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Dip moveout for converted-wave (P-SV) data 

Mark P. Harrison 

ABSTRACT 

The problems of reflection-point smearing, or dispersal, and changes in apparent 
stacking velocity introduced by reflector dip are well known for conventional (P-P) data. 
An expression for the converted-wave (P-SV) dispersal within a common-conversion-point 
(CCP) gather is derived here. It is found that the P-SV dispersal is asymmetric about zero 
dip, with greater dispersal for data acquired in the down-dip direction than in the up-dip 
direction. Calculations of P-SV apparent velocity vs. dip angle also show an asymmetry 
about zero-dip. Because of this, conventional P-P dip moveout @MO) is not appropriate 
for converted-wave data. 

The DMO concept is here extended to P-SV data by using geometrical optics to 
construct the P-SV zero-offset mapping function for the constant-velocity case. It is shown 
that, as in the P-P case, an exact solution to the time response curves for a P-SV DMO 
operator can be obtained. This solution contains within it the equation of the P-P DMO 
traveltime curves as a special case. The time-response curves for P-SV DMO operators 
generated using this equation show the operators to be asymmetric, with the location of 
maximum time on the curves corresponding to the position of the zero-dip conversion 
point. Application of P-SV DMO moves the data samples horizontally to the proper 
conversion points, performing a conversion-point rebinning of the data. This leads to a 
new method for computing the location of the zero-dip conversion point. Application of P- 
SV DMO to synthetic data using an integral-summation algorithm is found to greatly reduce 
the dispersal within CCP gathers. This gives a visible improvement in the amplitude and 
continuity of dipping horizons. 

INTRODUCTION 

The difficulties introduced by recording data over dipping reflectors have been 
known for some time for the conventional (P-P) case. Levin (1971) showed that, at non- 
zero offset, the reflection point for data from a dipping interface is displaced away from the 
midpoint. This gives rise to a smearing, or dispersal, of the data within a common- 
midpoint gather, which increases with both offset and reflector dip. This dispersal, in turn, 
gives rise to an increase in the apparent NM0 velocity necessary to properly flatten the 
dipping event. This apparent velocity is given by Levin (1971) as 

V V 
w =- 

cos 8 , 

where Vapp is the apparent velocity, V is the true medium velocity and 8 is the reflector 
dip. If data with more than one dip is present at any two-way time and common-midpoint 
location, then only one dip can be optimally stacked. The movement of the reflection point 
away from the midpoint with increasing dip and offset causes the dipping data to be 
attenuated by the stacking process (Judson et al., 1978). Post-stack migration, which 
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assumes zero-offset data, will be unable to properly image any ~pping;non-zero-offset 
data which survives the stacking process, as the data are displaced away from the true zero- 
offset position by an amount depending on both the dip and offset. Dip moveout, or DMO, 
attempts to overcome these problems. 

The geometric optics approach to DMO attempts to generate the locus of points for 
every datum sample such that, when zero-offset migration is applied, the resulting migrated 
locus of points will be the same as that obtained by performing prestack migration. It 
therefore attempts to create for any offset the equivalent zero-offset data, so that post-stack 
migration will be appropriate (Deregowski and Rocca, 1981). The idea of applying DMO 
to P-P data was first introduced by Judson et al. in 1978, and initially met with limited 
technical success. The idea was extended by Yilmaz and Claerbout (1980) in the form of 
partial prestack migration. Demgowski and Rocca (198 1) derived the zero-offset mapping 
equation for the P-P case, and used it to generate time-domain “smear stack“ impulse 
responses for the P-P DMO operator. Hale (1984) devised a Fourier-transform algorithm 
that was numerically accurate for all dip angles in a single layer medium. Because Hale’s 
method requires a transform that cannot be implemented using the PFT, it is very expensive 
to perform. Other methods using inte~al-su~ation algo~thms, in which impulse 
response functions are generated and summed (Deregowski, 1985), or log-stretch 
algorithms (Notfors and Godfrey, 1987) have been more compu~tion~y effective. 

The first part of this paper is concerned with the behavior of P-SV converted data in 
areas of dip. If the apparent velocity and common-conversion-point (CCP) dispersal for P- 
SV data are similar to that of P-P data, then a modified P-P DMO could perhaps be applied 
to P-SV data. It is found, however, that this is not the case. In the second part of the 
paper, a zero-offset mapping @MO) equation is derived using geometric optics. This 
equation is used to implement an integral-summation algorithm (Deregowski, 1985) to 
apply D&IO to some synthetic converted-wave data. 

P-SV DISPERSAL 

Dispersal within a CMP gather for P-P data is defined (Levin, 197 1) as the distance 
A that the actual reflection point will move away from the zero-offset reflection point as the 
reflector dip and source-to-receiver offset are changed. For the P-P case, it can be shown 
(Levin, 1971) that this dispersal is given by 

where 

A=~cosQsin~ 

2h = total source-to receiver offset. 
e = dip angle of the reflector. 

(2) 

d = distance from the surface CMP location to the zero-offset reflection 
point on the dipping interface. 

From equation 2, it is seen that the magnitude of the dispersal within a CMP gather is 
symmetric about zero-dip; there is no difference between positive and negative dip angles. 

Using similar definitions, it is possible to set up the problem for the P-SV case. 
The dispersal will now be the movement within a CCP away from the zero-offset 
conversion point. From Figure 1, it can be seen that the dispersal is given by 

A = -6 COS e (3) 
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Fig. 1. Raypath geometry for conversion from a dipping layer. 

where 6 is the horizontal surface displacement away from the CCP position. It can be 
shown using simple geometry that 

SC = d (d - h sin 0r + (h+6)*cos28 , (4) 

CR = d[d + (2h-h) sin e]’ + [2h-(k+6)]*cos28 , (5) 

and 
tan <p = [2h-(X+6)] cos 8 

d + (2h-h) sin 8 , 

which can be rearranged to give 

(X+6) = 2h - d + (2h-h) sin 8 
mcp cos 8 . (6) 

From Snell’s Law, the ray parameter must be constant for both the incident and reflected 
rays, giving 
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sinv sin cp -=- 
a P 

OK f 
w=4&? ‘=i* 

From Figure 1, it can be seen that 
(7) 

sin w = (h+s) ‘OS ’ 

SC 

=: (h+S) cos 8 

(d - h sin 8)” + (h+S)2cos28 * 

Substituting this result into equation 7 gives 

Wlrp= (h+S) cos cl 

‘d dd - h sin 0)” + (~-l)(h+S)2cos28 , 

and equation 6 becomes 

(h+S) = 2h - (h+S) [d + (2h-h) sin e] 

?jdd - h sin er + (+l)(h+S)2cos28 . 

Rationalizing this result and collecting terms gives the following quartic equation for (h+S); 

($l)(h+S)‘[(h+6)-4hl+S)-4h] co98 

+ (dd - h sin 0)2 + ($1)4h2cos28 - [d + (2h-h) sin 8]2j(X+S)2 

- 4hdd - h sin e~(~+S) + 4hqd - h sin 0)’ = 0. (8) 

For a given source-to-receiver offset 2h and zero-offset reflector distance d, the location of 
the zero-dip conversion point, h, can be computed using, for example, the result given in 
Tessmer and Behle (1988). For any reflector dip angle, equation 8 can then be solved to 
give S, from which the dispersal can be computed using equation 3. The results of doing 
this for two different offset-to-depth ratios, with dip angles ranging between +90°, are 
shown in Figure 2. For comparison, the P-P dispersal values computed using equation 2 
are also plotted in the figure, A compressional velocity of 3000 m/s and a shear velocity of 
1500 m/s were used in all the computations. 

From Figure 2, it is seen that for data acquired by shooting in the positive-dip 
(down-dip) direction, the CCP dispersal is larger than the CMP dispersal, whereas for data 
acquired in the negative-dip (up-dip) direction, the opposite is true. Because any DMO 
operation that is applied to the converted data must correct for CCP dispersal, the DMO 
operator must itself be asymmetric. This indicates that conventional P-P DMO cannot be 
expected to work correctly on P-SV data. 



93 

Offset: 500 m Depth: 1000 m 

30 0 -30 -60 -90 

Dip Angle (deg) 

(a> 

Offset: 1000 m Depth: 1000 m 

150 

3 100 

1 
a, 
a 

.Y 
P 

50 

0 
90 60 30 0 -30 -60 -90 

Dip Angle (deg) 

(W 

Fig. 2. P-P and P-W dispersal curves for a reflector depth of 1 km and source-to- 
receiver offsets of a) 0.5 km and b) 1.0 km. 



94 

P-SV APPARENT SLOWNESS 

From Figure 1, it can be seen that the total source-to-receiver traveltime will be the - 
sum of the time to travel from the source to the conversion point along the path SC at 
velocity a, and the time to travel from the conversion point back to the receiver along the 
nath CR at velocitv D, or -- 

t==+? a . 

Using equations 4 and 5, this becomes 

t 
= ?/(d - h sin 0)z + (&4)*cos% + d[d + (2h-h) sin Cl]* + [2h-(M$]*cos% 

a P . (9) 

It is known (Tessmer and Behle, 1988) that even for zero-dip, equation 9 cannot be 
rearranged to give an exact expression in the form of the conventional NM0 equation, as 
can be done in the P-P case. In order to assess the effect of reflector dip on stacking 
velocity, it is possible to obtain an expression for the apparent slowness by simply 
rearranging the conventional NM0 equation. In terms of slowness s, the NM0 equation 
becomes 

t2 = z + 4h2s2 , 

where Q is the zero-offset traveltime, t is the total traveltime given by equation 9, and 2h is 
again the total source-to-receiver offset. This can be rearranged to give the following 
expression for the apparent slowness; 

S 
s$ 

= 2h . (10) 

Using equation 8 to compute 6 and equation 9 to compute t, the apparent slowness can be 
calculated for any dip angle from equation 10. The result indicates how the stacking 
velocity, which will be the reciprocal of slowness, changes with reflector dip angle. 
Apparent slowness calculations for the same offset-to-depth ratios used in Figure 2 are 
shown in Figure 3. From this figure, it is seen that the apparent slowness (velocity) curves 
for P-SV data are asymmetric about zero-dip. This is in contrast to the P-P case, where the 
apparent slowness is seen from equation 1 to be a cosine curve, symmetric about zero dip. 
Also, for part of the slowness curve in the range of about 65 to 90 degrees, the slowness 
becomes imaginary. This means that the total traveltime is actually less than the zero-offset 
traveltime; something that does not happen for P-P data. Events within a gather converted 
by a reflector with dip in this range will appear to be over-corrected even before any NM0 
has been applied. 

Data acquired using split spreads would see a dipping interface as having positive 
dip on one side of the spread, and negative dip on the other. A CCP gather containing both 
sides of the spread would therefore have two different apparent NM0 velocities for the 
event, because of the asymme~ seen in Figure 3. Even for a single event, this suggests 
that it may not be possible to properly NMO-correct the gather with a single apparent 
stacking velocity. 
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Fig. 3. Apparent P-SV slowness curves for a reflector depth of 1 km and source-to- 
receiver offsets of a) 0.5 km and b) 1.0 km. 
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Fig. 4. Raypath geotnetry for computing the locus of points from which a datum sample 
could have originated. 

P-SV ZERO-OFFSET MAPPING 

The fast step in deriving the zero-offset mapping equation is to determine the locus 
of points from which any datum sample recorded at time t could have originated. Figure 4 
shows the geometry now being considered, in which the origin of the coordinate system 
has been shifted to the midpoint location. The datum sample is assumed to have been 
converted at the point C, which is at depth z and horizontal distance x away from the 
midpoint. From the figure, it is seen that the total traveltime t must again be the sum of the 
traveltimes along the paths SC and CR; 

or 

in the new coordinate system. Rationalization and simplification of this equation gives 

- 2(%)[ c@t2+2h(s)x] (z2+x2+h2) 
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For the P-P case, where a = p = V, it can easily be shown that equation 11 reduces to 

with 
(y+($= 1 

a=? and b= Vto VI t2-4h21V2 =- 
2 2, 

showing the locus of possible origin to be an ellipse. Converting from depth z to two-way 
vertical traveltime gives the well-known migration ellipse for P-P data (e.g. Deregowski 
and Rocca, 1981). A plot of several of these ellipses for the P-P case, for a velocity of 
3000 m/s and various two-way times, is shown in Figure 5. 

For the P-SV case, equation 11 is of the form 

At2 - 2B(x)c + C(x) = 0 , 
which is quadratic in the term 

5 = z2 + x2 + h2. 

The positive root of the equation gives unacceptable solutions for z, and is discarded. The 
remaining root simplifies to 

z2 + x2 + h2 = 

(&p2)-2[(02+p2)[a282t2+2h(a2-j32)x] - 2a2P2t&2P2t2+4h(a2-P2jx j 
(12) 

This equation generates the depth migration locus for a datum point recorded at time t and 
half-offset h, at a distance x away from the midpoint. Converting from vertical depth z to 
two-way vertical time z where 

equation 12 becomes 

z =z+z.= 
( 1 
a+P, 

a P aP, 

$ = (,- p)-z( [a2/j’f2+&-&j32~j($) - 2&2p2t2+4h(CX2-~2)x ) - (x2+h2[$j 

This result can be used to generate the raypath time migration curve for the single 
layer case, and could be used to implement a simple diffraction-summation-type prestack 
migration for P-SV data. A plot of several migration curves for a=3000 m/s and p=lSOO 
m/s and various values of t is shown in Figure 6. The location of the zero-dip conversion 
point as a function of two-way time (Tessmer and Behle, 1988) for the offset shown (lkm) 
is overlaid on the figure, and is seen to correspond to the zero-dip maximum two-way time 
on each of the migration curves. The P-SV migration curves are asymmetric, with a shift 
in the direction of the receiver, whereas the P-P curves were seen to be ellipses, evenly 
centered on the source-to-receiver midpoint 

Next, it is necessary to construct the zero-offset response to the prestack migration 
curves given by equation 12. Zero-offset migration, when applied to this zero-offset 
response, should regenerate the original prestack migration curves. The operation that 
constructs this zero-offset response curve will be the DMO mapping function for P-SV 
data. 
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5. P-P migration ellipses for a source-tereceiver offset of 1 km and various two- 
way times. The curves were generated by placing a spike of constant amplitude 
at the appropriate time-offset position, then filtering with a bandpass operator. 
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way times. Curves were generated as in Figure 5. 
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Fig. 7. Generation of the zero-offset response to a migration curve. 

Figure 7 shows the geometry by which the zero-offset reflection response is 
generated. Normal-incidence reflection from any point (x,z) on the locus will be recorded 
at a point (X,0) on the surface where the line normal to the locus at (x,z) emerges. The 
slope of the normal line is 

Sdk!Lz- 
dz x-x , 

giving for x(x) 
x(x) = x + zg 

. 

Differentiating equation 12 w.r.t. x gives 

b2+p2) - 2aqt 1 -x 
&x2p2t2+4hb2-B2X( . 

Substitution of this result into equation 13 gives, after simplification, 

(d+P2) - 2a2P2t 1 &c2p2t2+4h(a2-B2)x . 

(13) 

Rather than have X as a function of x, the above equation can be inverted to give x(X). 
This allows the computation of the x-distance away from the midpoint along the migration 
curve as a function of the offset from the midpoint along the DMO operator. The resulting 
equation is 



The distance r from the zero-offset conversion point (x,2) to the point (X,0) on the surface 
willbe 

r2 = (x-x)’ + z2. 

Substituting for z from equation 12 and x from equation 14, this reduces to 

r2 = (h2-x2) a2p2t2 
2dh(02+B2) - x(02-B2)] - ’ 1 . (15) 

The zero-offset conversion time, zpssv, will be the time to travel from the surface to the 
conversion point at velocity a, plus the time to travel back from the conversion point to the 
surface at velocity p, i.e., 

zp-S” 
= it+‘= - 

( 1 

a+P r 

P aP - 

Substituting for r from equation 15, this becomes 

rp-sv = a2P2t2 
2dh(a2+p2) - x(a2-p2)] - ’ 1 . 

(16) 

(17) 

This equation gives the exact traveltime mapping function for the P-SV constant 
velocity DMO operator. For any offset X away from the midpoint, it allows the 
computation of the time z to which a point recorded at time t and half-offset h should be 
moved to apply the DMO correction, or to form the DMO operator. As with P-P DMO, the 
P-SV DMO curves are constrained to fall within a maximum distance of&h away from the 
midpoint. For P-P reflection, with a = p = V, equation 17 reduces to 

where to is the NMO-corrected time. This can be rearranged to give a second ellipse; 

This equation is the same expression for the P-P DMO operator given by Hale, 1988. 
Shown in Figure 8 are the DMO curves corresponding to the migration curves of Figures 5 
and 6, computed using equations 17 and 18. The curves have all been truncated at the 
points corresponding to reflector dip of +90”, as will be discussed next. 

Equation 17 generates the shape of the DMO curve, but it is still necessary to 
determine the physical limits on zpmsv. These limits will establish the minimum and 
maximum time values, corresponding to some maximum physical dip, that the DMO 
operator can take on at any offset X away from the midpoint. This, in turn, will determine 
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Fig. 8. II?40 curves corresponding to the migration curves of a) Figure 5 (P-P) and b) 
Figure 6 (P-SV). Curves were generated as in Figure 5. 



Fig. 9. Relationship between changes in zero-offset distance r and operator offset X. 

the envelope of the DMO operator. For fixed velocity, differentiation of equation 16 gives 

. 
From Figure 9, it is seen that 

(1% 

dr = dx sin 8 , 

which gives, from equation 19, that the slope s along the DMO curve is 

S z-z 
( 1 
a+P 

E aP . 
sin 8 

(20) 

This result relates the dip angle at the point of conversion to the slope on the DMO 
operator. Equation 17 can be differentiated w.r.t. X to give 

&ti2 
-( 11 

x + a2p2t2 atz(h-~2-p2(h+~2 

z ai3 4h I [a2CW+P201+x)12 . 
It is more convenient to have s defined in terms of z, rather than 
equation 17 can be inverted to give t&,7); 

(21) 

t and 2. To do this, 

(22) 

This expression can be used to remove t from equation 21, with result 
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This equation gives the slope s at any point (X,Z) on the DMO operator, which can, in turn, 
be used to compute the dip angle at that point using equation 21. Alte~atively, if it is 
desited that only dip up to some maximum angle be passed by the operator, then the slope 
corresponding to that dip angle can be computed using equation 20. Equation 23 then 
gives a quadratic expression for z, with solution 

The two values of z give the ~nimum and maximum time that the operator can 
have at offset x away from the midpoint. Ideally, the dip aperture of the DMO operator 
would be set to pass all possible dips (&9(Y). It is possible, however, that this will lead to 
spatial aliasing of the operator at large dip angles. When this occurs, the DMO dip aperture 
can be restricted to prevent aliasing (Beasley and Mobley, 1988) by using equation 24. As 
an example of this, Figure 10 shows two DMO operators that have been constrained to 
pass dips in the range of +60° and +30°. For the trace spacing and frequency content of the 
wavelet used in the figure, aliasing occurs for dips greater than 40”. This can be seen from 
the summed operator plot for the +60’ operator, in which the aliased dips produce visible 
artifacts. For very small dip apertures, the DMO operator collapses to just the trace itself, 
positioned along the conversion-point curve. P-SV DMO with a small dip aperture is 
therefore equivalent to performing a zero-dip conversion-point rebinning of the data. 

At the location of the zero-dip conversion point, the slope s along the DMO curve is 
zero. At this point, X is equal to the offset away from the midpoint of the zero-dip 
conversion point. Setting s to zero in equation 21 leads to the following cubic equation for 
‘y. 

It appears that all other equations for the conversion point location involve solving a 
quark equation (e.g. Tessmer and Behle, 1988). The desired root to equation 25 can be 
found using standard methods. Defining 
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Fig. 10. DMO operators with dip apertures restricted to a) +60” and b) SO”. 



and 

b = h2(q+p) + p 
, 

then the conversion point offset is given by 

x = q cos 8 - p, 
(26) 

This result is found to give the same values for the conversion point location as are 
obtained using the equation given by Tessmer and Behle (1988). 

P-SV DMO APPLICATION 

An integral-summation algorithm (Deregowski, 1985) was implemented to test the 
P-SV DMO equations on synthetic data. The algorithm consists of first constructing a 
time-domain DMO operator for each input trace, then summing the operators to get the final 
DMO result. The dip aperture was restricted to prevent operator aliasing at the maximum 
frequency of the input data. The operator amplitude weighting function used was based 
upon the approximate Fresnel width of the tangent to the DMO curve at every point, 
normalized to the width at zero dip. The operator phase correction was computed by 
numerically solving, for each time sample, a stationary-phase integral as a function of the 
operator width in wavelengths at that sample. To reduce computation time, only the phase 
correction for the dominant frequency of the data was estimated. This same phase 
correction was then applied to all frequencies of the data. The result of these amplitude and 
phase corrections can be seen in the operators shown in Figure 10. The NM0 correction 
incorporated into equation 17 was removed from the DMO operator, allowing the 
application of DMO to data that has been previously NMO-corrected. 

Table 1. Parameters used in generating the synthetic test data. 

Group interval 
Source interval 
Traces per record 
Trace offsets 

Data bandwidth 
P-wave velocity 
S-wave velocity 

25 meters 
50 meters 
96 
25 m to 1200 m, 25 m increment 
split-spread records 
5-35 hz 
3ooo m/s 
1500 m/s 

The synthetic data was constructed with the Uniseis modeling system, using the 
parameters given in Table 1. The model itself consists of two flat layers at depths of 1 and 
2 km, as well as four dipping layers, having dips of 15,30,45, and 60 degrees. The total 
data volume was made up of 41 split-spread records of 96-trace data. In order to better 
assess the performance of the DMO operation, all AVO effects were initially removed from 
the data. 
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The result of stacking the data volume using the asymptotic approximation (Fromm, 
Krey, and Weist, 1985) is shown in Figure 11. From the figure, it is seen that the three 
most steeply-dipping reflectors have been attenuated, especially at shallow depth. Shown 
in Figure 12 is the result of stacking the data by true conversion point, accomplished by 
applying P-SV DMO with a very small dip aperture. It is seen that true CCP stacking gives 
greater attenuation of the dipping layers than does the asymptotic method. Figure 13 
shows the result of applying P-SV DMO to the data using a dip aperture of 80”. 
Comparing this result to Figures 11 and 12, it is seen that there is less attenuation of the 
dipping reflectors. Figure 14 shows NMO-corrected gathers taken from the positions 
indicated at the top of Figures 11 and 13, first after asymptotic gathering, then after DMO 
has been applied in twelve common-offset planes. The dipping events on the asymptotic 
gathers are visibly overcorrected, whereas the events in the DMO gathers are nearly flat. 

In reality, AVO affects are large in P-SV data. To evaluate the performance of P- 
SV DMO in a more realistic case, the model data was again processed with AVO effects left 
in. The result of stacking this second data set using the asymptotic binning method is 
shown in Figure 15, and the section obtained by applying P-SV DMO is shown in Figure 
16. In this case, DMO is again seen to produce an improvement in the dipping events. 
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Fig. 11. Synthetic data stacked using the asymptotic gathering method. 
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Fig. 12. Synthetic data stacked using true c~nve~ion-lint gathering. 
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Fig. 13. Synthetic data stacked using P-SV dip moveout. 
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Fig. 14. NMO-corrected gathers after a) asymptotic gathering b) P-SV DMO. 
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Fig. 15. AVO synthetic data stacked using the asymptotic gathering method. 
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Fig. 16. AVO synthetic data stacked using P-SV dip moveout. 
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DISCUSSION 

From Figure 6, it can be seen that parts of the shallower migration curves actually 
correspond to conversion by transmission, rather than reflection. Because a seismic 
section is usually considered to be a reflection image, it may be desirable to suppress this 
part of the migration and DMO curves. In real data, however, the mute applied to 
elliminate early noise would also remove the data to which these curves would correspond, 
making suppression by other means unnecessary. 

From equation 18, it is seen that P-P dip moveout factors into the product of a 
velocity-dependent term, b, and a velocity-independent term. This means that the 
application of DMO to NMO-corrected P-P data requires no velocity information, and is 
relatively insensitive to changes in velocity. It is not possible to factor equation 17 for P- 
SV DMO in a similar way. This means that P-SV DMO requires an estimate of both a 
compressional and a shear velocity, making it more sensitive to velocity errors than is P-P 
DMO. 

The velocity dependance of equation 17 can be broken down into two main parts; 
NM0 and conversion-point binning. First, the DMO equation is applying a single-layer 
NM0 correction to the input data. At the location of the zero-dip conversion point, 
equation 17 reduces to an exact NM0 equation for the single-layer P-SV case. By using 
equation 26 to first compute the conversion-point location, the NM0 correction that is 
being applied to the data can be calculated. This correction can then be removed from the 
DMO operation, so that P-SV DMO is actually applied to NMO-corrected gathers, as in the 
P-P case. This removes some of the problems involved in applying single-layer DMO to 
multi-layer data, and makes the DMO operation less sensitive to velocity estimation. 

The second place where velocity dependence occurs is in the movement of datum 
samples by DMO about the zero-dip conversion point, rather than the midpoint. Because 
the location of the conversion point is velocity dependant, errors in velocity estimation will 
affect the horizontal positioning of the DMO’d data. To reduce the problem, as well as 
allow for a more appropriate conversion-point binning of the data, it is possible to pre-bin 
the input data using a more exact method into a series of common-offset planes. Then, just 
as the NM0 is removed from the DMO process, the conversion-point rebinning that is 
carried out by the operator could be computed and removed. DMO would then be applied 
to gathers that have been both NMO-corrected and CCP binned, and would form the DMO 
curves around the current time and horizontal position of the datum samples. This should 
further reduce the velocity dependence of P-SV DMO, and improve its applicability to 
multi-layer data. 

It is interesting to note that asymptotic binning appears to better preserve dipping 
data than does true CCP stacking, as can be seen from Figures 11 and 12. This appears to 
be due to the decrease in CCP dispersal produced by the asymptotic approximation for data 
converted from positive-dip interfaces. Although there is a corresponding increase in the 
dispersal for negative-dip data, the dispersal for positive dips is significantly greater than 
for negative dips, as can be seen from Figure 2. The overall result appears to be a net 
decrease in the attenuation of dipping layers that have been gathered and stacked using the 
asymptotic method. 
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CONCLIJSIONS 

Expressions for P-SV dispersal and apparent stacking slowness within a CCP 
gather were derived. It was found that both the dispersal and apparent velocity are 
asymmetric about zero-dip, indicating that P-P dip moveout is not appropriate for P-SV 
data. A formulation of the traveltime mapping equation for the P-SV DMO impulse 
response for a single-layer case was derived by using geometrical optics. It was shown 
that, as in the P-P case, an exact solution to the time response curves for a P-SV DMO 
operator can be obtained. This solution contains within it the P-P DMO traveltime equation 
as a special case. Time-response curves for a P-SV DMO operator were generated using 
this equation, and showed the DMO curves to be asymme~ic, with the location of 
maximum time corresponding to the position of the conversion point. Application of P-SV 
DMO moves the data to the horizontal conversion point, performing conversion-point 
rebinning. A new method for computing the location of the zero-dip conversion point was 
presented. An integral-summation algorithm for P-SV DMO was implemented, and was 
found to give a visible improvement in the amplitude and continuity of dipping events. 

ACKNOWLEDGEMENTS 

I would like to thank Rob Stewart for suggesting this research topic, and for his 
continued interest in this work. Also, the support of the sponsors of the CREPES project 
is very much appreciated. 

REFERENCES 

Beasley, C., and Mobley, E., 1988, Amplitude and anti-aliasing treatment in (x,t) domain DMO: presented 
at the 58th Ann. Intemat. Mtg., Sot. Explor. Geophys. 

Deregowski, S.M., and Rocca, F., 1981, Geometrical optics and wave theory of constant offset sections in 
layered media: Geophys. Prosp., v. 29,384-406. 

Deregowski, S.M., 1982, Dip-moveout and reflector point dispersal: Geophys. Prosp., v.30,318-322. 
Deregowski, SM., 1985, An integral implementation of dip moveout: 

EAEG. 
Presented at the 47th Ann. Mtg., 

Hale, D., 1984, Dip moveout by Fourier transform: Geophysics, v. 49,741-757. 
Hale, D., 1988, Dip moveout processing: Sot. Explor. Geophys. course notes. 
Fromm, G., Krey, Th., and Wiest, B., 1985, Static and dynamic corrections, in Dohr, G. Ed., Seismic 

Shear Waves: Handbook of Geophysical Exploration, v. 15a, 191-225. 
J&on, D.R., Schultz, P.S., and Sherwood, J.W.C., 1978, Equalizing the stacking velocities of dipping 

events via DEVELISH: presented at the 48th Ann. Intemat. Mtg., Sot. Explor. Geophys. 
Levin, F.K., 1971, Apparent velocity from dipping interface reflections: Geophysics, v. 36,510-516. 
Notfors, CD., and Godfrey, R.J., 1987, Dip moveout in the frequency-wavenum~r domain: Geophysics, 

v. 52, 1718-1721. 
Tessmer, G., and Behle, A., 1988, Common reflection point data-stacking technique for converted waves: 

Geophysical Prospecting, v. 36,661-688. 
Yilmaz, O., and Claerbout, J.F., 1980, Prestack partial migration: Geophysics, v. 45, 1753-1779. 


