine, it was required 24 clusters for a 

parallel processing in MatLab, and total elapsed time was 

over 48 hours. The forward modeling free gradient method 

(pre-stack) reduce the costs considerably, and the routine 

 

Figure 1: a) true Marmousi model, b) initial model for all runs, c) inverted model with classic FWI and d) inverted model with 

the forward modeling free gradient method. 

 
Figure 2: a) stacked section as input data and b) inverted model on the post-stack approximation. 
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ran on a personal gaming laptop (16Gb of RAM), with no 

parallel processing, and 8 hours of run time in Octave. The 

post stack method ran on a tablet with dual core processor 

(4Gb RAM), where the total elapsed time was around 1 

hour only.  

Figure 3 compares the objective function and models 

deviations of the 3 methods. They all show to be stable and 

we observe the convergence of the objective function. The 

models deviations show to reach a minimum at some point 

and then starts to slowly diverge. We believe this is due to 

the low signal-to-noise ratio at higher frequencies. We also 

observe a “break” of the curves. This happens when the 

inversion starts to include the dominant frequency of the 

data (12Hz) during the migration. 

It is safe to say that the resolution of the inverted model 

decreases the method gets simpler and cheaper. The choice 

of the method is just a matter of cost and benefit. Better 

responses will require the highest investments, and no 

guarantee of stability, as for some surveys the source can 

be very complicated to estimate. However, we show that a 

reasonable result, with just a small loss of resolution, can 

be achieved by a drastically reduction of costs, and a more 

robust inversion. 

 

Conclusions 

 

We have presented a new FWI method based on 

interpreting the gradient as a residual difference of the 

impedance inversion of the acquired data and the current 

inverted model, removing the need to compute one forward 

modeling per shot location on every iteration. Comparing 

with the classic FWI, the results are comparable, but with 

some loss in resolution as costs become cheaper. However, 

the cost-benefit trade-off looks to be worthwhile. 

A post-stack method with preliminary results were also 

presented, reducing even more the costs for a FWI run, but 

also losing some resolution and the addition of border 

effects. However, we are confident that this is a safe 

strategy to follow with the goal of applying the FWI on 

large surveys with reduced computer requirements and gain 

on stability, as it does not require a source estimation. In 

the end, the choice of which method to be used will depend 

on the investment power of the user. 
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Figure 3: Respectively, shot and model errors of a) and b) classic FWI, c) and d) forward modeling free gradient method and 

e), and f) post-stack approximation. 


