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ABSTRACT

Mendel's state space model using equal time layers has been expanded to
include both P and S body waves. The method involves running two simultaneous
equal time models, one for each wave type, and injecting the convened wave energy
between the models. The speed and flexibility advantages of equal-time or Goupillaud
models appears to have survived this adaptation. Evanescent (all interracial) waves are
absent in this method.

INTRODUCTION

The wave equation describes the propagation of plane waves within
homogeneous layers as simple time delays. When the wave front impinges on an
interface, the boundary condition along with the wave equation specifies a partitioning
of the wave field. This naturally gives rise to the definition of reflection and
transmission coefficients. Imposing the constraint of having interfaces at discrete equal
time intervals results in the Goupillaud model. This model has been studied by many
researchers (Hubral et. al., 1980), who use this to study the spectral models of a
layered Earth system. Their studies are based on the z-transform. Mendal (1979)
proposed a different formalism based on the state-space model. It is this method which
has been expanded upon here. The reason for using the state-space approach is the ease
by which more sophisticated processes can be implemented, such as absorption
(Aminzadeh, 1983), isolation of multiples (Aminzadeh, 1980), and the inclusion of P
and S waves within the Goupillaud model. The time domain also appeals more directly
to the intuition.

THEORY

Traditional Non-Normal Incident Goupillaud Model

Consider horizontally layered elastic media bounded above and below by a half-
space, either or both of which can be vaccums (figure 1). Within the i th layer, we
assume the existence of up (ul) and down (di) propagating particle displacements with
plane phase fronts. When these disturbances impinge on an interface, the energy is
partitioned into up and down going P and S waves (action figure 2). From this
partitioning, reflection and transmission coefficients are defined at an interface.
Modifying Aminzadeh and Mendel's (1982) notation, it is assumed that at time t the
downward propogafing disturbance has reached the bottom of layer i (DPi(t), DSi(t ) ),
and the upward propagating disturbance has reached the top of layer i (USi(t),
UPi(t ) ). Additionally, the following disturbances are deemed:
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UP;(t) = UPi(t+xi) =-upward going disturbance at the bottom of layer i,

DP;(t) = DPi(t+xi) =- downward going disturbance at the top of layer i,

Where x i is the traveltime of layer i. These disturbances are assumed to occur at a fixed
point in time. Using the transmission and reflection coefficients we can relate these
wavefields to each other by:

DPi'+](t ) = R_PPuPi+I(t ) + R.b,SPusi+I(t) + TtPPDPi(t) + TtseDsi(t) , (la)

DS_+1(t) = RbeSuPi+l(t) + R.b,SSusi+a(t) + T[eSDPi(t) + T[sSDsi(t) , (lb)

UP;(t) = R[PPDPi(t) + RitSPDSi(t) + TibPPuPi+I(t) + TIbSPusI+I(t) , (1 c)

and

USi(t) = R[PSDPi(t) + RitiSSosi(t) + T[PSuPi+ 1(t) + TbSSusi+ l(t) . (1 d)

The reflection and transmission coefficients with b in its superscript indicate
partitioning of the wavefield as viewed from the bottom of an interface, and those with t
in its superscript indicate partitioning of the wavefield as viewed from the top of the
interface. The first uppercase superscript indicates that incident wavetype and the
second the scattered wavetype.

Interface i- 1

Layer i

Interface i

Layer i+1

Figure 1: Horizontally layered elastic media

These energy partitioning equations apply to plane waves within arbitrary
horizontally layered models. The Goupilllaud models are models in which the travel
times in all layers within a model are constant. By the device of interfaces with zero
reflection coefficients and unit transmission coefficients, the approximation to a true
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depth model can be approached to any degree of accuracy by making the travel time in
each layer small.

In plane layers with plane waves the wave parameter, p = sin(0)/V is constant
by SneU's law and therefore the traveldme for each wavetype is constant within a single
layer. But, the P and S wave travel times through a given layer differ from each other.
This prohibits the use of a single GoupiUaud model for modelling both wave types. It is
important to note that the equations thus far deal with the entire wavefield within a
single model, while the numerical scheme that is implemented separates the P and S
wavefields into two separate Goupillaud models.

Coupled P & S Wave Goupillaud Models

The method used here to accommodate the differing P and S traveltimes is to
run separate Goupillaud models for the P and S waves. These models are
approximations of the true depth model. The approximation is accomplished by
representing the travel time in the i th depth layer as an integral multiple of a small
constant time increment, At. This approximation constrains the Vp/Vs ratio within each
layer of the coupled Goupillaud models to be a rational number. Since rational numbers
are dense in the reals, we can achieve any degree of accuracy desired by reducing the
time increment At. The transformation from the true depth model to the coupled
Goupillaud models is shown in figure 2. Note, however, that the coupled Goupillaud
models represent an exact depth model which differs slightly from the original.

DepthModel PModel SModel
•................-....-...- ::::::::::::::::::::::::::::::::::::::::::--

!!!! vsvy :.::,:: :,::::.::: :::.:+:.:::

:::::::::::::::::::::::::::::: :.................................._ ii-sl ..............i::iiii:
:::::::::::::::::::::::: _1.

::::::::::::::::::::::::::::::::::::::

\
\
\
\
\__

Figure 2: Transformation of depth model to P and S wave Goupillaud time models

The rules to transform the i th depth layer having P velocity Vie and S velocity

VS and thickness hi resulting in compression and shear travel times 'c,(' and "_,$
respectively into the two equal drne models are:

n_ At = "_ , (2)

and

n_ At = "c_ (3)
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where nip and n_ are appropriate integers that minimizes the approximation for a given

At. This procedure introduces a time error for both P and S wave travel-times in the
i th layer given by:

_P = "_P- nP At (4)

and

kS = "c_- n_ At , (5)

respectively. The total number of time layers within the two Goupillaud models will be:

N

Me = Z niP, (6)
i=1

in the P wave Goupillaud model, and

N

Ms=Y,ns,
i=1

for the shear wave Goupillaud model.

As stated previously, upward propagating disturbance is assumed to have reached the
top of layer i and the downward propagating disturbance is at the bottom of this layer
at discrete time indicies. The wavefields designated with a prime are, by our
convention, the same as the unprimed wavefields within the same layer advanced in
time in the following manner:

i

DPI j = OPi j+l, (8a)
t

DSi j = DSi j+l , (8b)

UPi j = UPi j+I , (8c)

and

t

USi j = USi )+1 , (8d)

where the index j represents a discrete time variable with unit time step, and therefore

t = j At . The relationships (8a-d) allows equations (9a-d) to be rewritten in their
discrete form and separated into converted and non-converted modes as:

** b** ,
U*i+I,j+I=R_ D*i+l,j+Ti U i,j , (9a)

b** , t**
D*i+l,j+ 1 = R i U i+l,j + Ti D*i,j , (9b)

and for the converted waves:

UOi+l,j+ l = R_*OD*ij + Tib*C_U*i+l,j (9c)

and
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DOi+1,j+1= Rb*Ou*i+lj+ Tt*OD*i,j (9d)

Equations(9a),(9b),(9a)and(9b)explicitlygivethestateattimeindexj+lintermsof
the states at time index j for all layers i ; therefore, these equations provide a means to
generate all the states in all the layers from some given initial state at an initial time
index. The symbol * represents the state within a single Goupillaud model and the 0
symbol represents the converted state which must be added to the coupled Goupillaud
model at the same time and appropriate layer. The reflection and transmission
coefficients are calculated from the Zoeppfitz equations (Aki and Richards, 1982). This
provides all the necessary theory to generate full P and S body-wave synthetic
seismograms within the GoupiUaud framework.

Synthetic Seismogram Examples

The following simple model was used to demonstrate the algorithm. The model
consists of three layers with the following parameters:

Depth (m) Vp(m/s) Vs (m/s) Density (kg/m 3)
0 4000 2100 2450

1200 4500 2700 2650
3000 5400 3100 2700

Figures 3 contains the synthetic seismic sections for the horizontal and vertical
displacements associated with this model. The synthetic was generated with a P-wave
source located on the surface and receivers at even depth intervals. Note the reflected up
going P wave energy as well as the converted up going S-wave at the first interface.
Further down in time the evidence of multiple energy of both wave types is clearly
shown. The surface interface was defined as being a perfectly elastic reflector with no
mode conversion taking place.

VerticalComponent HorizontalComponent

=

Time (ms) 1000 2000 0 ms 1000 2000

Figure 3: Vertical and horizontal VSP sections

Run Time Considerations

One of the major reasons for the development of this method of modelling is the
speed at which the algorithm runs. For a 1200 layer Goupillaud model, a two second
synthetic seismogram was generated on a Sun Sparcstation II in 23 seconds. Due to the
nature of the algorithm, the code is highly parallelizable and therefore could easily t_e
advantage of modem parallel computers.
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Possible Enhancements

The state space framework allows many easy to implement enhancements; some
of these are the ability to generate primaries only seismograms as well as seismograms
with any particular multiple, this is called Bremmer decomposition (Aminzadeh and
Mendel, 1980). Absorption can also be incorporated (Aminzadeh and Mendel, 1983).
To more closely match real data the plane wave synthetic seismograms can be combined
to form line or point source seismograms (Aminzadeh and Mendel, 1982). The
seismograms can also be generated at any offset.

CONCLUSION

A simple adaptation of the Goupillaud model has been implemented to generate
full P and S wave synthetic seismograms. The advantages of speed and adaptability of
the Goupillaud model has been largely inherited intact. The synthetics generated by this
method are shown. Possible enhancements have been suggested and are easily
implementable within the statespace framework.
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