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Suppose we are trying to predict viscosity using density (D), gamma ray (G), and resistivity (R), as shown in Figure 4. FIG. 8. Viscosity predlctlon “|G. 8. Viscosity prediction results for an example well. The gold zones  FIG. 9. Viscosity prediction results for an example well. The gold zones are
We can write the equation for linear prediction as: are the bitumen intervals. The new model (from logs) predicts two the bitumen intervals. Both predictions (from logs and seismic properties)
' viscosity gradients from 440m to 460m, while matching the true values show a smooth trend of decreasing viscosity to the top of the reservoir.
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The regression coefficients can be solved for using least-squares: W =[ATA]"1ATV (4) \
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FIG. 4. The basic multi-attribute regression problem FIG. 5. lllustration of how FIG. 6. Prediction error plot as a function with an average error O_f 7_0’000 cP(0.70 ot 1 stan(?ard
showing the target log and in this example, the 3 attributes  data can be “over-trained.” of number of attributes. All well error is dev.), and detected variations between control points.
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Best attributes to use? The ones that minimize the prediction error between the target log and the predicted log. viscosity with an average error of 94,000cP (0.94 of 1
: : . . . N standard dev.), but detected less variations.
When do we stop adding attributes? Using too many attributes “over-fits” the data, as shown in Figure 5. , ) _ R
S , . , . - Including depth improves the prediction in most cases,
Cross Validation: Leave out a test well, and solve the regression coefficients using only the remaining wells to ~asom| | bt will always overestimate viscosity if the base reservoir
blindly predict the target attribute in the test well. Repeat for each well, and compute average validation error. FIG. 12. Influence of depth (height above base bitumen) as a viscosity has a low viscosity (shown on the right side of Figure 12).
Figure 6 shows an example validation error plot, where using 4 attributes gives the best result. predictor for three example wells (see depth correlation in Figure 3).
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