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ABSTRACT 

In this paper we report on and compare the results of numerical and physical 
modelling experiments that focus on the behaviour of shear waves near a point 
singularity in an orthorhombic material. In the neighbourhood of such singularities, at 
least one of which is known to exist in a symmetry plane of an orthorhombic material, 
shear waves may exhibit rapid polarization variations approaching 180”. Our objectives 
are: to predict theoretically the location of a point singularity in the industrial laminate 
Phenolic CE using its stiffnesses as determined from experimental measurements; and 
to locate such a singularity by direct observation of wave propagation in its vicinity in a 
controlled physical experiment. 

Piezoelectric transducer sources and receivers are placed in antipodal positions 
on a sphere of orthorhombic phenolic laminate and used to acquire traces shot along 
different directions through the phenolic. Data required for determination of stiffnesses 
are acquired, as well as traces along two profiles involving only shear sources and 
receivers. These profiles clearly show rapid variations of polarization direction near the 
singularity. We believe that this is the first time that a point singularity has been directly 
identified in either laboratory or field measurements, although the effects of propagation 
near point singularities have been recognized in VSP data by Bush and Crampin in the 
Paris Basin and by Yardley and Crampin above the Austin Chalk. 

The location of the point singularity on the group-velocity or wave surfaces 
agrees extremely well with the location computed for the phase-velocity or slowness 
surfaces from the experimentally determined stiffnesses of the sphere. The slight 
observed shift of the singularity from phase-velocity to group-velocity surfaces agrees 
both in magnitude and sense with theory and with previous physical modelling results. 
We also find that the locations of point singularities are quite sensitive to variations in 
stiffness values. Small changes in stiffnesses from a cube to a sphere of phenolic cause 
a shift of some 15’ in the position of the point singularity. This could imply that 
determinations of the directions of point singularities in field cases will act as a very 
good constraint on the stiffness values of a particular rockmass, which are directly 
related to its lithologic and fabric-related properties. 

INTRODUCTION 

Considerable theoretical development and numerical modelling of seismic wave 
propagation in anisotropic media have been carried out, particularly within the last 
decade. Only within the past few years have a handful of research groups begun scaled 
laboratory experiments, or physical modelling, to determine how well the various 
numerical schemes predict the actual physical results. A particular numerical modelling 
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algorithm might be inadequate for several possible reasons. For instance, the basic 
theoretical assumptions on which the model rests may be in partial error or incomplete; 
the algorithm itself might incorporate computational approximations that were meant to 
make the problem numerically tractable, but which introduce significant error; or the 
routine might be derived on an idealized theoretical basis that is at variance with the 
physical reality: for example, an elastic model representing an anelastic reality; or a 
point-source/point-receiver theory representing the real situation. 

That there exist significant differences just among different numerical modelling 
schemes has been elegantly demonstrated by Thomsen et al. (1990). In their ongoing 
study, several numerical modellers have taken a single anisotropic model with a single 
acquisition design (both surface and VSP) and are individually applying their own 
forward-modelling wave-propagation algorithms, on their own hardware platforms, 
with the intention of comparing results in a common format. Preliminary results show 
many similarities among the various synthetic seismograms produced, but also some 
significant differences in the amplitudes of various phases, as well as in computational 
efficiency. The possibility thus presents itself of carrying out the corresponding 
physical modelling to put the various numerical schemes to the test. There is therefore 
considerable interest on the part of seismic anisotropists to compare the results of 
numerical and physical modelling for the same model and acquisition design, that is, 
where input model parameters for the numerical experiment are identical (or as close as 
possible) to those of the physical model constructed for the laboratory experiment. 

One such area of interest at present is in the behaviour of shear waves near 
special directions of propagation known as singular directions or singularities, which 
occur at places where the two shear-wave phase-velocity surfaces meet (i.e. touch or 
intersect). Near the commonest kind of singularity, the point singularity, a shear wave 
will likely exhibit anomalous behaviour such as rapid variation in polarization or 
amplitude, similar to what might be observed near cusps on the group-velocity surface, 
even when the anisotropy is not sufficiently strong to cause cusps (Crampin and 
Yedlin, 1981; Crampin, 1991). 

The propagation effects of point singularities have been recognized in VSP data 
by Bush (1990) and Bush and Crampin (1991) in the Paris Basin, and by Yardley and 
Crampin (1993) above the Austin Chalk. Such observations may become increasingly 
important in exploration seismology, not least because point singularities may well 
occur along nearly vertical raypaths in sedimentary basins and therefore be potentially 
visible in conventional surface reflection-seismic data. Even for singularities well 
removed from the vertical, the possibility exists that these will be observable in VSP or 
crosswell-seismic data. If it were possible to determine the directions of such 
singularities, it could place tight constraints upon the nature of the internal anisotropy of 
the rockmass (Crampin, 1991). 

Our immediate objectives in the seismic modelling study described in this paper, 
while not yet including the twinning of numerical and physical experiments, are: (1) to 
predict theoretically the location of a point singularity in the industrial laminate Phenolic 
CE using its stiffness values as determined by experimental measurement; and (2) to 
locate such a singularity by direct observation of wave propagation in its vicinity in a 
controlled physical experiment. In the longer term, we intend to examine in more detail 
the variations in polarization and amplitude near such directions, to compare our 
physical results with detailed numerical results obtained by collaborators, to elaborate 
how one might use singularity-related observations in geophysical investigations, 
including hydrocarbon exploration and development, and to develop appropriate 
processing algorithms for this purpose. 
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SHEAR-WAVE SINGULARITIES 

The concept of singularities in shear-wave slowness and phase-velocity 
surfaces for anisotropic propagation media has been known for many years. Duff 
(1960), for example, showed that the two shear-wave sheets come into contact at least 
twice, and usually much more frequently, in directions (of slowness or phase velocity) 
known variously as singular directions, singular points, or simply singularities. There 
are three types of singularity: kiss singularities, line singularities and point singularities, 
in all of which the slowness and phase-velocity surfaces are analytically continuous. 
Kiss singularities are points where the two surfaces touch tangentially but do not 
intersect (Figure la). They may occur in any anisotropic symmetry system and, in the 
case of hexagonal or transverse-isotropy symmetry, there is always one at the 
cylindrical symmetry axis. Line singularities (Figure lb), which only occur for 
transverse-isotropy symmetry, are no more than simple intersections of the two 
surfaces in a circle centred on the axis of cylindrical symmetry (Crampin and 
Kirkwood, 1981; Crampin and Yedlin, 1981; Crampin, 1991). As Crampin (1991) 
states, kiss and line singularities are not expected to cause major disturbances to shear 
wavetrains; nor are any associated anomalies in polarizations or amplitudes likely to be 
observable in seismic data. 

Point singularities are points where the surfaces not only touch but also cross 
each other, and in such a manner that they are continuous through the vertices of cones 
on the inner and outer velocity sheets (Figure lc). They are sometimes known in the 
crystallographic literature as conical points. These singularities do not occur in 
transverse isotropy but necessarily occur in virtually all other symmetry systems, the 
exception being the triclinic system in which the (at least two) singularities could be 
either kiss or point types. For solids with orthorhombic symmetry there must be at least 

C 

FIG. 1. Sketches of the three kinds of singularity: (a) kiss singularity; (b) line 
singularity; and (c) point singularity (after Crampin, 1991). 
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one point singularity somewhere in a symmetry plane (Crampin, 1981). More 
rigorously, geometrical relationships demonstrate that the three mutually perpendicular 
planes of mirror symmetry in solids with orthorhombic symmetry must contain an odd 
number of point singularities. The most common combinations are [O:O:l] (one point 
singularity in one symmetry plane) and [0:1:2]. The combinations [l:l:l], [0:0:3] and 
higher odd-number combinations are not thought possible, though we are not aware of 
any specific investigation having been made. 

Point singularities may significantly disturb the behaviour of shear waves on 
neighbouring rays. Related to the fact that the curvature of the phase-velocity surface 
near such a point is very great, and that continuous paths on the surface passing 
through the singular point cross from the inner to the outer sheet (and vice versa), is the 
complicated behaviour of shear-wave polarizations, which can vary by up to 180” over 
neighbouring rays in the vicinity of the singularity. 

In order to simulate the wave propagation in the Paris Basin (Bush, 1990; Bush 
and Crampin, 1991) and above the Austin Chalk (Yardley and Crampin, 1993), models 
of uniform rock with combinations of horizontal periodic thin layering (PTL) and 
parallel vertical fluid-filled cracks (or extensive-dilatancy anisotropy, EDA) were 
assumed. PTL alone leads to transverse isotropy (with a vertical symmetry axis for 
horizontal layering), while EDA alone produces azimuthal anisotropy (with a horizontal 
symmetry axis for vertical cracks), each of these being a special case of hexagonal or 
transverse-isotropy symmetry. The combination, however, gives rise to orthorhombic 
symmetry and, contrary to the case for either PTL or EDA alone, the necessary 
existence of at least one point singularity. Thus, for the purpose of physically 
modelling wave-propagation phenomena near point singularities - relevant to the 
simulation of basins with both PTL and EDA - orthorhombic materials are certainly 
appropriate, whereas transversely isotropic materials are quite inadequate. 

EXPERIMENTAL OBSERVATIONS 

Physical seismic modelling on a sphere 

Our previous physical modelling experiments using orthorhombic Phenolic CE 
(Cheadle et al., 1991; Brown et al., 1991), have been carried out on samples having 
planar faces, namely cubes or slabs, sometimes with edges or corners planed off. In 
these studies, velocities in various symmetry, and off-symmetry, directions were 
determined and these showed small but significant differences from one sample to 
another. Some of these differences were probably due to the nonuniformity of different 
samples but some were also attributed to the fact that, relative to zero-offset or axial 
raypaths, oblique raypaths were necessarily of increasing length as offset increased, 
probably leading to slight variations in effective velocities as a result of source-receiver 
effects (effective-pathlength and array-attenuation effects), anelasticity (pulse 
stretching), etc. (Brown et al., 1991). For these reasons, we decided to shoot and 
record over a sphere of the material, for which all raypaths would not only be of equal 
length but also will impinge normally on all source and receiver transducers. 

We machined a phenolic sphere of diameter 10 cm and initiated experiments on 
it using the set-up shown in Figure 2, together with the source-receiver transducers and 
the data acquisition described previously (Brown et al., 1991; Cheadle et al., 1991). 
The procedure is, having established a line or profile direction, to acquire nine traces, in 
general, at a particular point on the line. The nine traces correspond to the nine 
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combinations of source and receiver polarizations, using as the three component 
directions: vertical (normal to the surface), radial (tangential, in-line) and transverse 
(tangential, cross-line), denoted respectively V, R, and T. This yields, in effect, a 
vector transfer function (or impulse response) for each point or propagation direction, 
allowing one to simulate seismic traces for any source polarization (Igel and Crampin, 
1990). In the present study, traces involving compressional sources and receivers are 
used only in the determination of stiffnesses. 

Although shooting and recording on a sphere removes some of the difficulties 
encountered when using a cube or rectangular slab, certain other problems arise that 
wipe out some of these gains. One such problem is size limitation. One can alleviate the 
problem of relatively large transducers either with smaller transducers or larger models. 
Phenolic CE can be acquired in slabs up to about 3 m (lo’) long, 1.2 m (4’) wide and 
10 cm (4”) thick. However, in view of its high cost, our slab samples have not yet 
exceeded 60x60~10 cm (2x2~4”). So, using split spreads on these slab samples, we 
have achieved seismic pathlengths only slightly greater than 30 cm, though up to 3 m 
would be possible. In contrast, in machining a sphere of this material, the largest 
obtainable seismic pathlength, or diameter, is only 10 cm. 

FIG. 2. Photograph of the laboratory set-up used in shooting and recording on the 
phenolic sphere. Transducers are in contact with the sphere (diameter 10 cm) at its top 
and bottom. 
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Another problem is caused by the curvature of the sphere surface. Our 
transducers have planar faces and naturally do not couple as well to a sphere as to a 
rectangular slab. Although amplitude reduction resulting from a smaller contact area is 
not a great problem, one must take pains to ensure consistent coupling and thus 
consistent source amplitudes. There are undoubtedly also different wave-propagation 
effects associated with a particular source on a curved surface as opposed to a flat one. . 

A third trouble source, and potentially the most serious, is the problem of 
interference of wave phases generated by the spherical surface with the wave phases of 
our primary interest, particularly PS and SP with S. Fortunately, as illustrated in Figure 
3, and as further verified by experiment, the direct P- and S-wave onsets are, for the 
most part, uncontaminated. 

Numerical model data 

The traveltimes measured in these experiments, or eqivalently the velocities, 
allow one to determine the stiffnesses of the model material. In order to get some idea 
where to look for a point singularity, we used the only Phenolic CE stiffnesses 
available at the time, those obtained previously for the phenolic cube (Cheadle et al., 
1991). With these as input, the phase and group velocities in the three symmetry planes 
were computed by the ANISEIS software package (Figure 4). In this we use the 
knowledge that for solids with orthorhombic symmetry there must be at least one point 
singularity somewhere in a plane of mirror symmetry (Crampin, 198 1). These results 
indicate a point singularity in the 31-plane about 45” to 50” from the 3-axis, the l- and 
3-axes being, respectively, the directions of highest and lowest P-wave velocity (Figure 

WAVE 
PHASE 

P 0.30-0.35 
PP 0.40-0.50 
PPP 0.45-0.55 
S 0.65-0.75 
PS/SP 0.70-0.80 
ss 0.90-l .oo 
sss 0.95-l .lO 

APPROXIMATE 
TRAVELTIME (s) 

FIG. 3. The main body-wave phases that could interfere with direct P and S arrivals for 
transmission through a sphere. Traveltimes are scaled up by a factor of 104. For 
simplicity, we here omit the prefix q (quasi-). 
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Table 1. Comoarison of velocities (m/s) and stiffnesses (1010 N/m2) for 
a cube versus b sphere of the indukrial -laminate Phenolic- CE. 

cube 
VII 3576 
V22 3365 
v33 2925 
v23 1516 
V31 1606 
V12 1662 
v44 3094 
V4ii 1569 
v55 3219 
Vs 1620 
Veti 3378 
v65 1810 

i 
1 

Sphere 
Cl1 1.7443 VII 3584 Cl1 1.7521 
c22 1.5445 v22 3401 c22 1.5777 
c33 1.1670 v33 2935 c33 1.1750 
c44 0.3135 v23 1514 Cu 0.3127 
C55 0.3518 V31 1598 C55 0.3483 
CM 0.3768 V12 1670 C66 0.3804 

V44 3080 
Cu 0.6379 v4;i 1579 c23 0.6196 

V55 3205 
C31 0.6633 v55 1605 c31 0.6608 

V66 3389 
C12 0.7283 v65 1838 C12 0.7220 

ANISEIS 

0 153045607590 

DEGREES 
l-2 PLANE 

4.0 

$j- 3.5 
S 

ri 
c 3.0 
i3 
Pl 
2 2.5 

2.0 

1.5 

CUBE 

0 153045607590 

DEGREES 

2-3 PLANE - 

b- 

2.0 

1.5 
0 153045607590 

DEGREES 

3-1 PLANE 

FIG. 4. Phase (solid) and group (dashed) velocities computed by ANISEIS using 
stiffnesses of the phenolic cube (Table 1) as input. Line segments join points on the 
two curves corresponding to one and the same point on the wavefront. For these 
stiffnesses there is one singularity in the 31-plane, where the two shear-wave curves 
intersect (i.e. a [O:O:l] material). 
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5). In view of this result, we decided to shoot two perpendicular seismic profiles: line 1 
along the meridian spanning the l- and 3-axes, and line 2 along the great circle 
bisecting the first at right angles, that is, crossing it 45’ from the axes (Figure 5). For 
convenience, we designate this crossing-point, labelled the Mirection (Cheadle et al., 
1991) in Figure 5, as “near-singularity”. 

A second ANISEIS computation, using specifically the stiffnesses determined for 
the sphere itself, could not be run until after the laboratory acquisition of the requisite 
seismic data, acquired at the same time as the profiles shown below. These results 
(Figure 6) show that the differences between the velocities and stiffnesses determined 
for the cube and the sphere are not great (Table l), the two sets of stiffnesses differing 
on average by only 1% and at most by 3% (for C23). Nevertheless, the computed 
location of the singularity has moved significantly, by about 15’, to a point about 60” to 
65” from the 3-axis. As shall be seen below, the experimentally observed position of 
the singularity on the phenolic sphere, while disagreeing with that computed for the 
phenolic cube by some 15’ to 20”, agrees extremely well with that computed for the 
sphere. 

\ 
\ 

\ 
\ 

1 \ 
\ 2 . . 1 . L 

6 

NE 1 LINE 2 

FIG. 5. The two orthogonal profiles, line 1 and line 2, on the sphere. The symmetry 
axes (1, 2 and 3) are labelled, as well as the directions (4, 5 and 6) halfway between 
axes. Point 7 marks the direction equidistant from the three axes. 
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Physical model data 

For each of the two lines shown in Figure 5, we acquired profiles of 33 shots, 
180” in length, with a nominal shot interval of 5.625”, and with point 5 as the 
midpoint. At each shotpoint, four tangential (shear) components were acquired, that is, 
all four combinations of radial and transverse source and receiver polarizations. In 
every case, the receiver transducer was positioned at the antipode of the source 
transducer. Figures 7 and 8 show the seismic profiles obtained for lines 1 and 2, 
respectively. 

The most striking feature in these figures is the change in polarity of the St 
arrival, whose onset is at about 0.65 to 0.75 s, clearly seen on the R-T and T-R (cross- 
component) records for both line 1 and line 2 (Figures 7b, 7c, 8b and 8~). This polarity 
change is just as clearly not present on the R-R and T-T records (Figures 7a, 7d, 8a and 
8d). One can also again see good examples of negative reciprocity (Knopoff and 
Gangi, 1959; Brown et al., 1991) in comparing respectively the R-T records (Figures 
7b and 8b) with the T-R records (Figures 7c and 8~). 

ANISEIS SPHERE 
2.75 

2.25 

1.00 

(Y-Z)-PIANC Of- PSWOl 

3 

90 

2.50 - 

1.25 - 

(Z-X)-PUNE OF F5tiPO1 

FIG. 6. Phase (solid) and group (dashed) velocities computed by ANISEIS using 
stiffnesses of the phenolic sphere (Table 1) as input. For these stiffnesses there are two 
singularities in the 23-plane and one in the 31-plane (i.e. a [0: 1:2] material). 
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' '. 
;: '\ '7 . . 
i -A 
1' 1, I 
8 ,: 

FIG. 7. Line 1, with the 31-plane (Figure 5) as the sagittal plane. There are 33 traces 
over a 180” profile, giving a nominal trace interval of 5.625”. In reality, we probably 
have a maximum uncertainty in positioning the transducers for each shot of -1 mm or 
-1”. (a) R-R polarization; (b) R-T; (c) T-R, and (d) T-T. See also Figure 8. 
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I.........,.. ., ,,.,,..,.....,.,.,.,,,.I..., VI8 ci 5: R d d d 00 G 
z- 

I I I -I--‘-” “I”‘, 

I......~..I_....,...IL..,....,..., . ..I..., 9 0 w 5: 2 8 6’ d 6 4 
73 

I... . . . ..I..... ..I.........I.. . . . . ..I...1 0 “6 2 8 2 x d 6 d G 

FIG. 8. Line 2, with the 25plane (Figure 5) as the sagittal plane. Traveltimes and 
frequencies are scaled up and down, respectively, by a factor of 104. (a) R-R; (b) R-T; 
(c) T-R, and (d) T-T. An arrow near the tops of each cross-component record, (b) and 
(c), indicates the position of the polarity reversal, or singularity. See also Figure 7. 
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Supported by the following discussion, we interpret these polarity reversals on 
the cross-component records as manifestations of rapid polarization changes, and thus 
as direct evidence of a point singularity in the phenolic material. For example, it is 
reasonable to expect that a shear wave generated near point 5 with radial polarization 
(within the sagittal31-plane) would arrive at the antipodes with a radial component of 
polarization of this same polarity throughout the neighbourhood of point 5. However, 
there are no similar momentum-conservation considerations that would determine any 
fixed polarity for the transverse component (which would vanish in the isotropic case). 
Indeed we see (Figures 7b and 8b) that it is the transverse component of polarization 
whose polarity reverses through a close approach to the singularity. 

On line 2 the polarity reversal, or the singularity, appears to occur right at point 
5, that is at the intersection with line 1. Evidently then, the singular direction is in the 
symmetry plane subtended by line 1, compatible with the requirement that at least one 
point singularity lie in a symmetry plane. On line 1 the singularity appears to lie about 
20” away from point 5 towards the l-axis, or about 65” from the 3-axis, in good 
agreement with the position computed from the sphere stiffnesses (Figure 6). 

So far, we have not differentiated between phase- and group-velocity surfaces 
in locating the singularity. The theoretical singular directions are defined in terms of 
phase-velocity surfaces and specified in terms of phase angle. In contrast, our seismic 
traces register energy arrival and so render an image of the group-velocity surface, with 
directions of wave arrival being group angles, not phase angles. However, our earlier 
measurements on Phenolic CE have shown that for shear waves near the 5direction 
(halfway between 3 and 1) phase and group angles differ by about 5” or less (Cheadle 
et al., 1991, Table 1). This is also verified by Figure 6, which shows both phase- 
velocity curves (solid) and group-velocity curves (dashed). Line segments on the two 
curves join points that belong to the same point on the wavefront. The horizontal 
displacement of any such pair is the difference between the corresponding phase and 
group angles. For the shear waves in the 31-plane, this displacement is almost 
indistinguishable, and in fact is not more than about 5”. 

The sense of this displacement, in addition to its magnitude, can also be 
established. Measuring from 0” at the 3-axis, the phase angles are less than or equal to 
the corresponding group angles for shear waves in this 31-plane. This has been shown 
by physical modelling (Cheadle et al., 1991, Table 1) and numerical modelling (Figures 
4 and 6). From the ANISEIS output, we have a phase angle for the singularity of 15’ to 
20” and from the seismic data a group angle of about 20”. The observations are 
therefore entirely consistent with the theory. 

DISCUSSION 

Conclusions 

We have made a direct experimental observation of a shear-wave point 
singularity in a sphere of the commercial laminate Phenolic CE. As far as we are aware, 
this is the first time that a point singularity has been directly identified in either 
laboratory or field measurements, although the effects of propagation near point 
singularities have been recognized in VSP data by Bush (1990) and Bush and Crampin 
(1991) in the Paris Basin, and by Yardley and Crampin (1993) above the Austin Chalk. 
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The location of the point singularity on the group-velocity or wave surfaces is 
in the 31-plane of symmetry, about 65” from the 3-axis, the slowest direction for P 
waves. This agrees extremely well with the location on the phase-velocity or slowness 
surfaces computed by ANISEIS from the experimentally determined stiffnesses of the 
sphere, that is, about 60” to 65” from the 3-axis. This slight shift of the singularity from 
phase-velocity to group-velocity surface is wholly consistent with previous findings, 
namely that this singularity should be a couple of degrees closer to the 3-axis on the 
phase-velocity surface. 

Locations of point singularities are quite sensitive to variations in stiffness 
values. An average change in stiffnesses of 1% from the cube to the sphere caused a 
shift of some 15” in the position of the point singularity. This could mean that 
determinations of the directions of point singularities in field cases will act as a very 
good constraint on the stiffness values of a particular rockmass, values that are directly 
related to fabric and lithologic properties such as nature and degree of internal order or 
alignment of, for example, cracks, grains, or layering. 

Future Work 

In the longer term, we intend to examine in more detail the variations in 
polarization and amplitude near such directions, to compare our physical results with 
numerical results obtained by collaborators, to develop methods that would use 
singularity-related observations in geophysical studies, for example, in hydrocarbon 
exploration or development, and to develop the necessary processing code required to 
this end. 

Practical problems will undoubtedly arise in this work. For example, how can 
we compare recorded amplitudes generated by different source transducers (P versus S) 
which may have different piezoelectric responses and probably couple differently to the 
material surface? We may be able to use the principles of seismic reciprocity, in 
particular negative reciprocity (Knopoff and Gangi, 1959; Brown et al., 1991), to 
equalize, for example, a V-T trace (P source, SZ-Z receiver) and a T-V trace, and so on. 

We also still have the problem of relatively large transducer size (compared to 
dominant wavelengths and specimen size), which means that any one trace is a sort of 
convolution or composite record of a rather thick pencil of rays. This is not as great a 
problem for traces generated and recorded on a sphere as it is for a cube or slab because 
the transducer faces are everywhere normal to the raypaths for the sphere. For 
continued work, however, we are looking into methods to reduce the effective 
transducer size such as: miniature transducers, deconvolution of recorded traces 
(incorporating knowledge of the transducer directivity functions or radiation patterns), 
or more advanced technology based on interferometry or pulsed-laser methods (see e.g. 
Castagnede et al., 1991). 
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