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ABSTRACT

The paper studies the response to a qSH-pulse generated by a line source, of
two homogeneous half-spaces (transversely isotropic elastic or viscoelastic) separated
by a plane boundary.

For a simple model of two transversely isotropic half-spaces in welded contact,
all the arrivals including the incident, reflected, head, transmitted and evanescent
waves, that are predicted by the isotropic theory, are present. For the 15% change in
wave speeds considered here, anisotropy changes the dynamic and kinematic
characteristics of the pulses. Depending on the anisotropy factor, the change can be
pronounced. Because of the significant time shift and amplitude variation of the first
arrivals due to anisotropy, proper consideration of the anisotropy of the medium is
necessary in interpreting vertical seismic prof'des or crosshole seismic data by means of
any travel time or amplitude tomographic scheme.

INTRODUCTION

A medium consisting of homogeneous isotropic layers with flat interfaces will
appear as a transversely isotropic medium with a vertical axis of symmetry at
wavelengths longer than the layer thickness (Postma, 1955). We consider here the
problem of a qSH-pulse generated by a line source acting in a model consisting of two
homogeneous and transversely isotropic (TI) half-spaces in welded contact along a
plane boundary. A treatment of the isotropic (I) case was examined most recently by
Abramovici et al. (1989 and 1990). Sato and Lapwood (1968) treated the case of SH-
waves in a transradially isotropic cylinder.

We start by presenting the Cagniard-de Hoop solutions for two half-spaces.

This is followed by solutions in wavenumber-frequency (oy-k) space so that results
calculated by two different methods can be compared for accuracy. Synthetic
seismograms for various models are then discussed.

THE CAGNIARD-DE HOOP SOLUTIONS

Let a right-handed Cartesian coordinate system be oriented so that the positive
z-axis faces downward (Fig. 1). Two homogeneous and transversely isotropic half-

spaces characterized by densities Pi and elastic constants, Li, Ni (i = 1,2) are welded
along the (x,y) plane. A line source generating qSH-waves is located along the y-axis

* willappearin the Bulletinof SeismologicalSocietyof America,1993.
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at a height, -Zo (zo>O). The differential equations governing the particle displacement v
everywhere are

•b2vj . _2vj _2vj - 6(x) _(z + Zo) 6(t) (j =1, 2)

p) _t 2 -Nj _x 2 Lj bz 2 (1)

Ov
subjected to the initial conditions v = -- = 0 for t = 0, the radiation condition and the

3t
boundary conditions at the interface, z=O :

Vl=V2 LI_0@ = L2_22 (2)

When the receiver is in the upper half-space, we have

vl = Vd+ Vr+ Vh (3)

where the subscripts denote direct (d), reflected (r) and head (h) waves respectively.
By using the Cagniard-de Hoop method (de Hoop, 1960; Drijkoningen and Chapman,
1988; Abramovici et al., 1989), the direct arrival is:

Vd(X,Z,t) = 1 , (4)

r21
where H(O is the Heaviside step function,

r =_/x2+_lZ+Zo, 2 (5)

and the horizontal wave speed is

/3h= ff_- (6)

It is also convenient at this point to define the vertical wave speed as

#_=_- (7)

The reflected wave is

21-2 CREWESResearchRetgort Volume4 (1992)



On Ca.qniard'sProblem In TransverselyIsotropic Media

t- rl

for t > rl The head wave, if it exists, is
( Jx"

1 Im [ L171 - L2r72 I H(t- th)Vh(X,Z,t) (9)
2]r_/N1L1 __] / rl2 t2

for th < t < rl where Re[...] and Im[...] denote the real and imaginary parts of a
( h)l

complex quantity,

r/j(0 = J (fl))) Re(tlj) _>0 (j= 1,2), (10)

and

r l =_X2 +_l lZ- Zo_ (11)

The arrival time, th of the head wave is

th (_}2 + I z- Zol N1 1 1 (12)

the critical distance, Xc is

zx_=,g-_l -Zol tan 0_ , (13)

where Ocis the critical auxiliary angle

(_h)l (14)
sin Oc (fib)2

and the quantity _at any given time t in expression (10) is given, respectively, by
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5/ r_ t2,x+4  z (8:), I"1

th<t <WJJl_lF2
_"=, (15)

-tx+i'_'l lz-z°l_/,_l t2 (a,21r_
u--n,l t > r_l

rl2 (13h)1

where i2 =-1.

When the receiver is in the other half-space, the transmitted particle
displacement is

vt - 1 H(t_ to) im [T 1 I
21rL_l NI Zo _ +N2 z _ (16)

X+Llr/l(_) L2 _J'r,=t

where T is the transmission coefficient:

2Llr/1
T = (17)

Llr/1 + L2r12

"_t=-(x + TllZo+ TI2Z , (18)

and _'is the solution of the implicit equation (18) given vt = t. The arrival time to of the
transmitted wave is given by (18) at z = Zowhere Zois the negative root of the equation

N1

+ - -x . (19)

1 d 5/1 d

When N = L ( =/.t ), the solutions reduce to the isotropic solutions.

THE SOLUTIONS IN o_-k INTEGRALS

The solutions given by Eqns. (4), (8), (9) and (16) are the Green's functions.
The functions can be convolved with a band-limited source function, say, g(t), to
simulate a realistic response. The solutions can be obtained by a different route using
the Fourier transform. Following the procedure presented by Abramovici et al. (1990),
the convolved solution, _, of the problem for z < 0 is:
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_l = fo G(co) eiCOtdco _ e-"_llz+zd+Ll_l-L2"_2e'_l(Z-Zo) e-ikxdk
8_'2L1 r/1 L LI_I + L2_2

(20)
and for z>O:

_2 = fo J.. G(co) eiand¢o I 2L1 "8/r2L1 LI_I + L2_2 e -r/1 Zo-'_2z e-ikx dk , (21)

where fo is the force per unit length, per unit time, G(co) is the Fourier transform of the
source function g(t) and

_ k 2 °92 if ]k,> _h

"_- V Lj ( j =1'2) . (22)

i_ (/32_-k 2 if Ikl<

Absorption can be introduced into the media by making the velocities complex via the
Azimi's law (Abramovici at al., 1990).

DISCUSSION OF THE RESULTS

For comparison, we have chosen a TI model having /3v 10% less than/3h

(anisotropy factor F 3 =/3h//3v = 1.11) :(/3h)1 and (/3v)I are 1.0 km/sec and 0.9

km/sec for the upper half-space while (/3h)2 and (/3v)2 are 2.4 km/sec and 2.16 km/sec

for the lower half-space. The density ratio is ,o1:,o2 = 1:2. We worked with

nondimensional quantities, the scaling factors, 13for velocity, p for density, and l for

length being 2 krn/sec, 2000 kg/m 3 and 5 m, respectively. The source wavelet used to
simulate the particle velocity is the derivative of a Gaussian function with dominant
frequency of 50 Hz (Abramovici et al., 1989 and 1990). Figure 2 compares the results
for a receiver located in the same half-space as the source (Fig. 2a) and in the other

half-space (Fig. 2b). A cosine taper (0/5/230/250 Hz) has been applied to the og-k
seismograms. The good comparison confirms that the solutions [Eqns. (4), (8), (9),
(16), (20) & (21)] derived by using two different methods and numerical techniques are
correct.

Figure 3 displays the results for an I/TI model. An I/I model is used as

reference having (/3h)1 = (/3v)1 = 1 km/s and (/3h)2 = (/3v)2 = 2.4 km/sec. The

density ratio is Pl:P2 = 1:2. The I/TI models are obtained by changing (/3v)2 while

keeping the isotropic upper half space and (/3h)2 unchanged. Since the arrival times of
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the phases (incident, reflected and head waves) in the upper half-space depend on the

elastic constants of that half-space and (]3h)2 , the phases have the same arrival time in
all cases (Fig. 3a). However, for the +15% change in vertical wave speed in the lower
half-space, the effect on the reflection coefficient is minute as seen from the amplitudes

of the reflected and head waves. The incident ray angle _0 for the reflected wave is

51.3 ° and the correspondent incident phase angles 0, obtained from the ray angle

using tan 0= tan q_[see, e.g., Byun, 1982], are 42.0 ° and 59+0° for (F3)2 =

1.18 and 0.87, respectively. Since the receiver in the lower half-space is located near
the interface (3 m away), the ray path for the transmitted arrival is controlled strongly
by the horizontal wave speed. This is indeed seen on Figure 3b. The transmitted
amplitude decreases by a small amount when (F3)2 increases from 0.87 to 1.18. Even
though the direction of energy leakage of the evanescent wave is vertical (Abramovici et
al., 1989), the +15% change in vertical wave speed does not alter its amplitude
significantly. No obvious time shift of the evanescent arrivals occurs in this case. For

our next I/TI model we held (]3v)2 = 2.4 km/s constant and increased (]3h)2 by +15%

of (]3v)2 . The head wave (Fig. 4a) which travels horizontally in the lower medium

with (_h)2 is advanced 9 msec for (F3)2 = 1.15 and delayed 11 msec for (F3)2 = 0.85
as compared to the isotropic case. We attribute the change in amplitude of the head
wave mainly to the fact that the head wave of positive polarity rests on the negative
"tail" of the incident arrival, rather than to the impedance contrast. The transmitted
arrival (see Fig. 4b) which travels almost horizontally in the lower medium is advanced
11.3 msec for (F3)2 = 1.15 and delayed 14.6 msec for (F3)2 = 0.85. The transmitted
amplitude increases by 15% and the evanescent amplitude almost doubles when (F3)2
drops from 1.15 to 0.85.

Figure 5 shows the results for a Tiff model where the upper half-space is TI and
the line source generates the qSH wave disturbance. In this case, the lower isotropic

half-space has ([3h)2 = (]3v)2 = 2.4 km/s and (_h)l -- 1 kngs is held constant. The
incident waves (see Fig. 5a) arrive at the same time for all cases, since the source and
the receiver are at the same level and the difference in amplitude is due to the change of
the elastic constant L1 via Eqn. (7). The reflected amplitude increases approximately
by 25% when (F3)] increases from 0.87 to 1.18; the transmitted wave (see Fig. 5b)
decreases by 5%. However, the difference in the transmitted arrival times is as great as
28 msec between (F3)1 = 0.87 and 1.18. The evanescent wave suffers a time shift

without obvious change in amplitude. Figure 6 considers the case where (]_lv)l is fixed

while changing (]3h)1. The incident arrivals are time-shifted as expected (see Fig. 6a).
The incident and head waves arrive approximately at the same time (td = 0.294 sec and
th = 0.291 sec) for (F3)! = 0.85 and interfere constructively to amplify the positive
incident peak. The evanescent wave is advanced in time and approximately doubles in
amplitude as (F3)1 increases from 0.85 to 1.15 (Fig. 6b).

Figure 7A shows synthetic seismograms for a horizontal array of receivers.
The source and the receivers are at the same level of 100 m above the interface. The

isotropic model used has 131= 0.85 km/s and ]32 = 1.7 km/s and the TI model has

(]3v)l = 0.85 km/s, (fly)2 = 1.7 kin/s, (flh)l = 1 km/s and (]3h)2 = 2 km/s [(]3v)1 :

(]3v)2 = (]3h)1 : (]3h)2 = Pl : +02= 1 : 2]. Only the reflected amplitudes are computed.
The ray angle spans from 3° to 51 ° and the phase angle from 2° to 42 o correspondingly
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for the TI model. The critical distance is 115.5 m for the isotropic model and 135.9 m
for the TI model. The picked amplitudes are shown in Figure 7B. The relative changes
of arrival times and amplitudes with respect to the isotropic results are shown in Figure
7C. The relative change is calculated by dividing the time difference TTI - T1or the
amplitude difference AmpTI - Ampl, by TI or Ampl. In this manner, the relative
change for the same difference depends on the magnitude of the denominator and is
more pronounced for events which arrive earlier and have low amplitude. In Figure
7C, the amplitude versus offset (AVO) experiences an average of 14% difference for
the precritical arrivals while the arrival time has an approximately linear change as
expected. Figure 8A is a vertical seismic profile (VSP) with offset at 100 m. Only the
incident and transmitted arrivals are calculated. The picked amplitudes are shown in
Figure 8B with the relative changes in Figure 8C. The amplitude has an average of 9%
change. The arrival time suffers the largest change of 14% when the ray almost travels
horizontally (i.e., z =-115,-100 and- 85 m) since the maximum difference in the
wave speeds (TI versus isotropic) is along the horizontal direction.

CONCLUSION

The Cagniard's problem for the propagation of SH-waves in transversely

isotropic media is solved by the Cagniard-de Hoop method and by the og--k method.
The solutions thus derived are similar to those for isotropic media except that the
vertical coordinate is scaled by the square root of the ratio of elastic constants,.

For the 15% anisotropy considered in this paper, the time shift and AVO effect
are significant as compared to the isotropic case. Any inversion scheme which neglects
the existence of anisotropy of the media will tend to yield erroneous solution.
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Figure 1: (a) A line source of unit length along the y-axis at a height -Zo generating the
qSH-waves and the geometry of the model.
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Figure 2: Comparison of the results computed by two different methods for an elastic

TI structure. The anisotropy factor, F3, is 1.11 for both half-spaces: (flh)l and (flv)l

being 1.0 km/sec and 0.9 knv'sec for the upper half-space and (flh)2 and (/3v)2being

2.4 kx_sec and 2.16 knfsec for the lower half-space. The density ratio is PI:P2 = 1:2.
(a) The receiver is in the same half-space as the source (Zo= 100 m, x = 250 m and z =
-120 m). (b) The receiver is in the other half-space (z = 3 m). The direct, reflected,
head wave, transmitted and evanescent arrivals are, respectively, denoted as d, r, t7, t,

and e. (*) denotes the source and (V) denotes the receiver.
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Figure 3: Comparison of I/I (solid) and I/TI (dashed and dash-dotted) results obtained
by the Cagniard-de Hoop method. (a) The receiver is in the same half-space as the
source (Zo = 100 m, x = 250 m and z = MOO m). (b) The receiver is in the other half-
space (z = 3 m). The direct, reflected, head wave, transmitted and evanescent arrivals

are, respectively, denoted as d, r, h, t, and e. (*) denotes the source and (V) denotes
the receiver. The anisotropy factor for the two TI lower half-spaces are (F3)2 = 1.18

(dash-dotted) and 0.87 (dashed) respectively while keeping (l_h)2 = 2.4 km/sec
constant.
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Figure 4: Comparison of IB (solid) and I/TI (dashed and dash-dotted) results obtained
by the Cagniard-de Hoop method. (a) The receiver is in the same half-space as the
source (Zo =100 m, x = 250 m and z = -100 m). (b) The receiver is in the other half-
space (z = 3 m). The direct, reflected, head wave, transmitted and evanescent arrivals

are, respectively, denoted as d, r, h, t, and e. (*) denotes the source and (V) denotes
the receiver. The anisotropy factor for tile two TI lower half-spaces are (F3)2 = 1.15

(dash-dotted) and 0.85 (dashed) respectively while keeping (fly)2 = 2.4 knv'sec
constant.
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Figure 5: Comparison of I/I (solid) and TI/I (dashed and dash-dotted) results obtained
by the Cagniard-de Hoop method. (a) The receiver is in the same half-space as the
source (Zo = 100m, x = 250 m and z = -I00 m). (b) The receiver is in the other half-
space (z = 3 m). The direct, reflected, head wave, transmitted and evanescent arrivals
are, respectively, denoted as d, r, h, t, and e. (*) denotes the source and (V) denotes

the receiver. The anisotropy factor for the two TI upper half-spaces are (F3)1 = = 0.87

(dash-dotted) and 1.18 (dashed) respectively while keeping (/3h)1 = 1.0 km/sec
constant.

CREWES Research Report Volume 4 (1992) 21-13



Le

(a)
0.025 , -- .... (F3)I = 1.15 _

d (F3) 1 = 1.0
0.02 ,_

' (F3)/ = 0.85
0.015 _', ::q ,

i i ]l i i (fiv)l = 1.0km/sec = constant
0.01 _i

"_ 0.005 i i ,_,

• bl , ', ..__.
;>" _ _ "_f'z_!i_Z"_' !i "C, 0 _ : ...... ,

-0.005 ./ ,
* V_/ , ,,

I:_ -0.01 ,,_,,;

-0.015

-0.02 l"

-0.025

(b)

2.5 ,_,

i,it

1.5 i

c)
0

-d o.5

051,\ '
i

-1 TI "_ " e

-1.5 I '"""_ V
t

-_.15 0.2 025 o,3 o._5 o14

Time (s)

Figure 6: Comparison of I/I (solid) and TI/I (dashed and dash-dotted) results obtained
by the Cagniard-de Hoop method. (a) The receiver is in the same half-space as the
source (Zo = 100 m, x = 250 m and z = -100 m). (b) The receiver is in the other half-
space (z = 3 m). The direct, reflected, head wave, transmitted and evanescent arrivals

are, respectively, denoted as d, r, h, t, and e. (*) denotes the source and (V) denotes
the receiver. The anisotropy factor for the two TI upper half-spaces are (F3)1 = 1.15

(dash-dotted) and 0.85 (dashed) respectively while keeping (fiv)l = 1.0 km/sec
constant.
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Figure 7: (A) Synthetic reflected amplitudes for a horizontal array of receivers located at

the same level as the source (Zo = 100 m, z = - 100 m and Ax = 20 m). The solid

curves are for an I/I model: fll = 0.85 km/sec and/32 = 1.7 km/sec. The dashed curves

are for a TI/TI model: (_v)l = 0.85 km/sec, (13h)1 = 1.0 km/sec, (fly)2 = 1.7 km/sec

and (fib)2 = 2.0 km/sec. The densities are RI:P2 = 1:2. (B) Plot of the reflected
amplitudes versus offset for the I/'I model (solid) and the TI/TI model (dashed). The
amplitudes are scaled by the absolute amplitude of the first trace in the I/I model. (C)

The relative change in the arrival times, T'n/frl-Till (solid) and the reflected
TI/I

amplitudes, Amp'n/[n - Ampx 11 (dashed) versus offset.
Ampl /1
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Figure 8: (A) Synthetic seismo_ams of a vertical seismic profile for an I/I model

(solid): ]3/ = 0.85 krrdsec and ,62 = 1.7 km]sec and a TI/TI model (dashed): (]3v)1 =

0.85 km/sec, (flh)l = 1.0 km/sec, (_v)2 = 1.7 km/sec and ([3h)2 = 2.0 km/sec. The

densities are Pl:P2 = 1:2. Only the incident and transmitted arrivals are calculated. The

parameters are Zo = 100 m, x = I00 m and z_z= 30 m). (B) Plot of the amplitudes
versus depth for the IB model (crosses) and the TI/TI model (circles). The amplitudes
are scaled by the absolute amplitude of the first trace in the I/I model. (C) The relative

change in the arrival times, Trl//TI-TIll (stars) and the reflected amplitudes,
Tilt

AmpT//rn-Amplll (circles) versus depth. The incident and transmitted arrivals are
Am. PII/

denoted as (d) and (t) respectively.
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