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Introduction 
•  Mathematical Formulation: PDE-constrained Optimization 

 
 
    where  
                :  Model parameter(wave velocity)  
                :  Observational data  
                :  Synthetic seismogram based on m through the wave eq. 
                :  Regularity term (Optional, depending on prior knowledge) 
 
    The inverse problem is solved through 
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t

is the
data measurement, or the extra boundary condition, the term kpk
is a regularity term for the purpose of well-posedness of the inverse
problem.

The inverse problem is thus formulated as the following
constrained optimization problem:

min
V

p

2H(⌦)
J (V

p

)

Calgary

Introduction PDE-constrained optimization problem Elastic wave propagation Adjoint Model of the Elastic Wave Equation Automatic Di↵erentiation Optimization Algorithms Numerical Results Conclusion and Acknowledgements

Inverse Problem: PDE-constrained optimization(I)
Define the objective function

J (m) =
1

2

Z
t

f

0

N

rX

i=1

(d i

obs

� d i

cal

(m))2 dt + kmk

where
m d i

obs

d i

cal

(m)

kmk RegularityTerm

is the parameter to be determined, u is the state solution of the
Elastic Wave equation based on the parameter p, and ũ
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Introduction 
•  PDE-Constrained Optimization: Gradient Calculation 

    Direct computation of     is difficult and expensive!  
 
    Adjoint-state method is an effective way to resolve this issue           
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Adjoint State Method 
•  Define the cost functional as 

                          
which may depend on the model parameter implicitly if no regularity 
term. 
 
 The governing PDE(acoustic wave equation in this case)  is stated as 
 
 
 
Here     is an operator defining the initial-boundary value problem of 
the wave equation. 
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Adjoint State Method: Perturbation Theory 

Introduce a perturbation to the parameter: 
 

                            
                                  +  
                              
 
        
      
 where  the adjoint-state variable is defined as 
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Adjoint State Method: Lagrange Multipliers 

Redefine a new cost functional as 

Solving the unconstrained optimization problem we obtain the   
gradient as 

       
where  
 
 
 
 
Adjoint –> Discretization or Discretization  -> Adjoint 
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Automatic differentiation 

•  Automatic Differentiation (AD), sometimes 
alternatively called algorithmic 
differentiation, is a set of techniques to 
numerically evaluate the derivative of a 
function specified by a computer program. 



Forward mode AD 



Reverse mode AD 



AD tools 

l  AD Model Builder  ( C/C++ ) 
l  ADC  ( C/C++ ) 
l  ADF  ( Fortran77,Fortran95 ) 
l  ADIC  ( C/C++ ) 
l  ADIFOR  ( Fortran77 ) 
l  ADiMat  ( MATLAB ) 
l  ADMAT / ADMIT  ( MATLAB ) 
l  ADOL-C  ( C/C++ ) 
l  ADOL-F  ( Fortran95 ) 
l  APMonitor  ( Interpreted ) 
l  AUTODIF  ( C/C++ ) 
l  AutoDiff .NET  ( .NET ) 
l  AUTO_DERIV  ( Fortran77/95 ) 
l  ColPack  ( C/C++ ) 
l  COSY INFINITY  ( Fortran77/95,C/

C++ ) 
l  CppAD  ( C/C++ ) 
l  CTaylor  ( C/C++ ) 
l  FAD  ( C/C++ ) 
l  FADBAD/TADIFF  ( C/C++ ) 
l  FFADLib  ( C/C++ ) 

l  GRESS  ( Fortran77 ) 
l  HSL_AD02  ( Fortran95 ) 
l  INTLAB  ( MATLAB ) 
l  NAGWare Fortran 

95   ( Fortran77,Fortran95 ) 
l  OpenAD  ( C/C++,Fortran77/95 ) 
l  PCOMP  ( Fortran77 ) 
l  pyadolc  ( python ) 
l  pycppad  ( Interpreted,python ) 
l  Rapsodia  ( C/C++,Fortran95 ) 
l  Sacado  ( C/C++ ) 
l  TAF  ( Fortran77,Fortran95 ) 
l  TAMC  ( Fortran77 ) 
l  TAPENADE  ( C/C+

+,Fortran77/95 ) 
l  TaylUR  ( Fortran95 ) 
l  The Taylor Center  (independent ) 
l  TOMLAB /MAD  ( MATLAB ) 
l  TOMLAB /TomSym  ( MATLAB ) 
l  Treeverse / Revolve  ( C/C+

+,Fortran77/95 ) 
l  YAO  ( C/C++ ) 
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Workflow of FWI 

J (m) = 1
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FWI solution one by one 
Forward Modeling: 
-2nd-order in time and 4th-order in space 
-Stagger-grid finite difference 
-PML absorbing boundary 

Model Updating: 
-L-BFGS selected 
-Limited memory required 
-Quasi-Newton method 

Gradient Calculation: 

-Adjoint state method 

-AD tools used 

-TAPENADE test  



FWI workflow with AD 

Initial model 

Forward modeling 

Automatic 
Differentiation 

Converged 
? 

Model updating  

Misfit calculation 

N 

Y 

AD tool solve the 
gradient according to the 
forward modeling 
program 



Benefit of FWI with AD 

•  Simplify the gradient calculation 
•  Focus on forward modeling and 

optimization method  
•  High efficiency forward modeling 

program will lead to high efficiency 
gradient calculation code 

•  FWI workflow is simplified 

Forward 
modeling 

AD -> 
gradient 

Model 
update 



Accuracy of Gradient calculation 

Gradient by TAPENADE Gradient by central difference quotient 
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Gradient calculation: 
-True model 
-Synthetic record 
-Initial model 
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Model test 1 
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Model:101 X 101 
Spatial sample:1m 
Time sample:0.1ms 
Source： ricker wavelet 
Main frequency: 180 Hz 
Boundary: PML 



Inversion result - 1 shot 
true model
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Inversion result - different shot 
initial model
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Model test 2 
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Model:101 X 101 
Spatial sample:1m 
Time sample:0.1ms 
Source： ricker wavelet 
Main frequency: 180 Hz 
Boundary: PML 



Inversion result - different shot 
true model
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Inversion result - 1 shot 
initial model
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Conclusion 

•  Automatic differentiation (AD) is a promising yet 
not popular approach in Geoscience. 

•  The gradient calculated through AD is accurate. 

•  The full waveform inversion workflow is simplified 
with the usage of the AD tool. 

 
•  Model tests show that the full waveform inversion 

method with AD is effective and efficient in the 
inversion of the crosswell seismic data. 



Future work 

•  Improve the forward modeling: finite 
difference 4th-order in time 

•  Test the large-scale data inversion  using 
checkpoint technology 

•  Test with other AD tools, and Optimization 
algorithms  

•  Test the surface seismic inversion 
•  Address inverse modeling issues under the 

current framework 
•  Test on other types of wave equations 
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