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ABSTRACT

This paper considers the question whether a salt layer is anisotropic or not and
what its anisotropic features are. The geophysical classification of salt is carded out
based on a combination of velocity measurement and salt-characteristic investigation
through thin sections on different salt samples and previous work. A physical
modelling was performed to characterize anisotropic salt. It has been found that there
are three types of anisotropic salt. The anisotropic features of chevron-crystal salt
(widely present in the Whitkow Member of the Prairie Evaporite Formation in the
Western Canada Basin) match cubic symmetry quite well. Exact expressions for phase
velocities in an arbitrary direction have been derived for cubic symmetry. Group
velocity formulae are also developed in symmetry planes.

INTRODUCTION

There exists some controversy over the question whether salt layers in the
subsurface may be anisotropic media or not. Results from the experiments of Sun et al.
(1991) have shown that some types of salt exhibit shear-wave splitting.

Geologically, salt textures have been well documented. Strotzki and Welch
(1983) studied the relation between salt texture and temperature and concluded that the
preferred orientation developed in extruded salt is a function of extrusion temperature.
Also the connection with the diapirism of salt domes were discussed. Larsen (1983) did
textural analysis and crystallographic orientation study for a salt dome in Denmark.
Spencer and Lowenstein (1990) systematically analyzed diagenesis and geological
procedure of different types of salt and textural feature. Those types of salt which have
preferred crystal orientation do widely exist.

In order to understand what types of salt are anisotropic, the features of salt
anisotropy and how the anisotropy can be observed, we carried out a geological
investigation including salt texture microscope study correlated with laboratory velocity
measurement. Theoretical derivation of phase and group velocity for cubic symmetry
has been completed. Group velocity against ray angle are observed and fit well with
theoretical calculation for salt sample with chevron crystals from Whitkow Member of
Prairie Evaporite Formation in Western Canada Basin. VSP numerical modelling is also
carded out in the purpose of observing shear wave splitting.

SALT CLASSIFICATION AND VELOCITY PROPERTIES

Geophysically, the criterion for classifying salts is to observe how the different
types of salt cause seismic waves to behave differently while the waves propagate
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through the salt units. Geologically, these properties of salt depend on the origins of
evaporites and the influence of diagenesis or burial metamorphism.

Basically, salt can be classified into two group: pure and impure. Impure salt
are those in which salt crystals mixed uniformly with elastic deposits which is shown
isotropic in the laboratory measurement. Salt layers interbedded with other thin layers
are considered as pure salt. Pure salt are classified as following types.

The first type of salt is (I) crystal-oriented salt. It can be produced in two
different geological processes as described in the following.

IA: Chevron salt: syndepositional open-space growth on the bottom of a brine
body. This type of salt is commonly preserved in modern (Casas et al., 1992) and
ancient evaporites (Whitkow Member of Prairie Evaporite Formation in Western
Canada Basin, Meijer Drees, 1986).

IB: Recrystallized salt: one of the case is that An initial floodwater causes
extensive tubular networks of vertical and horizontal dissolution cavities. Subsequent
evaporative concentration of the flood water results in halite-saturated brines and
renewed crystal growth.

This type of salt (I) is layered and has syntaxially grown crystalline framework
salt consisting of vertically oriented and vertically elongated crystals. Stratigraphically,
a salt layer usually consists of many salt units and interbedded with thin shale (mud),
anhydrite or carbonate.

The second type is (II) detrital-framework salt. The framework of grains with
point contacts establishes a primary detrital texture in evaporites as elastic rocks. And
the salt layer exhibits isotropic features (Lowenstein and Hardie, 1985; Weiler et al.,
1974).

The third type of salt is (III) burial metamorphic salt. This type of salt can be
anisotropic or isotropic. It can be the salt with strongly preferred crystal orientation
(Strotzki and Welch, 1983; Larsen, 1983). It also can be strongly altered by the
temperatures and pressures due to burial which is also called anhedral mosaic salt. It
should be noted that a texture in salt domes will lead to an anisotropic behavior when
strained thermomechanically. The basic feature of anhedral mosaic salt is polygonal
mosaic texture which notably lacks vertical orientation, primary growth features have
been destroyed and have disappeared. Instead, the anhedral mosaic consists of clear
grains that meet at triple junctions that approach 120" angles

PHASE AND GROUP VELOCITIES OF CUBIC SYMMETRY

It can be extremely complicated to get the exact expressions for velocities with
directional dependence which is one of fundamental properties of seismic anisotropy in
an arbitrary off-symmetry plane. However, for the case of cubic symmetry we have
derived the exact expressions for phase velocities in any direction. Group velocity
formulae are also developed for propagation in symmetry planes.

In order to provide intuition into the phase velocity expressions, we introduce
three anisotropy parameters e, to, and _pfor cubic symmetry.
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E = (Cll - C44)2(a - _) - a(C44 + C12) 2 (1)

CO= fl[(Cl2 + C44)2(3Cll - 2C12 - 5C44) - (fit - C44) 3]

+ {a(Cll - C44)(Cll + C12)(Cl1 " C12- 2C44)- 2-_'(7C1] - C44)3 (2)

_o= arccos[- __2=_ _ ] (3)
2(-_) 3f2

where,,= + + andP=.2.2.=,.q,,2,L3.

Recall that unit vectors n], n2, n3 are functions of phase angle (O). We have the
exact expressions for the phase velocities as functions of phase angle in any arbitrary
direction (see Appendix).

The P-wave and two shear waves phase velocity can be expressed by:

2_cosq9 + Cll + 2C44
vr_ - 3p 3 3p " (4)

2 (-_-_ cos(_P + _) + Cll + 2C44
vs_- _ 3 3 3p (5)

v_ - 2_ cos(_° + _) ÷ Cll + 2C44
- 3p -3 3 3p (6)

The shear-wave singularities in salt are on the major symmetry axes. At these
points the phase velocities are written as follows:

V_--_ +Cll +2C44
p 3p (7)

V_ =Vs_ = 4_'_ 4 ell +2C44
2p 3p (8)

where ni is the unit vector normal to the wavefront, ,'1,= pv 2, P is the density, v
is the phase velocity. In a symmetry plane the group velocity can be easily determined
from phase velocity using well known relationships (Postma, 1955; Backus 1965).

VZ(q_) = v2(0)+ {dd_0)2 (9)
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v tanO + [dv I
k/OrtanO=

v. (d_) tan0" (10)

It is indicated in (9) and (10) that along a symmetry axis of a symmetry plane,

group velocity is equal to phase velocity and phase angle (0) or slowness direction is

the same as the group angle (_) or angle of incidence of the ray. This is because the
derivative of phase velocity with respect to phase angle in that direction is zero, namely:

dv =o. (11)
de

It is obvious that, on the symmetry axes, the derivative of velocity with respect
to phase angle in that direction is zero. It is also indicated in (9) and (10) that group

angle (O) is a function of phase angle (0) (More detailed and intuitive discussion is
given by Brown et al. (1991).

In one of the symmetry planes unit vectors nb n2, n3 are featured as:

n! = cos0, n2 = sin0, n3 = 0. (12)

From (12) we have o_= cos20sin20 and fl = 0. The following formulae are
derived (Appendix) for group velocities (Vr,, Vs., Vsv) in a typical plane of cubic
symmetry.

V_ = v2 c°s2(qg3)sin2(40)(Cll + C12)2(Cll - C12 - 2C44)2 (13)
48pZv2e

V2s = v_ c°s2((tP + 27r)/3)sin2(40)(Cl] + C12)2(Cll - C12- 2C44)2. (14)
48p2v_e

V2, = vs_ c°s2((tP + 47r)/3)sin2(40)(Cll + C12)2(Cll - C12 - 2C44) 2. (15)
48p2vg, e

Again, at those points where shear-wave has singularities group velocities are

expressed by the following formulae:

V2 = v_ + (4c°)2/3sin2(40)(Cll + C12)2(Cll + C44)2(Cll - C12 - 2C44)2. (16)
8 lpZv2(4_o) z
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(4c°)2/3sin2(40), C +V2, = Vs2v= v_ -t _ _ _ 11 C12)2(Cll + C44)2(Cll - C12 - 2C_) 2.
324pZvs_(4(o) z

(17)

MODELING STUDIES

The physical modelling was carded out by recording shear waves propagating
through a ball made of a salt sample which consists of equigranular (around 1-2 mm)
crystals, white to colorless halite, and vertically oriented cloudy and milky pathes.
Crystallographic orientation is not observable (salt type IA). The frequency scaling was
10,000:1, and distance and time scaling 1:10,000. The data were recorded every 15"
per trace (from 0 ° to 180") with 13 traces per record. The schematic diagram of the
modelling geometry is shown in Figure 1. The perimeter of circle 1 is 11.7 cm which
indicates the diameter of the ball is 3.724 cm. In order to observe the anisotropic feature
in this salt medium, shear-wave transducers am oriented in three different ways:

Figure 1. Physical modelling geometry

• Radial-Radial (R-R) polarization. Two transducers (source and receiver) are
parallel to each other and oriented in radial (inline) direction (Figure 1).

• Transverse-Transverse (T-T) polarization. Two transducers are parallel to
each other and oriented in transverse (crossline) direction (Figure 1).

• Radial-Transverse or Transverse-Radial (R-T or T-R) polarization. The
polarization of source and receiver transducers are perpendicular to each other.
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The theoretical curves of group velocities against ray angle are plotted in Figure
2 (calculated by applying equations 13-17)). It represents first arrivals of P-wave and
shear waves (SH and SV) against ray angle at 1 second.
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Figure 2. group velocity against ray angle
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Figure 3. Zero-offset shear transmission record over chevron salt ball along
circle 1.
a) R-R polarization
b) T-T polarization
c) T-R polarization
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The shear waves transmission records along circle 1 are plotted in Figure 3.
Figure 3a is the plot with transducers R-R polarization. In the plot the pattern of first
arrivals is very similar with SV in Figure 2. Figure 3b shows that shear wave plot of
T-T polarization. There is not much time-shift of first arrivals. And it is similar with
SH curve in Figure 2. Little fhst arrival time-shift in some traces can be caused by two
transducers being unparalleled also circle 1 is randomly selected and may not be exactly
on a symmetry plane. Similar results were obtained along circle 2 and 3. Shear waves
pattern showing in Figure 3a and b indicates that this type of salt probably exhibits
cubic anisotropy.

Amplitudes are very low in the shear-wave record with R-T (or T-R)
polarization because of the low energy projection.

CONCLUSION

This study has shown that there are at least three types of anisotropic salt. A salt
layer may exhibit anisotropy, weak anisotropy, isotropy. Shear-wave feature of
chevron crystal salt matches cubic anisotropy well. Phase and group velocity equations
derived in this paper can be applied to this type of salt and any medium with cubic
symmetry. A anisotropic behavior led by a texture in salt domes when strained
thermomechanically may be close to cubic symmetry.
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APPENDIX

Phase velocity and group velocity in anisotropic medium of cubic
symmetry

In the case of cubic symmetry, only three independent stiffness have

nonzero values (Musgrave, 1970)

Cll C12 C13 C14 C15 C16] Cl1_C12_13 0 0 0]
C21 C22 C23 C24 C25 C26| _12"_'22_ C23 0 0 0/
C31 C32 C33 C34 C35 C36|_ C1_y'-'C23"'C33 0 0 0]

C41 C42 C43 C44 C45 C46|- 0 0 0 C44_ 0 0| (A-2)
C51 C52 C53 C54 C55 C56| 0 0 0 0 "C55,. 0|
C61 C62 C63 C64 C65 C66_ 0 0 0 0 0 "_C66J

From well known Kelvin-Christoffel equation, we have Kelvin-

Christoffel stiffness

3 3

FJk = Z Z ni nl Cijkl, j,k = 1,2,3
i=1 1=1

where ni is the unit vector normal to the wavefront, and cijkl is the tensor of

elastic stiffnesses.

In a medium of cubic symmetry, Kelvin-Christoffel stiffnesses are

Fll = nl2 Cll + (n_ + n_) C44

/'22 = n_ Cll + ( nl2 + n32) C44

F'33 = n_ C11 + (nl2 + n2) C44

/"12 =/-'21 = M = nln2(C44 + Ct2)

/'13 =/'31 = N = ntn3(C44 + C12)

['23 =/"32 = L = n2n3(C44 + C12)

suppose ,,1.=/9 v 2 (p is the density, v is the phase velocity), Kelvin-

Christoffel equation becomes
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M N
NM F22-X L |P2I = 0 (A-3)L F33-_] _P3]

where Pb P2, P3 are particle motion or polarization vector. In order to decide

the phase velocity we require

F22-_ = 0 (A-4)
L /'33-

So we have equation

(Fll - _)[(F22 - &)(F33 - _) - L2] - M[M(F33 - X) - LN] + N[ML- N(F22 - _L)]= 0

It becomes a cubic equation

_3 _ (Ell + F22 + F33)_L2 + (FllF22 + F22F33 + F33Fll - L 2 - N 2 - M2)X

- (FllF22F33 + 2LMN) + (L2Fll + N2F22 + M2F33) = 0

Fu +/-22 +/-33 = (n 2 + n2 + n32)Cll + 2@ 2 + n22+ n2)C44

= Cll +2C44

where n 2+n 2+n32=1

/-11/-22 + F22/-33 + F33/'H - (L 2 + N 2 + M 2)

= 2(n2n 2 + n2n322+ n3nl)Cnn222 + (n2n_ + n2n23 + n_n21)C21

+ 2(n 4 + n4 + n4)CuC44 + 2 2 2 22(nln 2 + n2n 3 + n2n2)CllC44

+ (n4 + n_ 4 2 2 2+ n3)C44- 2(nln 2 + n2n 2 + n2n21)C12C44

-(n?n+ 22 22 2n2n 3 + n3nl)C12

suppose O_=n2n 2 +n2n 2+ 22n3nl, fl = n2n22n_, then n4 + n24+ n4 = 1- 2(x.
And we have

1-'111"22+/22/'33 +/33/'11 - (L 2 + N 2 + M 2)
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= (1 + a)C424 + aC21 + 2(1-60 CllC44- a(C44 + C12)2

222
fl= nl n2n3

F11F22/-'33 = J_C_l + (0_- 3j_)C21C44 + (1+ 3]_- 200CllC24 + (0_- 1_)C34

2LMN = 2/_(C44 + C12)3

L2Fll + N2F22 + M2F33 = (C44 + C12)213/_ C11 + (a - 3]3)Cn4]

(L2Fll + N2F22 + M2F33) - (FllF22F33 + 2LMN)

= (C44 + C12)2131_Cll + (0_ - 3/_)C44] - 2]_(C44 + C12)3

- ]_C_I - ((x- 3_C121C44 - (1 + 3/3- 2a)CllC24 - (a- _C 3

We introduce three anisotropy parameters e, _, and {0 for cubic symmetry

e = (Cll - C44)2(a - _-) - a(C44 + C12) 2

co = fl[(C12 + C44)2(3Cll - 2C12 - 5C44) - (Cll - C44)31

+ _o_(Cl i - C44)(Cll + C12)(Cll - C12- 2C44) -2(Cll - C44) 3

q_= arccos[- _.3.._____]
2(-e) 3/2

52 0)3

Now, following general formulations give phase velocity of an arbitrary off-

symmetry and symmetry planes in 3-D space.

P-wave phase velocity

when 8 < 0

2_cos_° Cll + 2C44
= 3p 3 + 3p

(a-5)

SV-wave phase velocity
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2 (-f'(_cos(_O + 2if) + CI1 + 2C44vL= _ _ 3 3p
(A-6)

SH-wave phase velocity

2('_COS(_0+4_)÷ Cll +2C441)s?//
- 3p 3 3 3p

(A-7)

when _ = 0 two shear waves have same phase velocity, these points are

called shear wave singularities. The formulations can be written as

V2= (_]r_ff) _"Cll +2C44
p 3p

(A-8)

V 2=v_= 4_._ Cll +2C44
2p 3p

(A-9)

Group Velocity

In the symmetry plane group velocity can be determined from phase

velocity by using relation

v_(¢)=_(o)+f_/_
- I_dO (A-10)

Because of the symmetric feature of unit vectors nl, n2, n3, we suppose one of

the symmetry plane (others are the similar)

n]=cosO, n2=sinO, n3=O, then_X=cos2Osin20, /3=0 (A-11)

V2p= v2 c°s2(cP/3)sin2(40){Cll + C12)2(Cll - C12 - 2C44)2 (A-12)
48p2v2pe

V2v = v2sv- c°s2((¢P + 2g)/3)sin2(40) (Cal + C12)2(C11 - C12 - 2C44)2(A-13)
48p2vLe

V2 = vs_ c°s2((_°+ 4g)/3)sin2(40)(C11 + C12)2(Cll - C12 - 2C44)2 (A-14)
48p2v&e
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On those points where two shear waves have same phase velocity

(singularities), two shear waves group velocity also are the same.

V2 = v2 + (4CO)213sin2(40):r •
81p2v2(460)2 I,_--11+ C12)2(Cll + C44)2(Cll - C12 - 2C44) 2 (A-

15)

(4t°)213sin2(40), C +V 2 = V2v = v_ + "-"---7"s----_. _ x 11 C12)2(CI1 + C44)2(C11 - C12 - 2C44) 2
324p2vs_(4 w) z

(A-16)
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