Application of nonlinear time-lapse AVO to the Pouce Coupe data set

> Presented by Shahin Jabbari Supervisor Kris Innanen

Outline

- Motivation and review
- Geology
- Seismic surveys
- Well tie and interpretation
- Time-lapse modeling
- Future work
- Acknowledgements

Time-lapse

- Monitoring changes in reservoir: production, EOR
- Repeated seismic surveys over calendar time
- The baseline and monitor survey
- Changes in seismic parameters

AVO : Amplitude Versus Offset

Baseline and time-lapse changes Baseline

$$\Delta V_{Pb} = V_{Pb} - V_{P_0}$$
$$\Delta V_{Sb} = V_{Sb} - V_{S_0}$$
$$\Delta \rho_b = \rho_b - \rho_0$$

Time-lapse $\delta V_P = V_{Pm} - V_{P_b}$ $\delta V_S = V_{Sm} - V_{S_b}$

$$\delta \rho = \rho_m - \rho_b$$

A general framework for time-lapse AVO

- Deriving $\Delta R_{PP}(\theta)$ from Zoeppritz equations
 - Linear or Aki-Richards approximation
 - Nonlinear correction
- Examine linear and nonlinear terms for:
 - Agreement with Landrø at small contrast
 - Behaviour of approximations at large contrast

A time-lapse problem

ΔRpp for the exact, linear, second and third order approximation

Incident angle (degree)

Numerical example is taken from Greaves and Fulp (1987) Elastic incidence parameters: VP0 = 3000m/s, VS0 = 1500m/s and ρ 0 = 2.0gm/cc; Baseline parameters: VPb = 4000m/s, VSb =2000m/s and ρ b = 2.5 gm/cc; Monitor parameters: VPm = 3400m/s, VSm = 1700m/s and ρ m = 2.4 gm/cc.

ΔRPP for the physical model, linear, second and third order approximation

Incident angle (degree)

Physical Model: Acrylic as caprock, PVC and Phenolic as reservoir Elastic incidence parameters: VP0 = 2745m/s, VS0 = 11380m/s and ρ 0 = 1.19gm/cc; Baseline parameters: VPb = 2370m/s, VSb =1122m/s and ρ b = 1.13 gm/cc; Monitor parameters: VPm = 3500m/s, VSm = 1700m/s and ρ m = 1.39 gm/cc.

Pouce Coupe Field Source: Birchcliff Energy November 2013.

PEACE RIVER ARCH AREA OF ALBERTA

Montney Formation

Pouce Coupe Area

Geology

- Montney deposition extends over 40,000 km²
- Maximum thickness of 350 meters with production depths ranging 1500-2500 meters
- Sandstone, siltstone, and shale reservoir:
 - Permeability of 0.01-0.02 mD
 - Porosity of 6-10%
- The Montney is a tight gas/condensate reservoir

Triassic Montney Formation in the Peace River Arch region (Courtesy of Talisman Energy)

TRIASSIC TABLE OF FORMATIONS, PEACE RIVER ARCH									
PERIOD	EPOCH	AGE	OUTCROP		BC - OGC		TALISMAN		AB - EUB
	LATE	Carnian	Luddington	Charlie Lake	Schooler Creek	Charlie Lake	Charlie Lake	Artex	Charlie Lake
TRIASSIC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ladinian/ Anisian	~~~~~~			Halfway	Halfway	Upper Middle Lower	Halfway
	MIDDLE		Liard			Doia	Doig	Upper Middle	~~~~~~
	~~~~~	~~~~~~	~~~~~~	·····	aiber	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Montney	Lower (PO4) F	Doig
	EARLY	Spathian	<b>-</b> 1					~	~~~~~
		~~~~~~	load	Vega- Phospho		Montney		D	
		Smithian	~~~~~~					C	Montney
		Dienerian/ Griesbachian	Grayling					В	
PERMIAN	**********		PERMIAN	*********	BELLOY	*********	BELLOY	********	BELLOY

Acquisition Parameters

- Recorded by CGGVeritas
- Record Length: 6.0 sec with 2 msec sample interval
- Source: Dynamite Geo Prime, single hole, 0.5 Kg at 5.5 m depth
- Geophones: OYO Geospace, 3C at 3.5 m
- Source Interval and Receiver Interval of 100 m
- Source lines and receiver lines with 200 meters separation
- Patch: 9 lines x 16 Stations or 1600 m x 3000 m

Pouce Coupe time-lapse, multicomponent seismic survey acquisition layout

Pouce Coupe time-lapse seismic and field operations timeline

Processing Flow

- Processing completed by Sensor Geophysical Ltd.
- Static corrections
- Pre-stack noise attenuation
- Surface consistent deconvolution
- CDP Stacking
- FK (frequency enhancement) filter
- Radon multiple
- RADAR (Receiver Azimuth Detection and Rotation)

A time-lapse problem

Baseline Survey

Monitor Survey

Wavelet extracted from well

Well Tie for 100-02-07-78-10W6

Interpretation of Montney on Baseline

Montney C Horizon

Logs for Well 100-02-07-78-10W6

Creating synthetic well logs

- Initial well logs
- Reservoir parameters before fracture
 - 15% water and 85% gas
 - Temperature of 70c, pressure of 22 MPa, and salinity of 100,000 ppm
 - Matrix: 50% Sandstone, 30% limestone, and 20% dolomite
- Fracture induced changes

Fracture parameters

- Well 100-02-07-78-10W6 (targeting Montney C) with 1328 m³ clear frac with 500 tons of proppant on five 200 m-spaced frac
- Well 100-07-07-78-10W6 (targeting Montney D) with 1256 m³ clear frac with 400 tons of proppant on five 250 m-spaced frac

Systematic changes for P-wave velocity

Systematic changes for S-wave velocity

Systematic changes for density

RPP for baseline and monitor surveys with their difference

ΔRpp for the exact, linear, second and third order approximation

Future Plans

- Continuing in investigating of non-linearity of time-lapse AVO for P-wave
- Shear wave splitting produces measurable results as a monitor of time-lapse changes.

Acknowledgements

- Dr. Kris Innanen
- Talisman Energy Inc. and David D'Amico
- Dr. Jeff Grossman and Dr. Helen Isaac
- Hampson Russell Software & Services
- CREWES Students and Staffs specially David Henley, Shahin Moradi, Rafael Asuaje, and Raúl Cova
- CREWES Sponsors and NSERC (Natural Science and Engineering Research Council of Canada)

Castagna's Equation

• Vs=a.Vp+b a=0.8619 b=-1172

Montney regional production

- Recoverable resources of 175 TcF
- Total over 2000 wells in excess of 1500 horizontal wells
- 2 TCF production till 2011
- Pouce Coupe: 15 vertical and two horizontal wells in this study