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Automatic velocity analysis of crosswell seismic data

Guoping Li and Robert R. Stewart

ABSTRACT

A new method for velocity analysis of crosswell seismic data is discussed in this
paper. Based on semblance analysis, this method derives velocities from crosswell direct
arrivals in an automatic manner and so avoids time-consuming hand picking of traveltimes.
To develop the method, an isotropic continuous elastic medium with a linear velocity-depth
relationship is assumed. Two steps are involved. In the first step, traveltimes for direct
arrivals are calculated for different velocity guesses, using theoretical equations we derive
for a linear velocity function. Theoretically calculated traveltime trajectories of direct
arrivals have been found to exhibit a quasi-hyperbolic pattern, one characteristic appearing
on real crosswell data. A numerical study shows that they agree very well with those
measured from synthetic data. In the second step, coherency (semblance) analysis is done
for amplitudes of direct arrivals within a time window along each travehime trajectory
calculated for different velocity guesses. The velocity with the largest semblance value is
then picked and used as final inversion output.

Examples of inverting velocity information from direct arrivals in synthetic,
physical modeling, and field crosswell seismic data gathers, by using the new velocity
analysis method, are given. Results prove this method to be a potential velocity inversion
technique with efficiency and reliability.

INTRODUCTION

Crosswell seismic data are acquired by using two (or more) drilling wells: shooting
the seismic source in one well, and recording the propagating waves in the other well offset
by a certain distance. In crosswell surveys, seismic waves usually are generated and
recorded below the highly attenuative near-surface zone and travel a relatively short
distance between the wells, so high-fidelity data can be obtained. Therefore, compared to
other seismic information sources (surface seismic or VSP), high resolution crosswell
seismic data should provide more reliable information regarding subsurface physical
parameters such as velocity.

For many years, attempts have been made to obtain velocity information from
crosswell seismic data using tomographic inversion methods (Bois et al., 1972; Ivansson,
1985; Peterson et al., 1985; Bregman et al., 1989; Lines and LaFehr, 1989; Abdalla et al.,
1990; Lines and Tan, 1990; Stewart, 1990). However, it has been recognized that most
current tomographic techniques involve time-consuming hand picking of traveltimes.
When hundreds of crosswell data gathers, for example, need to be analysed, hand-picking
of traveltimes is not efficient.
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In this paper, we will discuss a different crosswell velocity analysis method which
makes use of the basic concept of coherency-based velocity analysis used for conventional
surface seismic data. we assume that a linear velocity variation with depth is good enough
to describe the intervening medium between wells. Traveltimes are calculated theoretically
for crosswell direct arrivals for each velocity guess. Within a fixed time window along the
calculated travehime trajectory, seismic traces are scanned to find the best coherency
(largest semblance value). The procedure is repeated until all possible velocity guesses are
tried. As a result, the largest semblance value corresponds to the best-fit velocity. Since
semblance analysis can be done automatically, the whole velocity analysis is done in an
automatic manner, thus avoiding the process of hand-picking lraveltimes which is required
by traditional tomographic methods. In the following sections, we will discuss this
automatic velocity analysis method in detail. Some examples of application to various
crosswell seismic datasets will be given.

THEORY

Linear gradient medium

In seismic exploration, it is significant to make a proper assumption about the
seismic wave velocity distribution in subsurface solid materials. Although adopted at
times, the assumption of homogeneous isotropic media is a rough approximation to the
actual earth. However, the concept of gradient medium, where velocity changes according
to some simple mathematical function of distance from a reference plane, has been found
more useful (Helbig, 1990). In such media, rays are curved everywhere, but are similar
for all ray parameters. Moreover, wavefronts are of similar shapes for all traveltimes.

Particularly, a linear-gradient medium has been investigated by many geophysicists
and found to be a very good approximation to the real solid earth. Slotnick (1959) wrote
that the velocity of seismic wave propagation in Tertiary basins can be closely
approximated by expressing it as linear function of depth. He gave some examples of
areas, including the Gulf of Mexico, San Joaquin Valley of California, and a Venezuela
basin, where 'one can safely assume a linear velocity relationship with depth'.
Northwards, Jaln (1987) finds, after inspecting sonic logs from western Canada, that most
logs in the western Canadian basin justify a linear increase in velocity with depth down to
the Paleozoic unconformity. The values of the velocity gradient he obtains from the
Cretaceous section range from 0.25 to 1.0 ft/sec/ft.

A commonly-used expression for the linear velocity relation with depth is

v(z)=v0+_z, (1)

where Vo is the initial velocity (ft/sec or rn/sec), r is the velocity gradient (ft/sec/ft, or
m/sec/m, or 1/second), Z is depth (ft or m). The value of r indicates an increase (when x
is positive ) or decrease (when t¢ is negative) in velocity per unit of depth.

Sometimes the linear velocity function is expressed in the alternative form

V(Z)=Vo(1+NZ). (2)
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Here 7/is called velocity gradient factor, and its dimension is (feet) 1 [or (meters)t].
Comparing equations (1) and (2), we have

_c= VOrl. (3)

In this paper, relation (I) is used.

Traveltime equations for direct arrivals

In Appendix I, we have discussed some fundamental characteristics of propagation
of crosswell direct waves in the isotropic elastic medium where the velocity function has
the form of equation (1). In this kind of media, seismic waves propagate along circular
raypaths whose radii and centers are closely related to velocity parameters.

Also in Appendix I, we have derived expressions for direct arrival traveltimes,
namely, equation (A-I-4b) and equation (A-I-1 lb). In fact, they are equivalent except for
the difference in sign. So we can write them into a combined form since traveltime is
always positive:

= 1 in (Vo + t_Z)(_/1 - P2(Vo+ KZs)2 + 111t _ (Vo+r_Zs)(41_p2(Vo+r.Z)2+ . (4)

where t - tmveltime for direct arrivals;
Z - depth of the receiver,
Zs - depth of the source; and
p - ray parameter.

To calculate traveltimes, we need to know the unknown parameter p in equation
(4). We have known that the paths of direct seismic waves, traveling in a linear velocity
gradient medium between the recording well and the source well, are circular arcs.
Therefore they must satisfy the equation for a circle. Mathematically, two points (a pair of
source and receiver positions) cannot determine a circle uniquely and sufficiently. But it is
known from Appendix I that the vertical coordinate of the center of a cricular raypath is a
constant determined by given velocity parameters. Then for some circular ray connecting
the source point (Xs, Zs ) and the receiver point (XR, ZR), we have

(Xs- Xc) 2 + (Zs- Zc}2 = R2 , (5a)

(XR-XC)2 + (ZR-ZC)2 = R2 , (5b)

where Xc, Zc -centerofthecirculararc;and
R - redius of the circular arc.

Solving (5) gives

Xc-XR2-xs2+(ZR-ZC)2-(Zs-ZC)2
2(XR- Xs) ' (6a)
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and

R = 4(Xs- Xc}2 + (Zs- Zc}2 (6b)

Therefore the ray parameter p for this particular circular locus is given by

p= !
RK (7)

With the parameter p determined, we are now able to calculate the taveltime from the source
to the receiver.

The discussion in Appendix I tells us that if the initial emission angle of the

myceo < 900 we need to take into account the effect of diving waves on lraveltimes. One!

method (as used by Slotnick, 1959) is to find the deepest my penetration point and do the
traveltime integration from the source position to this point and then from this point to the
receiver position. The deepest penetration point can be readily found by setting X = Xc in
equation (A-I-5), which gives

Zm=- 1 V0=R_V0 .
rp _ K (8)

Now, the traveltime can be calculated via

t= dz _ dz

_v0_/_iv0+_zl, _/1 _lVo+rCZ_
-_ RI( ! , (V0+K:Z RK P

,vo+_,(q,.ivo+_z,.i,+1)= 1 In _ RK ]

_ _vo+_z_,(ql.(Vo_q+1)

+ 1 in (Vo + lcZmax)(q 1- ('VOR_ZR-)Z+ 1)

_ ,vo+_z.,(ql_(%_¢+l) (9,
Substituting equation (8), the above equation is reduced to

=1111 R_(_/1- (-V°R_S-; + 1) RK(_/1- (_R-)2 + I)t +lln
r (Vo+_Zs) )¢ (Vo+KZR) (10)

When ZR = Zs, we have
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t=2 In _ R_: /
_c (V0+ rZs) (11)

Slotnick (1959) and Grant and West (1965) obtained the same result for the case of
ZR = Zs = 0.

The method to determine when equation (4) or (10) should be used to calculate
traveltimes is to know the depth at which the ray would leave the source at a 90 ° angle.
This depth can be easily found. In crosswell seismic surveys, the separation distance
between the wells, X, is usually fixed, and X = XR - Xs (in the vertical borehole case).
For ao = 90 °, P = 1/(V0 + _Zs). Then from equation (A-I-5) or (A-I-12), we have

2, (12)
which gives one solution

Z .//V0+rZs__x 2 V0
1 ='Vl _ 1 -_- (13)

Now, if the receiver depth ZR is less than or equal to Z1, then equation (4) should
be used. IfzI<ZRandXc <X, then equation (10) ought to be used. But if

Z1 < ZR < Z,.= and Xc >-X, equation (4) is used.

It is found that equations (4) and (10) actually can be combined togather into a
single but more concise formula (Baerg, 1991):

t = 1 In [ZR - ZC R +Xc - Xs I
_c /Zs - ZC R +Xc - XR] " (14)

VELOCITY ANALYSIS METHOD

It has been known from the above discussion that once crosswell geometry
parameters (source position, receiver position, and well separation) are given, and
parameters in the linear velocity function (initial velocity and gradient) are known,
traveltimes of direct arrivals can be theoretically calculated for all source-receiver pairs.
These travehimes define a quasi-hyperbolic trajectory, as will be seen later on. For a
particular crosswell data gather where the geometry is known, keeping the two velocity
parameters changing respectively will lead to different traveltime trajectories, among which
one may best fit the observed direct arrival event. Now the question is, if we can
approximate the direct arrival event of real crosswell data with a theoretical trajectory, can
we obtain an approximate velocity distribution? Our crosswell velocity analysis method,
based upon automatic semblance scanning, is trying to answer this question.
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The automatic velocity analysis method comprises two steps. In the first step,
direct arrival traveltimes are calculated at all receiver (or source) positions in a given
crosswell geometry, using equations (4) and (10), or equation (14). All possible velocity
guesses are tried, resulting in a set of traveltime curves (trajectories). Then in the second
step, seismic traces in a crossweU data gather are scanned within a time window along each
traveltime trajectory calculated in the fkrst step. Based on this, semblance analysis is then
conducted.

Semblance analysis

A useful measure of coherency of signals is their energy. According to Yilmaz
(1987) and Krebes (1989), the output energy is defined as

t(i)+At ( N )2Eout = t_t(i_).At ,i=_1 fi, t ,- (15)

and the input energy as

t( t )
t=t(i).At \i=l (16)

where

i -the i th seismic trace;

t(i) - the traveltime corresponding to the ith trace;

fi,t - the amplitude of the ith trace at time t(i) within window [-At, At]; and
N - the total number of traces involved.

Therefore, the semblance value can be found from

So= Eout 0<Sc<I
N Ein ' (17)

The semblance value provides a criterion for determining whether or not the
theoretically derived traveltime curve best fits the direct arrival trajectory of the real data,
and further determining whether or not the velocity function being used is the best one.
The larger the semblance value, the more coherent the direct arrival event of the data that
has been scanned, and therefore, the better the velocity function. Accordingly, velocity
parameters that give the largest semblance value is selected.

Algorithm implementation

The algorithm has been implemented with a computer program operatable on
workstations or personal computers. Shown in Figure 1 is the computation procedure,
which is composed of the following parts:
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FIG. 1. Processing procedure for automatic velocity analysis
of crosswell seismic data.

• Enter crosswell geometry;
• Input a crosswell data gather (common source or common receiver);
• Scan through a range of t0andV0 values;

- Calculate travelfime, t(i), for every trace;
- Stack the trace amplitudes along the calculated travelfime trajectory, within

a given time window [-At, At];
- Calculate semblance value;

• Pick the velocity which corresponds to the largest semblance value;
• Do this whole procedure for next gather from a different depth aperture, and find a

new velocity function; until all gathers are processed.
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•Extract the f'mal interval velocity distribution by fitting all velocity functions
obtained from different depth apertures.

TESTING

The automatic crossweU velocity analysis method has been tested with different data
sets. In this paper, we give some examples of applying this method to synthetic data,
physical modeling data, and a field crosswell data gather.

Synthetic data

Synthetic erosswell seismic data used to test our method were generated with the
UNISEIS ray tracing program. The geologic model we used is shown in Figure 2. It is
composed of 71 horizontal layers with equal thickness (20 m) in each layer. Velocity
distribution in this multiple layered model obeys a linear velocity-depth relationship as
follows

V = 2000 + 0.8Z (m/s), (18)

but in individual layers, velocities are constant and take the value calculated using (18) in
the middle of each layer.

To record crosswell seismic data, source and receivers were positioned respectively
on the two sides of the model, which were separated 500 m. Receiver depths ranged from
0 m to 1200 m. Common shot gathers were collected when the source was 'excited' at
different depths. Shot gathers contain 121 seismic traces each. Only rays for direct
arrivals were traced for our purpose. During ray tracing, the source was fired at depths of
0 m, 260 m, 500 m, 760 m, and 1000 m, separatively. To generate crosswell sections,
zero-phase Ricker wavelets were used. The wavelets were 60 ms long and had a center
frequency of 40 Hz. Shown in Figures (3) and (4) are two shot gathers corresponding to
the source depths of 0 m and 500 m, respectively. Direct arrivals are displayed clearly in
both figures.

To test precision of the traveltime equations we derived, theoretical traveltimes were
calculated for one common shot gathers (source depth is 500 m), using equations (4) and
(10). Their comparison with traveltimes measured on the synthetic section (Figure 4) is
given in Figure 5. It can be seen from Figure 4 or Figure 5(a) that the traveltime curve has
a quasi-hyperbolic shape, which is observable on real crosswell data. Figure 5(b) reveals
that the difference between the theoretical and the traced traveltimes is very small (the
maximum absolute differential time is about 3 ms), indicating that our traveltime equations
provide sufficient precision. It implies that if correct velocity is used, traveltime trajectory
of real crosswell data can be approximated with high precision. This provides the basis for
automatic velocity analysis.

To run the automatic velocity analysis program, crosswell parameters for a shot
gather must be provided. A wide range of initial velocities and of velocity gradients is
scanned for the best selection which agrees with the largest semblance value.

For the synthetic data in hand, we scanned for the best velocity from 1900 m/s to
2100 m/s (at interval of 10 m/s) and for the best gradient from 0.5 m/s/m to 1.1 m/s/m (at
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interval of 0.05 m/s/m). A time window equal to the length of the Ricker wavelet used was
opened for semblance analysis. The results of semblance analysis were finally contoured
for the ease of picking the largest values. Figure 6 shows the result of semblance analysis
for the shot gather for source depth of 0 m. The largest semblance value appears at the
point where the initial velocity is 2000 m/s and velocity gradient is 0.8 rn/s/m. The
inversion method has reconstructed the velocity function used to generate the geologic
model. The same results are obtained from semblance analysis of shot gathers
corresponding to source depths of 500 m (Figure 7), and 760 m (Figure 8). Thus, velocity
distribution in a layered model can be confidently recovered by applying the automatic
velocity analysis method to crosswell data.

However, small errors in velocity analysis are also noted. Figure 9 shows the
semblance analysis result for the gather with the source 260 m deep. Largest semblance
value is obtained when initial velocity is 2010 m/s and gradient is 0.8 m/s/m. Figure 10
shows the semblance analysis result for the data gather at the source depth of 1000 m. At
the point at which the initial velocity is 1990 m/s and the gradient is 0.825 m/s/m, there
exists the largest semblance value. Thus, the final inversion results from analysis of these
two gathers have a shift, but very small, from the actual velocity function.

Physical modeling data

Physical modeling data were from an ultrasonic borehole seismic modeling
experiment accomplished at the University of Calgary (Stewart and Cheadle, 1989). 40
crosswell shot gathers, each having 40 traces, were collected in a geometry where
ultrasonic source and receiver transducers were deployed along the two sides of a target
model (a Teflon cylinder 3.81 cm) located in water tank. Source spacing and receiver
spacing were 50 m, and the well separation was 600 m, in a scaled distance. Two shot
records with the source shot at 0 m and 1000 m are shown in Figure 11. Note that the
direct arrivals at several traces in the middle of Figure 11(b) are pulled down because of the
velocity of the Teflon model lower than that of the surrounding water.

The automatic velocity analysis method was applied to three gathers for source
depths of 0 m, 450 m, and 1000 m, respectively, in order to see whether or not the
background velocity (that is, water velocity which is around 1490 m/s) can be inverted
from direct arrivals. The guessed initial velocities ranged from 1000 m/s to 1800 m/s at
interval of 20 m/s. The velocity gradient was guessed between 0.00001 m/s/m and 0.01
m/s/m. The length of the wavelet, which was used as width of the time window for
velocity analysis, was 30 ms.

Figuers 12-14 show the results of semblance analysis for the gathers from different
source positions. In Figure 12, the best velocity should be picked from where the initial
velocity is 1520 m/s and gradient is 0.0095 m/s/m. In Figure 13, the best inverted velocity
is formed by the initial velocity of 1520 m/s and the gradient of 0.0085 m/s/m. Figure 14
shows that the largest semblance value corresponding to the initial velocity of 1520 m/s and
velocity gradient of 0.0065 m/s/m gives the best selection for velocity. From the above
results, the initial velocity inverted is consistently 1520 m/s, with a 2.0% difference in
value from the real velocity of 1490 m/s. The gradient value obtained from the velocity
analysis change from 0.0065 m/s/m to 0.0095 m/s/m, causing velocity variation by 13 ~ 19
rn/s within the depth aperture of 2000 m. Thus, the velocity changes caused by the velocity
gradient is neglegible. In short, the velocity inverted from the physical modeling crosswell
data using our method is very close to the actual model velocity.
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Field data

The real crosswell seismic data were acquired in Humble, Texas (courtesy of
Texaco Inc.). In Figure 15, a common-receiver gather is shown, which is composed of
113 traces, representing a depth aperture of 300 ft (91.5 m) to 2540 ft (774.4 m). The
receiver was at the depth of 1500 ft (457.3 m). Well-to-well separation was 815 ft (248.5
m). Seismic traces were recorded at sample interval of 0.25 ms. P-wave direct arrivals,
denoted with the letter D, has a quasi-hyperbolic traveltime trajectory, as mentioned before.
The hyperbolic trajectory is not symmetric partly because of variations of velocity in the
subsurface, and partly because of crosswell recording geometry. It can be seen in Figure
15 that the data contain very strong tube wave energy, which dominates the record.

The automatic velocity analysis program searches for the optimal velocity in that
particular depth aperture by scanning velocity in a range of 4900 ft/sec to 16500 ft/sec
(interval 200 ft/sec) and gradient in a range of 0.045 ft/sec/ft to 2.0 ft/sec/ft (interval 0.1
ft/sec/ft). Time window of 14 ms wide (approximately wavelet width) was used to scan
seismic traces around direct arrivals. Figure 16 is the result of velocity analysis. Velocity
is picked at the initial velocity of 6100 ft/sec and gradient of 0.145 ft/sec. From the new
velocity function, velocity changes from 6143.5 ft/sec to 6468.3 ft/sec in an aperture from
300 ft to 2540 ft. Although unfortunately we currently do not have other velocity
information in this area to confirm the inverted velocity function, velocities we have shown
appear to be reasonable.

DISCUSSION

The inversion problem may not be unique. For example, in Figures 6, 9, and 10,
there are several local highs within a narrow belt in the semblance map. These local highs
have values very close to the one that we picked, making interpretation difficult. This
problem arises because combinations of smaller initial velocity and larger gradient or of
larger initial velocity and smaller gradient may generate the same effect as does the
combination of the correct initial velocity and gradient. Therefore, precaution must be
taken in interpreting the inversion results. Fortunately, in our case, the semblance value
which gave the inverted velocity is after all larger than these highs around it.

Problems may also be caused when the available crosswell data are noisy. Noise
has an obvious effect on the results of semblance analysis because in addition to signals,
noise within the given time window is also involved in calculation of semblance values [see
equations (15) and (16)]. Thus, application of band-pass filters to crosswell seismic data,
prior to velocity analysis, is recommended. It is also found that inversion result will be
good if the width of time window is close to the wavelet length. It will be useful to apply a
wavelet shaping process to real data to make wavelets consistent from trace to trace.

In this paper, we did not discuss the case of negative velocity gradient, a case that
may exist in some areas. But as we can see, it is not difficult to generalize our discussion.
The basic idea we have developed here still applies, except for some modifications in
traveltime equations we derived previously. Mathematically, it is not difficult either to
generalize our discussion to the case of deviated wells. This velocity analysis method can
also be applied to S-wave crosswell data.
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CONCLUSIONS

It is possible now to automatically derive velocity from crosswell seismic data, in a
simple but efficient way with the velocity analysis method we have discussed in this paper.
Without having to pick traveltimes by hand, this method estimates a velocity distribution
from crosswell direct arrivals by conducting an automatic semblance analysis for seismic
traces around traveltimes of direct arrivals theoretically calculated, assuming a linear
velocity-depth relationship. This method has been tested on a number of crosswell data
gathers. Inversion results are satisfactory.

FUTURE WORK

The automatic crosswell velocity analysis method discussed here has shown an
exceptionally encouraging perspective. But as this method is still in the early stage, more
research is required to improve it.

It is not unusual that in some areas, the subsurface velocity is distributed with
several velocity gradients within different depths. Such multiple gradients in the same area
would cause the direct arrivlas to behave differently than what we have dealt with before.
In this situation, direct arrival events may no longer be described by the smooth quasi-
hyperbolic trajectory which is obtained from our traveltime equations. Therefore, in such
cases, multi-scan may be necessary. That is, the entire depth aperture of interest may need
to be divided into a number of sub-apertures, within each of which, velocity analysis is
conducted using our method. Inversion results from these sub-apertures are finally
combined together.

Besides, it is worth investigating other velocity-depth functions, which may be
more accurate and more suitable to describe subsurface velocity patterns than the linear one
we have used in this paper.

Since random or coherent noise has a strong influence on the result of semblance
analysis, we may not always be able to obtain reliable velocity inversion results. Thus,
some noise-resistant coherency measures may need to be considered.
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APPENDIX I

WAVE PROPAGATION IN A LINEAR GRADIENT MEDIUM

In this section, we will examine some fundamental characteristics of seismic wave

propagation in a linear velocity-gradient medium. Because we concern ourselves mainly
with applications to crosswell seismic data, we choose to consider the crosswell surveying

geometry. In addition, for our purpose, we consider direct arrivals only. Therefore,
relevant expressions for raypaths and travehimes of direct waves will be derived.

Let us first establish a Cartesian coordinate system such that the X-axis is on the flat

surface of the earth, the Z-axis is along the symmetrical axis of a vertical borehole, and the
origin of the coordinate system is at the wellhead. Suppose that the source S is at (0, Zs),

where Zs >-0, and an arbitrary point R is at (X, Z). A seismic wave leaves the source S at
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A

the angle ¢Xoto the vertical axis, and travels to R along a curved raypath SR. The geometry
is shown in Figure A-I-1.

01 V=Vo+ tcZ _X
Source l

S(O,Zs) _._o

Z

FIG. A-I-1. Geometry showing a seismic ray leaving the source and
propagating in a continuous medium.

The energy generated by the seismic source will radiate outwards in all directions.
In crosswell surveying geometries, angles of the rays emitted from the source range
between 0 ° and 180°. When the emission angle (7-0is 90 °, the ray leaves the source
horizontally, and then gradually turns upward. However, when the angle is less than 90 °,
diving waves would be expected to occur. Therefore, it is necessary to discuss two cases:

1) o,0<90° ; and 2) ¢x0>90°.

Case I: Ray emission angle not larger than 90°

This is the case in which the seismic wave, upon leaving the source, travels
downward into the medium below the source, or in a special situation when the angle of
emission is 90° , it leaves the source horizontally and then travels upward. Let us look at an
infinitesimal segment of the ray, dl (see Figure A-I-l). It makes an angle o_with the
vertical axis. We assume that all positive angles are measured counterclockwise from the
vertical axis. This segment has a vertical component of dz and a horizontal component of
dx. The following relations can be found:

dx = tanot, dl= dz , dt = dl
dz 41- (sincz)2 V " (A-I-I)

The velocity V and the depth-dependent angle _zare related by Snell's law:

sinct
P= V ' (A-I-2)
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which is the law governing wave propagation along a least-time path. Here, the ray
parameter p is a constant which depends upon the direction in which the ray left the source,
that is, upon the angle a0. By integrating equation (A-I-l) and substituting equation (A-I-
2), we get two integral equations for the total horizontal distance X, and total Iraveltime t:

f_ pVdz
X = a/1 - p2V2

(A-I-3a)

t = V'f_- p2V2 "
(A-I-3b)

Clearly, equation (A-l-3a) describes a family of curved raypaths, characterized by the
corresponding values of the ray parameter p. Since p affects the raypaths, the traveltimes
given by (A-I-3b) differ from one path to another. The assumption of linear velocity
gradient, that is, equation (1) in the text body, leads to solutions of the above integrals:

X = 1 (41- pZ(Vo+ gZs) 2- _/1- p2(Vo + gZ)2 ) ,
_cp (A-I-4a)

t = 1 In (Vo + KZ)(41- p2(Vo+ KZs)2 + 1)

1< (Vo+ rZs)(a/1 - p2(V0+ KZ)2 + 1) " (A-I-4b)

The solutions (A-I-4a) and (A-I-4b) can also be expressed in a different approach (Telford
et al., 1976; Baerg, 1985).

The raypath given by equation (A-I-4a) is a circle in the X-Z plane; this can be
shown by rearranging terms in equation (A-I-4a):

x 41-p vo+ sk-p (A-I-5)

The center of the circular raypath is at C(Xc, Zc), where

Xc =dl- p2(Vo + _Zs)2 ,
lop (A-I-6a)

Zc=. vo ,
(A-I-6b)

and the radius R is
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R=|
rp (A-I-7)

Therefore, in a linear velocity-gradient medium, seismic waves travel along circular
raypaths, characterized by equation (A-I-5). Figure A-I-2 shows a seismic ray leaving the

source at the angle tt0and traveling along a circular path. The center, C, of the circular ray
lies above the earth's surface a distance V0/t¢.

c (xc,zc)

Z

FIG. A-I-2. Circular raypath leaving the source S at the angle eto .

We find, in equation (A-I-6b), that the vertical coordinate of the center, Zc, is

independent of ao. The value of Zc is determined by a given velocity function alone and
thus is a constant. This means that the centers of all circular rays lie on the same horizontal
line. This line is located where the velocity would be zero if the velocity function were
extrapolated up to an elevation where Z = -V0/r¢ (Telford et al., 1976).

Furthermore, since parameters V0 and r, and ray parameter p, are given positive,
the centers of those rays are all located within the (+X, -Z) quadrant of the coordinate
system. Equation (A-I-7) indicates that the radius of the circular ray depends upon the ray
parameterp. Figure A-I-3 shows schematically some of the circular raypaths whose radii
are different.
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FIG. A-I-3. Circular raypaths with different radii and their centers.

From equation (A-I-6a), we can see that the horizontal coordinates of the centers of
the circular rays are determined by non-negative values of Xc. In particular, when the
emission angle ao=90 ° , the raypath is such a circle whose center is at (0, Zc). This can be
shown by substituting

sina0 = sin90 o = 1
P = Vo +rdZs Vo +_Zs Vo +lcZs ' (A-I-8)

into equation (A-I-6a). This situation is shown in Figure A-I-4. We see that at this time,
no effect of diving waves (or turning waves, Grant and West, 1965) occurs.

From Figure A-I-4, it can be predicted that when % > 90°, the centers of rays will
be moved into the (-X, -Z) quadrant of the coordinate system. This will be discussed in the
next section.

Case II: Ray emission angle larger than 90°

In this case, the wave travels upward along a curved raypath as shown in Figure A-
1-5. Let us discuss this situation and derive formulae for the raypath and traveltime. The
derivation can be accomplished in a similar approach that we have used before. But note
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ZS_ _ SurfaceP, X

Circular Arc so = 900

Z

FIG. A-I-4. When the emission angle of the rayis 90 o, the center of
the circular raypath is on the vertical axis.

that the ray's angle a, in this case, is always greater than 90°. From Figure A-I-5, we see
that

0=c_-90° , (A-I-9)

therefore,

dx = cotan0 = cotan(ct - 90°) = - tanct = - sinet ,
dz 4 1 - (sinot)2 (A-I- 10a)

dt = dl = 4(dx) 2 + (dz)z
V V (A-I-10b)

Applying Snell's law (A-I-2) and the linear velocity function (Eq.1), and integrating
equations (A-I-10a) and (A-I-10b) result in the following relations:

X = _(41- p_{Vo+ 1¢Z)2- 41- p2{Vo+ KZs)2 ) (A-I-I la)

t =lln(Vo+ 1¢Zs)(41- p2(Vo+ r_Z)2 +1)
_¢ {Vo+KZ)(_/1 -p_{Vo+_Zs} z + l) " (A-I-lib)

Rearranging the terms in equation (A-I-1 la), we have
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FIG. A-I-5. Geometry showing a seismic ray leaving the source
and traveling upward in a continuous medium.

Centers [
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Source
Z

FIG. A-I-6. Circular raypaths and their centers.
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[X+ _/1-p2(V°+r'Zs)2 _+(z+V°)2= 1l¢p K K2p2 (A-I-12)

Equation (A-I-12) tells us that the resulting raypath is a circular arc, whose center and
radius are, respectively,

Centerat:C(.a/1-P2( V°+_Zs)2 ,.V0) ,rp

and

Radius: R = _1_
lcp

As can be seen, when the velocity gradient r > 0, the center of the circular path is
always located within the coordinate quadrant (-X, -Z). The vertical coordinate of the
center is independent of the ray parameter p while the radius varies with it. Again, the
centers of all possible rays lie on the same horizontal line above the X-axis (the earth's
surface) a certain distance. Figure A-I-6 shows some raypaths and their center positions.

In summary, seismic waves propagate along circular raypaths in a medium of a
velocity increasing linearly with depth. The radii of these circular rays are inversely
proportional to the product of the ray parameterp and the given velocity gradient r. All the
centers of these rays lie on the same line which is above the surface of the earth a distance
determined by the two parameters of the given velocity function. When the emission angle
ao, at which seismic rays leave the source position, is greater than 90°, rays travel upward
and the centers of circles are located within the (-X, -Z) zone. When _x0<90°, rays travel
downward and then turn upward along those circular paths whose centers are within the
(+X, -Z) zone. In this case, the effect of diving waves occurs. When _0=90 °, there is
only one ray that travels horizontally first and then bend upward. The center of this ray is
located on the vertical axis of the coordinate system.
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FIG. 2. Layered model used to generate synthetic crosswell seismic data.
Each layer has the same thickness. Velocities in all layers satisfy
a linear velocity-depth relationship: V = 2000 + 0.8 Z (m/s).
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1.0

FIG. 3. Synthetic crosswell shot gather for source depth = 0 m. (Only direct arrival is
shown here.)
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FIG. 4. Synthetic crosswell shot gather for source depth = 500 m. (Only direct arrival is
shown here.)
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FIG. 5. Theoretically calculated traveltimes (a) and comparison with

observed traveltimes from synthetic crosswell shot gather (b)

(source depth = 500 m).
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FIG. 6. Result of semblance analysis for synthetic crossweU common-shot gather (source
depth = 0m). The maximum semblance value appears where V = 2000 m/s and
= 0.8 m/s/m.
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FIG. 7. Result of semblance analysis for synthetic crosswell common-shot gather (source
depth = 500m). The maximum semblance value appears where V = 2000 m/s and

= 0.8 m/s/m.



CONTOUR MAP FOR SEMBLANCE VALUES

2O8O

205O

2020

Iggotg60
;>

1930

IgO0
o o o o o o o o o o o o Q

_ ,_ _ o _ o _ o _ o O
g) _, tD r,. I_. CO _ (n 01 0 0 _'- _'tL#

- Velocity Gradient ( x 10 .3 m/s/m)

FIG. 8. Result of semblanceanalysis for synthetic crosswell common-shot gather (source
depth = 760m). The maximum semblance value appears where V = 2000 m/s and

= 0.8 m/s/m.
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FIG. 9. Result of semblance analysis for synthetic crosswell common-shot gather (source
depth = 260m). The maximum semblance value appears where V = 2010 m/s and
K = 0.8 m/s/m.
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FIG. 10. Result of semblance analysis for synthetic crosswell common-shot gather
(source depth = 1000m). The maximum semblance value appears where V
= 1990 m/s and K = 0.825 rrds/m.
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FIG. 11. Shot records from an ultrasonic seismic modeling experiment in a water tank
(Stewart and Cheadle, 1989). (a) Source depth = 0 m; and (b) Source depth
= 1000 m.
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FIG. 12. Result of semblance analysis for physical modeling crosswell common-shot
gather (source depth = 0 m). The largest semblance value appears where
V = 1520 m/s and i¢= 0.0095 rn/s/m.
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FIG. 13. Result of semblance analysis for physical modeling crosswell common-shot
gather (source depth = 450 m). The largest semblance value appears where
V = 1520 rn/s and _c= 0.0085 m/s/m.
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FIG. 14. Result of semblance analysis for physical modeling crosswell common-shot
gather (source depth = 1000 m). The largest semblance value appears where

V = 1520 m/s and I¢= 0.0065 m/s/m.
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depth (fl)

FIG. 15. Common-receiver gather of crosswell seismic data acquired in Humble, Texas.
Source depths range from 300 ft to 2540 ft at interval of 20 ft. The geophone
is located at 1500 ft. Offset between wells is 815 ft. D represents P-wave
direct arrivals. (Courtesy by Texaco Inc.)
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FIG. 16. Result of semblance analysis for real crosswell seismic data shown in Figure 15.
Initial velocity of 6100 ft/sec and velocity gradient of 0.145 ft/sec/ft are picked at
the point with the largest semblance value.


