Radiation patterns in anisotropic models by Kirchhoff modelling/migration and AVO/AZ inversion Hassan Khaniani* and Daniel Trad khaniani@ucalgary.ca

- PSTM.
- Table 1 and table 2 shows the parameters used for acquisition and migration.
- Modeling/Migration#2 with isotropic and HTI#1, HTI#2 and HTI#3 are considered in this section. The result of modeling is shown in Figure. In next section we compare the same HTI

www.crewes.org

Effect of acquisition constrain on AVO/AZ For numerical evaluation HTI and VTI models, we use 3D anisotropic Kirchhoff modeling and

scenarios with Modeling/Migration#1.

Table.1. Acquisition,	modeling and	migration parameters

	Length	Length	Length	dx _{bin}	dy_{hin}	dx _{rec}	dy rec		
	$\ln x$	in y	in <i>t</i>						
eling #2	3000 m	3000 m	1.5 s	50 m	50 m	100 m	100 m		
ation#2	3000 m	3000 m	0.5 s	50 m	50 m	100 m	100 m		
eling #1	3000 m	3000 m	1.5 s	50 m	50 m	25 m	375 m		
ation#1	3000 m	3000 m	0.5 s	12.5 m	12.5 m	25 m	375 m		
ppic and anisotropic parameters used for numerical evaluation									
Modeling	$\frac{\Delta v_p}{\overline{v}_p}$	$\frac{\Delta Z}{\overline{Z}}$	$\frac{\Delta G}{\overline{G}}$ Δ	$\delta^{(V)}$ Δ	$\varepsilon^{(V)} \Delta \gamma$	ϕ_{ref}^{o}			
Isotropic	0.1	0.1	0.1 0	0	0	NA			

Isotropic	0.1	0.1	0.1	0	0	0	NA
HTI #1	0.1	0.1	0.1	0.1	0.1	0.1	0°
HTI #2	0.1	0.1	0.1	0.1	0.1	0.1	45°
HTI #3	0.1	0.1	0.1	0.1	0.1	0.1	90°
HTI #4	0.0	0.0	0.0	0.1	0.0	0.0	0°
HTI #5	0.0	0.0	0.0	0.0	0.1	0.0	0°
HTI #6	0.0	0.0	0.0	0.0	0.0	0.1	0°
VTI #1	0.0	0.0	0.0	0.1	0.0	NA	NA
VTI #2	0.0	0.0	0.0	0.0	0.1	NA	NA

Modeling#1 and HTI#2, d) the Modeling#1 and HTI#3.

Figure 9 represent of axis of symmetry on HTI medium. The blue dots in Figure geophones.

of symmetry on HTI medium.

parameters under its expected in Figure 12, their AVO/AZ least

As shown in Figure 13, our analysis acquisition in inversion of VTI model

Practical implementation of theoretical AVO/AZ requires forward modeling and migration based on true acquisition geometry. We discussed the effects of spatial sampling in the performance migration and AVO/AZ inversion.

Conclusions

