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SUMMARY

A key assumption in seismic FWI is the adequacy of the wave prop-
agation physics model used in simulation and sensitivity calculations.
The wide variety of available seismic attenuation and dispersion mod-
els makes the risk of modelling errors in QFWI high. We examine the
consequences of unknown attenuation physics for QFWI, and propose
an alternate updating strategy to alleviate some of them. By relaxing
the requirement that the frequency dependence of the assumed atten-
uation model be self-consistent across the full spectrum, significant
improvement in the fidelity of models, inferred from data obeying one
attenuation model using methods assuming another holds, is found.

INTRODUCTION

Seismic full waveform inversion (FWI) is a technique which attempts
to recover subsurface properties by iteratively minimizing a measure
of the discrepancy between observed data and modelled data (e.g.,
Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009). Multiparam-
eter FWI (Operto et al., 2013; Plessix et al., 2013; Pan et al., 2016), by
involving multiple physical properties, offers the potential to recover
not only this larger list of properties but to better match observed data.
Broad application of FWI technology in, for instance, reservoir charac-
terization and monitoring, will require methods which are tuned to the
multi-parameter problem. Significant challenges remain in bringing
multiparameter FWI to the same levels of practicality and sophistica-
tion currently occupied by mono-parameter FWI. A particularly press-
ing issue is the stable inclusion of anelasticity/an-acousticity (e.g.,
Hicks and Pratt, 2001; Hak and Mulder, 2011; Malinowski et al., 2011;
Kamei and Pratt, 2013; Métivier et al., 2015). In this paper we con-
sider one of the more difficult aspects of an-acoustic FWI (hereafter
QFWI), the problem of management of modelling error. In a compan-
ion paper the interrelation between VP and QP cross-talk, frequency-
band selection in multiscale FWI, and efficiency in truncated Newton
optimization, are also discussed (Keating and Innanen, 2017).

A crucial assumption in FWI is that the wave physics giving rise to
the observed data are adequately accounted for in the simulation com-
ponent of the procedure. If the wave propagation equations miss, or
incorrectly model, important features of the data, FWI will seek to
match those data features through often dramatically un-physical spa-
tial arrangements of the available model parameters. QFWI is espe-
cially prone to modelling errors, because (1) even small changes in the
Q model-type can lead to large differences in, for instance, wave ve-
locities at low frequencies, and (2) many model-types exist, and which
is suitable in any given instance may not be clear.

Innanen (2016) points out that, ideally, uncertainty in attenuation physics
would be managed by being maximally non-committal – framing FWI
to solve for a complex, frequency-dependent velocity at each point in
space; but, that is not possible because seismic data cannot in general
constrain this many parameters. On the other hand, while more de-
cisively parameterized models are much more completely constrained
by data, choosing one a priori risks serious modelling errors.

In this paper, we formulate frequency-domain QFWI such that a “middle-
ground” between the two above extremes is occupied. In other words,
a parameterization in which seismic data are maximally non-committal
regarding model-type within the bounds of what can be constrained
by seismic data. The idea of relaxing the constraint that the assumed
physics be exactly obeyed is investigated by allowing a band-wise
frequency-dependence in the recovered model. This increased flexi-
bility offers important benefits when the assumed physical model in-
volves different frequency dependence of wave propagation from that

of the true (or at least a different, more appropriate) physical model.

THEORY AND APPROACH

Constant density an-acoustic physics models can be characterized by
two parameters: a Q term specifying attenuation, and a term specifying
P-wave phase velocity, both of which can be functions of frequency.
Many different physics models exist, differing in the frequency depen-
dence of Q and VP (Ursin and Toverud, 2002). QFWI, like standard
FWI, involves an objective function based on least-squares data misfit,

Φ(m) =
1
2
||dobs−dmod ||22, (1)

where dobs and dmod are, respectively, measured and modelled wave-
fields evaluated on a measurement surface, and m is the set of an-
acoustic model parameters giving rise to dmod . This objective function
is minimized subject to the condition that a prior-defined wave equa-
tion is satisfied by these wavefields. In the framework of a frequency
domain finite difference approximation, for instance, data are mea-
surements of a field u which satisfies

S1(ω,m)u(ω) = f(ω), (2)

where f is a source term and S1(ω,m) is a matrix that applies a fi-
nite difference stencil based on the an-acoustic physics relevant to the
problem.

In any FWI problem, but of special concern to QFWI, there exists the
possibility that wave propagation in the unknown medium is better
represented by

S2(ω,m)u(ω) = f(ω), (3)

where S2(ω,m) invokes an attenuation model differing from that in
S1(ω,m). Differences between, for instance, low-frequency velocity
dispersion from one Q model to the next can vary significantly, so the
two operators cannot be assumed to be similar. Therefore, concern
about the kinds of parameter values a model belonging to S2 will re-
quire, in order to minimize an objective function based on S1, is high.

We must assume that one of these, say S1, holds in order to begin the
process of inverting the data. This means adopting equation (2) as a
constraint. Our approach to managing QFWI modelling errors is to
relax this constraint to instead read

S1(ω,mN)u(ω) = f(ω), for ωN < ω < ωN+1, (4)

where mN is a subsurface model for the angular frequency range (ωN ,
ωN+1). This allows greater freedom in matching the attenuation be-
haviour of the measured data, because it requires that the assumed
physics be satisfied exactly only on a certain frequency band. As
the bandwidths ωN+1-ωN decrease, modelling errors within any given
band become less significant. Piecewise application of S1 can, in other
words, closely mimic a model belonging to S2.

The lower limit of this process involves bands containing single fre-
quency components. Because the simultaneous determination of ve-
locity and Q requires several frequencies to be compared (Innanen and
Weglein, 2007; Keating and Innanen, 2017), this limit should not in
practice be approached. In the QFWI approach we consider here, it is
in fact necessary to treat the width of the frequency bands as a trade-
off parameter, balancing the suppression of modelling error with the
suppression of parameter cross-talk.
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KF and SLS models of an-acoustic wave propagation

To study attenuation-based modelling errors in isolation, we formu-
late a constant density anacoustic FWI, in which wave propagation is
governed by

[
ω2s(r,ω)+∇2]u(r,ω) = f (r,ω), (5)

where u is the pressure field, f is a source term, and the model param-
eter s depends on the dispersive velocity and attenuation:

s(r,ω)≈
[

c(r,ω)− ic0(r)
2Q(r,ω)

]−2

, (6)

where c is the phase velocity, c0 is the phase velocity at a reference
frequency, and Q is a quality factor.

Many models of attenuation and dispersion exist and are in regular use
for processing, imaging and inverting seismic data. They tend to agree
in their general reproduction of the amplitude and phase features of
dissipating waves, but in their detailed predictions of, e.g., phase ve-
locities at low frequencies they may differ widely. We select as bench-
mark models the the Kolsky-Futterman (KF) nearly constant Q model,
and the standard linear solid (SLS) model.

Kolsky-Futterman (KF) model

In certain attenuation models, the quality factor Q, defined as

1
Q(ω)

=
∆E

2πE
, (7)

where E and ∆E are the peak strain energy stored and strain lost
during a given cycle (Aki and Richards, 2002), is forced to be con-
stant over a given frequency range. A constant Q in a non-dispersive
medium violates causality (Aki and Richards, 2002), so in many mod-
els a frequency-dependent Q, which is nearly constant over the range
of seismic frequencies, and a dispersion term are adopted. There are
many ways to create a function which is nearly constant over the range
of seismic frequencies, so there are many different nearly constant Q
model types (Ursin and Toverud, 2002; Liu et al., 1976). We select the
nearly constant Q model due to Kolsky and Futterman (Kolsky, 1956;
Futterman, 1962), hereafter the KF model, in which

c(ω) = c0

[
1+

1
πQ

log
(

ω
ω0

)]
, (8)

where c(ω) is the wave velocity, ω0 is a reference frequency and c0 =
c(ω0).

Standard linear solid (SLS) model

The standard linear solid (SLS) model is based on viscoelastic con-
siderations, with a constitutive relation that is linear in the stress, the
strain, and their derivatives (Casula and Carcione, 1992; Liu et al.,
1976). Continua are treated as consisting of a spring and dash-pot in
series, in parallel with a second spring. The Q value given by this
model is not constant, but is instead given by

Q(ω) =
1+ω2τε τσ
ω(τε − τσ )

, (9)

where τε and τσ are relaxation times related to the constants of the ef-
fective springs and dash-pot of the model (Casula and Carcione, 1992;
Liu et al., 1976). This function is sharply peaked at ω = τ−1, where
τ =
√

τε τσ . The P-wave phase velocity for this model is given by

c(ω) = c0

Re
√

1+iω0τσ
1+iω0τε

Re
√

1+iωτσ
1+iωτε

, (10)

Figure 1: Comparison of SLS and KF models for velocity 2500m/s
at reference frequency 15Hz, and Q=20. Left: Velocity comparison.
Right: Attenuation comparison. Note the semilog scale.

Many physical processes which could have significant impact on seis-
mic wave attenuation are well modelled by the standard linear solid
(Liu et al., 1976). Furthermore it has been pointed out (Liu et al., 1976)
that the SLS and KF models are not necessarily at odds with one an-
other. A general standard linear solid can be introduced by considering
several standard linear solid systems arranged in parallel. This intro-
duces several relaxation mechanisms, and several attenuation peaks. If
the amplitudes and peak frequencies of these individual SLS compo-
nents are chosen correctly, a general SLS with approximately constant
Q over a given bandwidth can be constructed. In this case the disper-
sive behaviour of the velocity reduces to equation 8 over the nearly
constant Q frequency band. In a situation like this a KF-based QFWI
procedure would suffer from little modelling error.

Our purpose in this paper is to develop a methodology which lim-
its modelling errors when the QFWI model (e.g., KF) and the actual
model operating in the Earth are dissimilar. So, the SLS model con-
sidered in the following examples is based on a single spring/dashpot
system and does not reduce to KF behaviour. A comparison of KF and
SLS Q and P-wave velocity is shown in Figure 1, where the models
have the same Q and P-wave velocity at 15Hz.

Flexible FWI with unknown attenuation physics

The discrepancies between the KF and SLS models illustrated in Fig-
ure 1 will have strong negative consequences for a QFWI procedure,
if the KF model is assumed and the SLS model (or something like it)
actually holds. But, the consequences can be significantly reduced if
in the QFWI procedure the KF model is not forced to be self-consistent
over the full frequency range. The additional flexibility afforded QFWI
by imposing the relaxed constraint in equation (4) is illustrated in Fig-
ure 2. An example SLS profile for Q and P-wave velocity is illus-
trated in this figure as a black dashed line, along with the KF model
which most closely matches it in blue. Although both models are
evaluated using the same parameters, the highly dissimilar frequency-
dependence of these parameters in the different physics models mean
that the matching is very poor. The red line shows the best match
which can be obtained using a relaxed KF model, with different pa-
rameters on each 1 Hz band. Clearly, this step offers considerable im-
provement in the ability to match the observed behaviour, despite hav-
ing assumed physics different from the SLS. Adopting an FWI strategy
which allows for this better matching should improve the quality of the
results in the case where the true attenuation model is unknown.

While the flexible strategy outlined above in principle has the capac-
ity to match unknown an-acoustic physics, the question of whether a
QFWI procedure based on this idea works in practice is settled neither
by simply stating it nor by Figure 4. Two significant challenges may
present themselves in inversion using this strategy. First, while the
overall dispersive character of an ideal recovered model will closely
match the true model, these behaviours may differ significantly within
the small bands on which the inversion occurs. This means that inso-
far as the inversion considers the dispersive character of the observed
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Figure 2: Comparison of SLS with best fitting KF, and band-defined
KF. Due to the highly dissimilar behaviour of the model types, the KF
result is a poor approximation of the SLS behaviour. The band-defined
KF is capable of matching the SLS behaviour much more closely,
though still differs in dispersive behaviour on each band.

data, it may lead the estimated model away from the best approxima-
tion. The second problem is that it is not straightforward to predict
what spatial arrangement of (e.g.) KF model parameters will be set-
tled on by a QFWI procedure, if those parameters vary widely and
non-self consistently over the full spectrum, and whether or not these
structures will tend to be realistic. It is difficult to address the impact
of these concerns without the aid of synthetic examples, which are
considered in the next section.

NUMERICAL EXAMPLES

In this section, two distinct QFWI approaches are implemented numer-
ically and used to explore the an-acoustic modelling-error suppression
strategy. In the first, which will be referred to as ‘traditional’ QFWI,
equation 2 is strictly adhered to, and the updating strategy used is
designed to minimize an-acoustic cross-talk, following Keating and
Innanen (2017). The second, which will be called ‘flexible’ QFWI,
obeys instead the constraint in equation 4 and uses an updating strategy
consistent with this constraint. The QFWI procedure is built around a
KF an-acoustic model in both cases. The phase velocity at the ref-
erence frequency, c0, and Q, are the two unknown parameters to be
recovered in all cases. The reference frequency is fixed at 30 Hz.

In order to avoid introducing complicating optimization issues, rather
than use the more efficient truncated Newton algorithms, the examples
calculated in this paper were chosen to be sufficiently small that exact
Gauss-Newton numerical optimization could be employed. Frequency
domain finite difference modelling is used for two-dimensional mod-
els on a 50 by 50 grid, with grid spacing of 10 meters in both the
horizontal and vertical dimensions. 24 sources at 20m intervals are
arrayed laterally, at 30m depth, from 10m to 470m. 48 receivers at
10m intervals are placed at 20m depth from 10m to 480m. Frequen-
cies from 1Hz to 25Hz are assumed to be available, and the source
function is considered to have a uniform amplitude spectrum over this
range. First order Engquist boundary conditions are implemented at
every boundary.

Traditional QFWI is applied here with a multiscale approach, consid-
ering 24 frequency bands, beginning with 1Hz-2Hz, and increasing
the upper limit by 1Hz at each band, up to the final band of 1Hz-25Hz.
At each stage of the inversion, 6 frequencies spaced evenly from the
minimum to the maximum frequency of the band are simultaneously
inverted. The frequency band is changed every 2 iterations.

The flexible FWI approach used here uses 12 instances of fN , in 2Hz
steps from 1Hz to 23Hz. To recover each mN , six evenly spaced fre-
quencies from fN to fN+1 were inverted simultaneously. 4 iterations
were performed for each mN , resulting in a total number of iterations
equal to the number used in the traditional FWI approach. The mN
were solved for sequentially, beginning with the smallest fN and then

increasing. The initial model used for m1 was identical to that used
in the traditional FWI approach. The initial model for every other mN
was set equal to the final mN−1.

For the first example, the model in Figure 3, and KF an-acoustic physics,
are used to generate the synthetic observed data. The initial model is
a uniform velocity of 2500 m/s and uniform Q−1 of 0, matching the
background of the true model. The QFWI procedure assumes (in this
case, correctly) an KF an-acoustic model. The result of traditional
QFWI with an exact Gauss-Newton optimization is illustrated in Fig-
ure 4, where the recovered velocity at reference frequency and Q are
shown. This result acts as a kind of benchmark, reflecting the ideal
case of a simple model, dense acquisition and exact Gauss-Newton
numerical optimization.

The result of applying the flexible QFWI for two example bands is
illustrated in Figures 5 and 6. Results comparable to the benchmark
are obtained here, however comparison of the results generated using
different bands make clear that variance in the recovered model pa-
rameters is introduced from band to band. The left panel of Figure
6 is suggestive that cross-talk issues can appear for certain frequency
bands, and that therefore the issues discussed in this paper and those
discussed by Keating and Innanen (2017) are not independent. This
is suggestive that self-consistency of the an-acoustic model across the
full frequency range is optimal, if the correct an-acoustic model type
is well established in advance.

Figure 3: True model velocity at reference frequency 30 Hz (left) and
reciprocal Q (right) for KF model type.

Figure 4: Final result of conventional QFWI using the correct KF
model type.

Figure 5: Final result of flexible QFWI approach with a 13-15 Hz
maximum band, using the correct KF model type.

In a second example the central problem of the current study, in which
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Figure 6: Final result of flexible QFWI approach with a 23-25 Hz
maximum band, using the correct KF model type.

the assumed attenuation model is incorrect, is explored. The model
shown at example frequencies in Figures 7 and 8 was used to generate
the data. In this model, a SLS model was used, with a peak Q−1 at 15
Hz. The acquisition geometry and FWI strategy are unchanged from
the previous example. The peak reciprocal Q is appreciably higher
than for the KF model, in order to introduce non negligible attenuation
away from the peak.

First we examine the result of applying to the SLS-type data a tradi-
tional QFWI procedure in which the KF an-acoustic model is assumed
to hold. The results are illustrated in Figure 9. Evidently QFWI fails to
recover a meaningful velocity or Q model — despite benefiting from
the simple model geometry, dense acquisition and powerful numer-
ical optimization which allowed for strong recovery in the previous
example. This highlights the hazards associated with uncertainty in
the QFWI attenuation model, adding further incentive for a flexible
approach.

Results produced by applying the flexible QFWI approach, based on
the KF model, again on SLS data, are shown for two example bands
in Figures 10 and 11, where the recovered velocity at the example fre-
quency and Q are shown. These example results correspond to the true
model at frequencies shown in figures 7 and 8, respectively. The less
restrictive constraints used in this approach allow for a significantly
improved recovery of the true model behaviour. The recovered mod-
els effectively identify the position and shape of the anomalies. Gen-
erally our survey of the modelling error problem as summarized here
supports the use of a flexible QFWI strategy of the type we present
here.

Figure 7: True model velocity (left) and reciprocal Q (right) at 15 Hz
for SLS attenuation physics.

The computational cost of the two QFWI approaches is identical, the
greater number of models recovered in the flexible approach being off-
set by the smaller number of iterations used to invert for each. The rea-
son for this similarity is that the flexible approach can be interpreted as
an alternative multiscale strategy in conventional FWI, with the caveat
that the final result is an approximation of the model behaviour only
within the highest frequency band considered, and that the interme-
diate steps themselves provide an estimate of the model behaviour at
their respective frequency ranges.

Figure 8: True model velocity (left) and reciprocal Q (right) at 25 Hz
for SLS attenuation physics.

Figure 9: Final result of conventional QFWI; KF inversion carried out
on SLS data..

Figure 10: Final result of flexible band approach for 13-15 Hz maxi-
mum band; KF inversion carried out on SLS data.

Figure 11: Final result of flexible band approach for 23-25 Hz maxi-
mum band; KF inversion carried out on SLS data.

CONCLUSIONS

The inclusion of attenuation in seismic FWI offers the potential for
improved recovery of subsurface parameters of interest, but presents
unique risks associated with modelling error. The flexible QFWI ap-
proach suggested here relaxes the FWI constraint that the modelled
wavefield strictly obeys an assumed physics model across all experi-
mental variables. This allowed for significant improvements over tra-
ditional FWI strategies as applied to dissipative problems.
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