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Concepts

 Primaries: events which have experienced one
upward reflection and no downward reflections
during their history.

« FSMs: any events that reflected from the free
surface.

 IMs: events which experienced at least one

downward reflection In the subsurface, and
never interact with the free surface.
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Figure 1. Primaries and multiples
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2D IM prediction algorithm
The prediction algorithm given by Weglein et., 1997
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And ¢ =2 [1 are vertical wave numbers.




The procedure for getting the input was given by
Innanen (2012):
Begin with a data set d(x,, x, t).
Fourier transform to the frequency domain
d(xg,xs,t) > D(kg, ks, w).

Change from w to k,

D(kg, ks,w) = D(kg, ks, k2),
where k; = q4 + gs.
Scaled by —i2qq,

by (kg ks, kz) = (—i2q5)D (kg ks, kz).

Inverse Fourier transform, appearing in the
pseudo-depth domain as

by (kg ks kz) = by (kg ks, 2).
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1D IM prediction algorithm

Now we will reduce the algorithm to 1D, using the
replacement:

kg =ks=0,
Then we can obtain the prediction algorithm in 1D
normal incidence case,
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where k, = 2w/cy.
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Lower-higher-lower relationship
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Figure 2. Construction of the travel times of an internal multiple
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Artifacts
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Figure 3. Two combinations of sums and differences
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A study of prediction errors
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Figure 4. (a) Three layers velocity model. (b) Shot record
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Figure 5. (a) Shot record. (b) Zero offset trace. (c) The same trace
with a lager scale.
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PARAMETER VALUE
Number of t 1024

Number of x GOA

Number of z <1\102y

Interval sampletime 3?15

Vel ocity and depth of thefirst interface 3000nvVs at 200m
Velocity and depth of the second interface 2000my/s at 500m
Velocity and depth of the third interface 3000m/s at 800m
Wave speed of the source/ receiver medium 1500nvs

Time step 0.4ms

Maximum time of the shot record 3.07s

Location of the source (1, 512)
Frequency band (H2) 102080100] >
Epsilon (@

Table 1. Parameters of the velocity model and shot record
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Figure 6. (a) Input data (b) Prediction output
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Figure 7. The paths of two internal multiples
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The influence of offset
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Figure 8. Prediction errors plotted against an increasing series of
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Figure 9. (a) Three layers velocity model with the second layer’s
dipping angle equals 3 degrees. (b) Shot record
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Figure 10. (a) Shot record. (b) Zero offset trace. (c) The same
trace with a lager scale.
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Figure 11. (a) Input data (b) Prediction output
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The influence of dipping angle (generator)
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Figure 12. Prediction errors in the zero offset trace plotted against
an increasing series of dipping angle.
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The influence of dipping angle (second interface)
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Figure 13. Prediction errors in the zero offset trace plotted against
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an increasing series of dipping angles.
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The influence of dipping angle (third interface)
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Figure 14. Prediction errors in the zero offset trace plotted against
an increasing series of dipping angles.

37 CREWES




Recommendations

1) We do not recommend applying this method when the offset is
greater than 300m.

2) When we have information about the subsurface.

» Generator: we recommend using this method when the dipping
angel is within 10 degrees.

» Second layer: we recommend applying this method when the
dipping angle is within 11 degrees.

» Third layer. we recommend applying this method at any dipping
angle within 15 degrees.

3) Even without any advanced knowledge of the multiple generators,

we recommend using this algorithm when the dipping angle is less
than 10 degrees.
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