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Summary 

 

Iterative modeling, migration and inversion (IMMI) aims to 

incorporate standard processing techniques into the process 

of full waveform inversion (FWI). Within IMMI, depth 

migration method may be used to obtain the gradient, in 

contrast to standard FWI which uses a two-way reverse 

time migration (RTM). Another aspect of the IMMI 

approach is the use of well-calibration to scale the gradient, 

rather than applying a line search to find the scalar or an 

approximation of the inverse Hessian matrix. We examine 

with synthetic examples the performance of IMMI in 

circumstances of progressively increasing geological 

complexity. We find consistently low errors nearby the 

well-calibration location, even in the most complex 

settings. This suggests that the gradient obtained by 

applying a migration method other than RTM, though less 

wave-theoretically complete, points in the correct direction 

in order to minimize an FWI-like objective function, and 

that well-calibration provides a working approach for 

scaling. These refinements of FWI may be important 

enablers for application of waveform inversion in reservoir 

characterization, where we may have many control-wells, 

and we may wish to extend our approach to the 

determination of several elastic and/or rock properties. We 

find that well-calibration scales the updates properly up to 

what we refer to as moderate lateral velocity changes.  

 

Introduction 

 

Lailly (1983) and Tarantola (1984) provided the 

mathematical foundations for full waveform seismic 

inversion. They showed that FWI and migration are 

strongly linked, in what Margrave et al. (2010) called the 

fundamental theorem of FWI, which is summarized in 

Equation 1. 

 

                        
(1) 

where  is the velocity update, λ is a scalar constant,   

is the gradient with respect to the velocity model ,  is 

the objective function for iteration k, ω is angular 

frequency,  is a model of the source wavefield for source 

s propagated to all (x, z),  is the kth data residual for 

source s back propagated to all (x, z), and * means complex 

conjugation. The residual δΨ is the difference between the 

observed data and the modeled data. The objective function 

measures the difference between the recorded data and the 

modeled data at the kth iteration (equation 2). 

 

                                                    (2) 

 

The gradient in Equation 1 can be written in the time 

domain as: 

 

 (3) 

 

where T denotes record length. Equation 3 says that the 

gradient of the objective function is formed by correlating 

the time-reversed residuals propagated into the medium 

with the source field propagated into the medium. This is 

the core of FWI. The gradient is the element that contains 

the direction of the velocity update in the minimization 

scheme. The other element is the inverse Hessian or an 

approximation of it. If the inverse Hessian is replaced by a 

scalar λ, the mathematical effort is reduced to the gradient 

or steepest-descent method. λ scales the gradient to be 

converted into a velocity perturbation. λ is commonly 

estimated by a line-search method, which requires an extra 

forward modeling per shot (Virieux and Operto, 2009), 

doing the process more expensive. 

 

FWI is an iterative cycle that involves four main steps, 

shown in Figure 1 (Margrave et al., 2010). 

 

 
FIG. 1. The cycle of FWI (Margrave et al., 2010) 

 

The first step consists in generating synthetic seismic data 

(predicted data ) from an initial model  and the 

calculation of the data residual . The 

second steps involves the pre-stack depth migration using 
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the current velocity model of the data residual and stack to 

obtain . This step provides the gradient or update 

direction. The third step is scaling or calibrating the 

gradient by aplying λ, which produces the velocity 

perturbation . The last step is updating the velocity 

model  that will be used in the next 

iteration. 

 

Iterative Modeling, Migration and Inversion (IMMI), 

introduced by Margrave et al. (2012), was proposed as an 

alternative to “classical” FWI which involved tools already 

available and widely applied by the industry. The key 

IMMI innovations are the use of any depth migration 

method in place of RTM, and the incorporation of well 

information to scale the gradient. The authors further 

suggested that using a deconvolution imaging condition, 

instead of the correlation type generally employed, may 

produce updates similar those obtained by preconditioning 

with the main diagonal elements of the inverse Hessian, 

which is a gain correction, as illustrated by Shin et al. 

(2001). Pan et al. (2014) applied the IMMI method, 

compared the crosscorrelation and deconvolution imaging 

conditions, and showed that using a deconvolution-based 

gradient can compensate the geometrical spreading. 

 

Following the IMMI approach, we used a phase-shift plus 

interpolation (PSPI) migration method (one-way wave 

migration) with a deconvolution imaging condition to 

obtain the gradient. PSPI, introduced by Gazdag and 

Sguazzero (1984), allows selecting a range of frequencies 

of interest, which is very convenient to explore frequency-

based (i.e., multiscale) strategies in FWI, wherein the 

inversion is started using low frequencies and then higher 

frequencies are progressively included, to avoid local 

minima (Pratt, 1999). We will follow this strategy. The 

scale λ in Equation 1 takes the form of a match filter that 

equates the size of the gradient to the size of the velocity 

residual in a well location. The velocity residual is the 

difference between the well velocity and the current 

velocity model.  

 

Method 

 

The observed shots for this experiment are idealized 

version of the ones that would be recorded on the field. We 

generated these shots with an acoustic finite-difference 

algorithm to propagate the wavefield. A minimum phase 

wavelet with a dominant frequency of 20 Hz was used as 

seismic source. The sources are placed every 50 m from 

2100 to 9250 m, giving 144 shots in total. Receiver stations 

are located along the whole model every 10 m, and all of 

them were kept alive for each shot.  

 

 

 

First iteration  

 

The initial velocity model was generated by applying a 

Gaussian smoother 290 meters wide to the true velocity 

model. The initial velocity model provides no more than 2 

Hz of geological information, while the true velocity model 

mainly contains information between 1 and 30 Hz, with the 

main events around 12 Hz. The seismic data have a 

dominant frequency of roughly 15 Hz and provide 

information between 7 and 25 Hz. There is a gap between 2 

and 5 Hz, where neither the initial model nor the seismic 

data contribute. Modeled shots were generated by using the 

initial model. The difference between the observed and the 

modeled shots is the data residual. We obtain a data 

residual per shot, which are migrated in depth with the 

PSPI method, which permits us to limit the process to a 

specific frequency range. We used frequencies between 1 

and 5 Hz for the first iteration. A mute, before stacking the 

residuals, is commonly applied to avoid migration artifacts. 

The result of stacking the migrated data residuals is the 

gradient.  

 

The next step is to scale or calibrate the gradient. We use 

well C to perform this process (Figure 3). The well 

calibration technique was described by Margrave et al. 

(2010). Figure 2 shows the calibration process. Firstly, the 

difference, δvel, between the well and model velocities is 

calculated. The second step is to estimate the amplitude 

scalar a and the phase rotation ϕ that optimally match the 

gradient trace g to δvel. The scalar a is found such that the 

difference between δvel and ag is minimized by least 

squares. Finally, a convolutional match filter is obtained 

incoporporating a and ϕ. This match filter is applied to 

every gradient trace in order to obtain the velocity update. 

 

 
FIG. 2. Well calibration for the first iteration. 
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More iterations   

 

The inputs which must be supplied for the subsequent 

iterations are the frequency range to be used, and the 

updated velocity model. The frequency range was increased 

by 1 Hz in each iteration. We stopped the inversion at the 

10th iteration because in our experiments the error in the 

model does not decrease anymore after that point. 

 

Examples 

 

We evaluated the performance of the well calibration 

technique in three different geological settings shown in 

Figure 3. Model 1 is the simplest model we consider, 

consisting of horizontal layers. The inversion is able to 

recover the most important features of the subsurface, 

including the low velocity body at a 2500 m depth, which is 

not present in the calibration well. The error is consistently 

low across the model. When moderate lateral velocities are 

found, such as in Model 2, the error across the model still 

decreases in each iteration, giving the best result around the 

calibration well. For this case, the resulting inverted model 

captures the main features and amplitudes of the true 

model, and again it is possible to identify the low velocity 

body enclosed in the anticline at 2500 m depth. In the 

presence of strong lateral velocity changes, such as in 

Model 3, the inversion produces good results in the vicinity 

of the calibration well, but the error increases quite strongly 

as we move away from the well, especially in the zones of 

the high velocity bodies. 

 

Figure 4 illustrates the results when more than one well are 

incorporated to scale the gradient in constructing Model 3. 

Wells A, B and C were used to obtain an average 

calibration filter that was applied to scale the gradient. As 

we include more wells, the error across the model 

decreases. If more than one well is available, more options 

arise: for example, a spatial-varying filter can be estimated. 

 

The match filter used for the experiments above was 

designed over the whole depth interval from zero to 3000 

m. A more realistic experiment is shown in Figure 5, 

 
FIG. 3. Comparison among initial, inverted and true velocity models. The calibration and blind wells are C and B, respectively. The 

evolution of the inverted trace, from the initial model to iteration 10, shows an excellent performance in the calibration well for the three 

models, and the normalized error is consistenly low at this location. The error tends to increase with stronger lateral velocity variations 

and as we move away the calibration well.      
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wherein different depth intervals were selected to obtain the 

calibration filter. We note that the inverted trace is better in 

the depth zone where the filter is estimated. Following this 

observation, we tested a depth-varying calibration filter. 

The result is illustrated in the rightmost panel of Figure 5. 

The depth-varying filter provides superior results in 

comparison to those derived using a stationary filter. The 

example in the middle panel of Figure 5, where we use a 

depth interval from 1000-2250 m, exhibits poor inversion 

performance in the shallower part.  This result is a reminder 

of the importance of sufficient well information when 

applying this technique. 

 

 
FIG. 4. Calibration with more than one well. 

 

 
FIG. 5 Depth-varying calibration filter. 

Conclusions 

 

The gradient, calculated with a one-way wave migration 

method (PSPI) under a deconvolution imaging condition, 

points in the correct direction in order to minimize the 

objective function in as per the IMMI scheme. We showed 

that the use of well information to calibrate the gradient 

produces a velocity perturbation to update the model which 

reduces model error effectively in several benchmark 

examples. This was confirmed by the consistently low error 

at the well location, even for the most complex of the 

geological models. Well calibration satisfactorily performs 

in the presence of moderate lateral velocity changes, such 

as in Model 1 and 2. The error decreases in each iteration 

as we go to higher frequencies, and the main geological 

features of the subsurface are captured. When we have 

strong lateral velocity variations, such as in the Marmousi 

model, the inversion works properly in the shallow part, 

and is able to recover the main futures in the deeper part. 

However, the velocity tends to be underestimated as we go 

to deeper zones. A depth-varying calibration filter helps to 

overcome this issue. We found that well calibration can be 

applied in complex settings, providing that the well is 

representative of the geology of the area of interest. The 

results suggest that a calibration filter that varies 

horizontally (providing more control wells) and with depth, 

is a worthy option to obtain better velocity updates in the 

FWI process. 
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