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Introduction
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Fractures are everywhere AT ~ ke o s N s

Unlike faults, their sub-seismic length makes it even more difficult to image directly
This creates a need to develop effective media theories for characterizing reservoir fractures
The increasing reliance on effective medium theories begs the need for understanding

the validity, the limit of applicability and assessment of their usefulness for reservoir
fracture studies

With this in mind, We will compare two popular seismological theories of Hudson and
Schoenberg



Definition
of

Rock Physics ﬁ Seismic Method

Seispy;
interval Anisotropy %TLCG. atnl'.rjbut
interva , I' % reen Riv es

a, aspect ratio (crack shape)
e , crack density (0<e<0.2)

parameters

fracture properties- a and e

v’ eg. azimuth-dependent

NMO velocity
v’ anisotropic AVO gradient
Thomsen’s v' Interval velocity and
anisotropy traveltime o.IeIays.
v o) ) v" Fracture Orientation
v’ fracture properties- Ay and A 7,0,y
N ! and n

v O<ANandAT<1

v' Ay andA;=0; no fracture
v' Ayand Ap=1; extreme

N o L



Fracture models

* They are based on continuum hypothesis (1 > d)

l continuum theor‘ l

Y)

(a) Plane distribution of small cracks

:l 2a, . -
(b) Plane distribution of contacts
26 -
Representations of
fracture models (Liu et.
al., 2000) ) Thin layer of weak material infills

\ vd
X
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homogeneous medium

AN

AN

Justification: wave equation s
simplified and seismic wavelength
(1) is much greater than the scale
of material (d) under probe

Hudson’s microcrack model and
Schoenberg’s parallel  fracture
model.

Self-Consistent model
Kuster-Toksoz's model
Differential Effective model
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Hudson microcrack theory

C — C(O) 1+ ec(l) + eZ C(Z) 1+ 0(63) The linear term vl /.

e dominates at [ T F 8RR

A A A A sufficiently o _.“.': ‘:

1 ! ! 1 small e e, oy p =3
Effective  Isotropic stiffness 1% order perturbation 27 order perturbation RN ‘bf,:,
stiffness  tensor of host describe single scattering  gccounts for crack-crack - ‘. i ‘.$ g E; A

rock (isolated cracks) interactions
2
Ap(Ap + 2pp)" U3z Ap(4y ;l' 2pp)Uss3 lb(lg +2pp)Uzz 0 0 O » eis crack density
1 Ab(lb + Zl'lb)U33 Ab2U33 Ab2U33 0 0 0 > Ab and WUp are the
c@®=_Z | Ap(dp+2u,)U3z;3 Ap"U3sz Ap“Uzsz 0 o0 0 lame parameters of
0 0 0 0 (2) 0 the host rock
0 0 0 0 Up U11 0
0 0 0 0 0 pup?Uq4
X Uss® A Uz3%  AyelUsz® 0 0 0
Ay Uz3> MeU33®>  MeUsz3® 0 0 0 » U;; and Usz are the dimensionless
2 2 2 uantities that depends on the BC’s of the
(2) q }LbU33 MU33 MU33 0 0 0 g P
T 0 0 0 0 0 0 crack face, infill material and crack
0 0 0 0 EU..2 0 direction
0 0 0 0 1(; Ell..2 » q,X,M and E depend of A, and yu; (not
11
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Schoenberg’s parallel fracture model

S= 8y

+Sf

" Ky 0 0 0 Ky Ky
00000 O

1l o000 o0 0
Tl o000 0 0
Kyy 0 0 0 K, Kyp
Kyy 0 0 0 Kyy Ky

* A special case for rotationally invariant fractures

Kny=Kyy = Kyyg = 0,

KV=KH

Cfhti

Ay =MKN/1+MKN )
_ UKy
Ar = /1 + uKy

Ky= Sf11
Kt = Sfs55 = Sf66

As a result, the fracture compliances matrix sy reduces to

Ky 0 0 0 Ky Kyl
00000 O
00000 O
00000 O
0 000 Ky O
0000 0 Kyl

c=st=c,+c;

MAy  ApAy  ApAy 0
ApAy A°ANy/M A,°AN/M 0 0
ApAy A°AN/M A,°AN/M 0 0
0
u

0 0 0
0 0 0
0 0 0

v OSANandATﬁl
v Ay and A} = 0; no fracturing

0 0
0
0
0 0
0 pyA;0
0 0 ubAT—

v Ay and A = 1; high degree of fracturing

v’ Cf 44 is not influenced by presence of fracture
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Comparison of Hudson and Schoenberg
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For dry cracks, K¢ and ps=0

Schoenberg and Douma (1988)
pointed out that the effective
stiffnesses of both Schoenberg’s LST
theory and Hudson’s model have the
same structure and become identical if
the fracture weaknesses satisfy the
following relations:

E(V) = —2g(1 — g)AN,

— . 4e
Ar =Uyj,e AN =350 g sV = —2¢[(1 = 2¢) Ay + Ar],
16e A
4e A = V) _ _2r
Ay = 1 (Kf+4/3p5\ g T' ™ 3(3-2¢) 4 2’
39(1—9)l1+ ng(l—g)( Up )(Z)] n(v) =2g(Ar — gAn)
A = 1681 i If the cracks are filled with fluid, v 8,
a 37
R 3(3—29)[1+ n(S—ZQ)(ﬁ)(E)] ﬂf=0, but Kf * 0, SV _ §c|:l L _ed —2g) ]
Ay =0, 3 G291 -2
vy 8e
’ _ (Vs/ 2 A, — —16¢ Y= 3G 5y
\ I 9= Clvp) T 3629 w8, _al—2
- T 3‘[(3—2g)<1—g)]'
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WV , Hudson’s 1t order

/\ , Hudson’s 2" order

% , Schoenberg'sLS g
Q

O , Non-Interacting SJ_

approximations E
(NIA) 8)

I , Finite-element
modeling

0 005 01 015 0.2 , T e
e crack density (e)

Hudson’s theory problematic for large
Poisson values(Vs/Vp very small)
when ¢, and c.,, < 0, Physically
Implausible as this violates elasticity
stability condition

The quadratic term in 2" order
Hudson yields positive coefficients of
fracture stiffness which makes
Ce,,and ¢, to begin to increase at
some value of crack density
exhibiting unphysical behavior

Schoenberg result has close alliance
with NIA and numerical modeling

Critiquing Hudson’s theory (Grechka and Kachanov, 2006b)
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crack de

Comparison of Hudson and Schoenberg (Grechka and
Kachanov, 2006Db)




Sensitivity of
stiffness
parameters to

crack density

Aspect ratio = 0.7
(circular cracks)

Aspect ratio = 0.7 (nearly circular cracks)

6
Cell ceZZ
5
—1st Hudson 4
—2nd Hudson
—schoenberg
3
0 0.1 0.2 0 0.1 0.2
1
C
c813 €55
0.8
0.6
04
0 0.1 0 0.1 0.2

0.2
crack density (e)



Aspect ratio = 0.7 (nearly circular cracks)

0 E(v) 0 6(17) 0 y(v)
0.2 01 0.1
-0.4 |—1st Hudson 0.2 -0.2
—2nd Hudson
-0.6 | —schoenberg .03 -0.3
0 0.1 0.2 0 0.1 0.2 0 0.1

crack density (e)

0.2

Sensitivity of anisotropy parameters to crack density




Aspect ratio = 0.07 (ellipsoidal cracks)

5.6 C311 5.65 cezz
. . . 5.5 5.6
Sensitivity of [
” 9.3 | —1st Hudson 5.5
stiffness e
—schoenberg 5.45

p a ra m ete rS to 5.10 0.1 0.2 0 0.1 0.2

crack density 5
3.7 ' C
S €55
13 0.8
3.6 '
Aspect ratio = 0.07 a5 0.7
(ellipsoidal cracks) e
3.4 '
0 0.1 02 0 0.1 0.2

crack density (e)



-0.01;

-0.02;

-0.03;

Aspect ratio = 0.07 (ellipsoidal cracks)

0 NG 0
0.1 -0.05 |
—1st Hudson -0.2
—2nd Hudson -0.1
—schoenberg
-0.3
0 01 0.2 0 0.1 0.2

crack density (e)

Sensitivity of anisotropy parameters to crack density




_ Aspect ratio = 0.07 Aspect ratio = 0.7
0.2 08:

Sensitivity of

0.15 I 0.6

fracture
weaknesses to 0.1 0.4|
crack density

0.05 0.2}
=~ normal weakness, AN

—Tangential weallmess, AT .

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

crack density (e)
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FD modeling

Homogeneous equivalent model from
0- Schoenberg and Muir (1989) theory
;aye’ Vp = 3500,Vs = 2140, p = 2200
1-
i Vpo = 4438,
Isotropic Vso = 2746,
1.4 . . pe = 2401,
HTI r:\;er GZ = —.0034,
2- ¥¢ = —.0607,
6¢ = —.0545
;aye’ Vp = 5000,Vs = 3300, p = 2900
*

Acquisition

* 3D-3C acquisition WAZ

* Explosive P source.
* Orthogonal design * 40m source & receiver depth
* Finite difference * Source frequency is 15hz
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Example: FD modeling

Elastic modeling

2 giff

Z | to strike Z to strike

0 0 0
| o2l
| 04l
| o6l
. 08| —
i —
1.2 —-
R ——
1.4 L —— ——
i 1.6 — 1 1.6 T —
e ———
8k 1 1.8 | 1.8 W -
\‘\\ - —
2! ' ‘ 2l ' ' ‘ 2] - ‘ ‘
0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
Offset (km) Offset (km) Offset (km)
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Example: FD modeling

Equivalent modeling

o Z | to strike . Z qiff

N Zl to strike

0

0.2 . 0.2}

. 0.4 ' . 0.4

| 0.6 — . 06

| 0.8 :":- ‘XY
1 1 !
1.2 | 1.2 —

1.4 1.4}

1.6 1.6

. N ———— 1.8 . 1.8 -
%0 0.5 1 1.5 > 2o 0.5 1 1.5 > 2o 0.5 1 1.5 2
Offset (km) Offset (km) Offset (km)

Ay om
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Example: FD modeling

Elastic modeling

R | to strike R | to strike , Rdiff

0 0
0.2
0.4
: 0.6
0.8 f 0.8
10 § 1}
1.2 = 2| 1.2]
1.4 ! 1.4 1.4
1.6 1.6 | | 1.6
1.8 | 1.8 —— 15 ——
o —— L —
%0 0.5 1 1.5 2 2o 0.5 1 1.5 2 %o 0.5 1 1.5 2
Offset (km) Offset (km) Offset (km)
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Example: FD modeling

Equivalent modeling

0 R | to strike | R | to strike \ Rdiff

0
0.2 0.2
0.4 0.4
0.6 0.6 N
{
0.8 0.8 — o
1 I

Offset (km) Offset (km) Offset (km)
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Example: FD modeling

Elastic modeling

T aigy

TII to strike | TI to strike

0, 0

0.2 - 0.2 - 0.2¢r

0.4 1 04 1 0.4

0.6 - 0.6 1 0.6

0.8 - 0.8 - 0.8
1 1 1 1 11

1.2 4 1.2 N 1.2 -

1.4 - 1.4 = 1.4

1.6 : 1 1.6 : - 1.6 -
20 o5 1 15 2 20 o5 1 a5 2 % s 1 o5

Offset (km) Offset (km) Offset (km)
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Example: FD modeling

Equivalent modeling

TII to strike T | to strike , Tdiff

0 0
0.2 1 0.2} 1 0.2}
0.4 1 04f 1 0.4l
0.6 - 0.6 - 0.6
0.8 - 0.8 - 0.8
1 10 1
1.2 4 1.2 8 1.2
1.4+ - 1.4 8 1.4+
1.6 | 1 1.6 1 1.6
1.8 1 1.8 1 1.8
20 o5 1 15 2 20 o5 1 15 2 20 o5 1 15 2
Offset (km) Offset (km) Offset (km)
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Example: Constant-offset azimuthal scans

4 (t,r,) VA (t,r,p)
elastic modeling equivalent modeling
| r =1.6km r =1.6km
Pl 7.8+ b l
s TSI A0 |
S1-S2 ’ 1+r
overlap [
S1-S2 :
overlap 1.2
! ) 1)) NN
1.4} il 14
0 90 180 270 36( 0 180 270 360
azimuth azimuth
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Example : Constant-offset azimuthal scans

R trp) Rtrp)
elastic modelmg equwalent modelmﬁ
M= ekm AW A= g TR
0.8/ | ' 08! |
({1

S

| | F | | i
14 14

o

0 90 180 270 36( 90 180 270 360
azimuth azimuth
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Constant-offset azimuthal scans

T(t,r,fp)

elastic modeling

0.8/
S1 | |
S2
81
s2 | §

(
1.4

(

r =1.6km

s CREWES

9

180
azimuth

Iy

|

270

equivalent modeling

“

36( 0

wWww.crewes.org

T(t,r,rp)

r =1.6km

180 270

azimuth

360

O
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Example: Offset-Azimuth analysis: Top of HTI

PP PP PP
elastic equivalent Ruger
” modeling ” modeling ” modeling

offsit (km)

L ) 0 L )
0 180 360 0 180 360 0 180 360

azimuth (@)
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Example: Offset-Azimuth analysis: Top of HTI

PS PS
elastic equivalent
” modeling ” modeling

offset (km)

_ 180 360
azimuth (@)
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Example: Offset-Azimuth analysis: Top of HTI

PS PS
elastic equivalent
) modeling (trans) , modeling (trans)

|

’"

]

offset (km)

0 180 0 180 360
azimuth (@)
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Conclusion

* Fracture models provide a link between anisotropic properties and fracture
properties of fractured reservoir.

 We have studied the equivalence between Hudson’s microcrack model and
Schoenberg’s linear slip theory however knowledge of how to estimate
aspect ratio and crack density is crucial in order to successfully relate these
two models.

* We have shown that the equivalent Schoenberg Linear slip theory
formulated by Schoenberg and Douma is closer to the 1% order Hudson’s
theory; However, Grechka and Kachanov studies show that at certain crack
density (0.05 in his paper) Hudson’s model gave unphysical results.

 For small aspect ratios, however, Hudson’s first and second order theories
are close.
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Conclusion

 TIGER finite difference modeling result comparison between elastic and
Schoenberg’s equivalent modeling for the same reservoir show that the
Schoenberg linear slip theory is reliable.

* Overall we conclude that the linear slip theory which is much closer to the
numerical modeling is superior to Hudson’s first and second order schemes.

* The next immediate work will be to look in Grechka and Kachanov papers for
clues on how to better under Hudson’s model especially for thinly fractured
medium and carry out similar analysis.
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