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ABSTRACT

A complete solution based on wavenumber-frequency (_o-k) method for a
buried point source in a homogeneous transversely isotropic elastic or anelastic half-
space is presented. By means of the method of steepest descent, a high frequency
approximation to the nongeometrical S* wave in a weakly anisotropic elastic half-space
is also developed. Full-wave synthetic seismograms with a buried vertical point force
and an explosive point source show the existence of the S* arrival in the anisotropic
Austin Chalk (weakly anisotropic) and Gypsum Soil (strongly anisotropic). However,
the nongeometrical S* arrival is much more prominent in the weakly anisotropic solid
than in the strongly anisotropic solid.

INTRODUCTION

In a numerical experiment to a perfectly elastic, homogeneous, isotropic half-
space problem, Hron and Mikhailenko (1981) detected a strong nongeometrical arrival
S* for an explosive point source buried shallowly below the free surface. The
existence of the S* arrival is prominent when the source depth is less than one

wavelength and the angle q_which the S* ray makes with the free surface is greater than

_0*=sin-l(/3/tz) where a and /3 are, respectively, the phase velocities of the
compressional and shear waves in the isotropic half-space. The S* wave was
interpreted physically to be generated at the free surface above the source due to the
interaction between the free surface and the inhomogeneous waves making up the
spherical compressional wavefronts radiated by the source. The S* wave, propagating
with a shear wave speed of the isotropic solid, possesses most of the characteristics of
a body wave, e.g., linear polarization, transverse l?'article motion (Daley and Hron,
1983a) and are, therefore, subject to reflection and transmission at the interface (Daley
and Hron, 1983b).

I-Iron and Mikhailenko (1981) associated the S* arrival with a secondary
saddle-point contribution to the integral representing the reflected shear wave from the
free surface. Daley and Hron (1983a) later derived a saddle-point approximation to the
S* arrival in a half-space and further extended the development to a transmission
problem of two perfectly elastic, homogeneous, isotropic half-spaces (Daley and Hron,
1983b). In recent years, the existence of the S* wave has been favorably supported by
field data (Gutowski et al., 1984) and experimental data of physical modeling (Kim and
Behrens, 1986).

Transverse isotropy (TI) with a vertical axis of symmetry assumes azimuthal
isotropy and is commonly observed in sedimentary basins consisting of shale-like or
clay-like layers. Unlike in isotropic medium, phase velocity and ray velocity at which
energy propagates are different and depend on direction in TI medium (Figure 1).
Wave surface is an important concept in TI medium. Especially in severe anisotropic

CREWESResearchReoort Volume5 (1993) 19-1



Le and Krebes

solid, SV wave surface has cusps and triplications indicating multiple arrivals at a
particular direction. Measurements from borehole seismic (Uhrig and Van Melle, 1955;
White et al., 1983) have shown that the wave speeds in the horizontal direction can be
20-40% higher than along the vertical direction. Studies of wave propagation in the TI
solid are abundant (Stoneley, 1949; Postma, 1955; Backus, 1962; Crampin and Taylor,
1971; Daley and Hron, 1977; Sprenke and Kanasewich, 1977; Berryman, 1979;
White, 1982; Byun, 1984; Helbig, 1984; Levin, 1989; Schoenberg, 1993; Krebes and
Le, 1993). Perhaps, the first report on the observation of the presence of cusps in field
data was presented by Slater et al. (1993) in their study of a uniformly plane layered
clay reservoir in the Juravskoe oil field in Russia.

Shear wave such as the S* is extremely useful to investigate the anisotropic
effects. Martynov and Mikhailenko (1984) used a hybrid method combining integral
transform and finite-difference to solve a wave propagation problem in an
inhomogeneous transversely isotropic half-space due to a point source including an
explosion; however, no obvious example was given to demonstrate the existence of the
S* wave. In this paper, we extend the investigation of the S* wave to a homogeneous,
transversely isotropic half-space. The wavefronts in a transversely isotropic solid are
curved but not spherical and an explosion produces both the quasi-compressional (qP)
and quasi-shear (qS) waves (Stoneley, 1949; White, 1982; Martynov and Mikhailenko,
1984; Abramovici and Le, 1993). A numerical investigation on S* wave in a
homogeneous lransversely isotropic half-space will be presented. This is followed by
deriving a high frequency approximation to the S* wave in a weakly anisotropic elastic

half-space. A complete wavenumber-frequency (co-k) solution to the Lamb's problem
provided in the Appendix will conclude the paper.

DISCUSSION OF NUMERICAL RESULTS

We consider a vertical point force acting within a homogeneous TI half-space.
The homogeneous TI medium is an Austin Chalk. The phase and group velocities of
Austin Chalk are shown in Figures 3a-b. The anisotropy factor (AF) measured by

f(_ - f(7=O) x 100%
AF [f(_] = f(_ + f(y=O)

(1)

(Carcione, 1992), where Tis either the phase or group angle from the symmetry axis
(Figure 1) andfis the corresponding phase or group velocity function, is displayed in
Figures 3c-d. The source function g(t) used to compute the synthetic displacement
seismograms is a first time derivative of a Gaussian function (Abramovici, Le and
Kanasewich, 1989). The dominant frequency used is 35 Hz and dominant vertical qP

wavelength Z is 72 m. Minor attenuation (Q = 400) is also applied. Elastic results can
be simulated, if desired, by using the complex frequency technique (Mallick and
Frazer, 1987).

The effect of source depth on the generation of the S* wave is shown in Figure

4. A single receiver is placed at an offset of 12.,1,and a depth of 3Z. The source depth

ranges from 0.1_ to 0.7,,1.. Only qP and converted reflection qP-qS are computed.
The S* wave is stronger at shallow source depth and has larger vertical than horizontal
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amplitudes. As the source depth increases, the S* arrival decays rapidly and disappears
after 0.3 _, in the horizontal motion. Rayleigh wave is visible after the S* arrival at h =

0.1 - 0.2 ,_. Next we place a source at 0.1,,1,deep and a receiver at a fixed offset of 12,_,

but vary the receiver depth from 0 A to 7 _. The vertical and horizontal motions are
shown in Figure 5. At shallow receiver depth, Rayleigh wave dominates and follows
closely the S* wave, producing a complex waveform of high amplitude. Rayleigh
wave becomes separated from the S* wave at z = 3 _ where the horizontal motion

changes polarity around 0.83 s. From z = 3X onwards, the amplitude of the S* wave
increases with depth. Figure 6 shows the response of an array of receivers at a depth

of 3 _. The source is buried 0.1 jl, deep and the offset starts from 1 _ to 16 ,,1,. The

S* wave separates itself from the converted reflection qPqS around 6 ,l, corresponding
to a ray angle of 63.40. The vertical motion of the S* wave is much stronger than the
qPqS arrival and persists its existence throughout the offset range. The S* wave is
subject to reflection, transmission and mode conversion if an interface is encountered.

Radiation pattern of the S* wave can be synthesized from the vertical Sz and
horizontal Srdisplacements based on the following rotational operation:

UR = sr sin (_) + sz cos (_)

=srcos s,sin (2)

where UR and UTare the radial and transverse displacements and _ is the ray angle.
Note that both UR and UT are confined in the saggital plane (a vertical plane containing
the source and the receivers). We place nine receivers evenly around a circular arc
starting at 5° from the vertical axis. The radius of the arc is 13 X and the center, where

the vertical point force is located, is 0.1 _ from the free surface. Figure 7 shows the
synthetic radiation pattern of the S* wave. The polarization vector of the S* wave has
both the radial and transverse components but the latter is stronger. The converted
qPqS wave merges with the S* arrival around 35°. The S* wave exists in a region
bounded below by a distinct or critical angle. At angles smaller than the distinct angle,
the S* wave does not exist. The distinct angle can be approximately obtained by
finding the angle at which the reflected qPqS wave and S* wave meet. In this case,
35 ° is a good estimate. Rayleigh wave is visible at 85° in the transverse motion.
Superimposed on the arrival is the arrival time of the direct qS arrival from the source.
At small offset and large depth, the qP leg of the raypath for the converted qPqS arrival
is insignificant since the source depth is shallow and the arrival time can be
approximated by the qS arrival. Also around this range, the distinct angle is not
reached and the S* arrival is not present. However, at large offset where the distinct
angle is reached, the qP leg of the raypath for the S* wave is negligible and thus the
arrival can be determined approximately by the qS arrival time. Figure 8 shows the
radiation pattern of the S* wave for the same model configuration but with an explosive
point source. The source function in this case is a second time derivative of a Gaussian
function. The S* wave is visible in both components.

Finally, we consider a strongly anisotropic solid, Gypsum Soil. The phase and
group velocities are given in Figure 9. The dominant vertical qP wavelength in
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Gypsum Soil is 54 m. Note that the wave surface of qS wave has cusps and

triplication indicating multiple arrivals between 15° to75 ° ofray angles. Figures 10
and 11 show the radiation patterns of the S* arrival for the vertical point force and an
explosive source. Attempt to find the distinct angle where the converted qPqS wave
and the S* wave meet is difficult. However, it is fairly confident to say that at small
ray angles, the qPqS arrival is present and at large ray angles, the arrival is the S*

wave. The nongeometrical arrival is strong within a very narrow range above 60 °.

The high amplitude at 75 ° is due to the merging of two separate S* arrivals at the cusp.

The nongeometrical arrival at 85 ° is not predicted by the simple ray theory. As a
comparison with the results in Austin Chalk, the nongeometrical S* arrival generated
by the free surface of Gypsum Soil is weaker. Rayleigh wave seems to be absent in
Gypsum Soil but it is not conclusive since only the qPqS term is computed. The
contribution to the amplitude of the Rayleigh wave also comes from the other terms of,
say, (A.9).

S* RAY IN A WEAKLY TRANSVERSELY ISOTROPIC SOLID

In the following, we consider the S* wave generated by a point source buried
at a shallow depth h below the free surface. The solid is a homogeneous transversely
isotropic half-space with a vertical axis of azimuthal symmetry. The medium is a
weakly anisotropic medium, whose qS slowness surfaces are convex, i.e., no cusps or
triplications exist on the qS wave surfaces. Similar to its isotropic counterpart (Daley
and Hron, 1983a), the S* arrival in a transversely isotropic solid can be obtained by a
secondary saddle-point approximation of the full wavefield of the reflected qP-qS

wave. For z > h and a monochromatic frequency co, the vertical and horizontal
displacements of the qP-qS reflection are (see Appendix A) :

Re f/ Q(k) k ei_°t- _P h- _qszJo(kr) dkSz(r,z,t)
dO

(3)
and

1 Re f0 Q(k) Bqsjo(kr) e i¢o,_qeh_qsZ aks,(r,z,t)= k (4)

where Q(k) characterizes the strength of the source and the qP-qS reflection coefficient:

Q(k) =- al(k) RqpqS _qS"

(5)

In order to evaluate Sz, we represent Jo by the zeroth order Hankel function of
the second kind. For kr >> 1, the Hankel function is asymptotically given by
(Abramowitz and Stegun, 1972):
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H_2)(kr)~ _ _ e-i( kr-_ )
(6)

With (6) and the following substitutions

k=wp, _=iwrl

(7)

where p and 7/are the horizontal and vertical slownesses, equations (3) can be rewritten
as

[ }Sz(r'z't)~Re_ 4. 42¢0_r f_** Q(P) -io_o,,h+oaf(p)d--F-e p dp

(8)
where

f (p )=-i( pr + rlqsZ)=-i'c(p ) .
(9)

We use the method of the steepest descent to evaluate the integral (8) but limit
ourselves to the S* arrival, ignoring the qP-qS reflection. To achieve the goal, we
distort the original path of integration away from the real axis into the complex p-plane
so that a small range ofp values around the saddle point p = Ps contributes significantly
to the integral. Around the saddle point p = Ps given by

df(p) =0

dp (10)
or

d rlqs(P )

p = p, " I r = tan ¢dp = Oqs(P) p=p =T
(11)

where _bis the ray angle (Figure 2), the integrand except e _of(p ) varies much slowly
and therefore can be approximated by its value atp = Ps, i.e.,

{ ei(O_t+¼}Sz(r'z't)-Re 4_- 2V]_r_rr[ Q(P)_ff-e-iWo'eh P]P=Ps f" e wf(p) dp

(12)
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where f_ is the distorted complex path of integration (see e.g. Daley and Hron, 1983a

for isotropic case). It is also true that e-iC°_Ph is a decreasing exponential with

depth h since 1/Cqp< Ps < 1/Cqs and Im ((qe) < 0 where c is the phase velocity.
Nearp = Ps, one can write

p-ps=t_eix for -_<e<_
(13)

and

1 "
f (p ) - f (ps) + _ f (ps) e2 e 2 iz .

(14)

In terms of e,

Sz(r'z't)-Re_ _ 2V_r [ Q(P) e-i_°(°_eh+z(P))[_ P]p=ps

(15)

where

gt(p )= _ f"(p ) e2iZ
(16)

Following DeSanto (1992), expression (15) can be simplified as

( O)eic°t ei{sgn[Im{f'(P'))]+l}¼ 1Sz(r,z,t) - Re 2/r dg

Q(p) e_i_o{rl,,h+z(p) } [ImLf P12]l7 [ f'(p ) p=p

(17)

where the sign function is used :
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1 forx>O
sgn(x) =

-1 forx<O (18)
provided that

tan( 2 z,)=_Im[ f"(P,)][f"(p,)] (19)

which makes Im[_ps)] vanish. Making use of the relation

r=Rsin(¢) and z=Rcos(q_),
(20)

with R = '/mr2 + z2 , we obtain the following asymptotic expressions for the S* arrival

o) { ei°)[t-z(P,)] )Sz(r'z't) - f-if" zc Re ttJ( Ps ) R Ps

(21)

where

hU(p)= _1 Q(P)_e-" f°rlqeh ei{sgn[lm(e-lm'z_lqs)]+l}-_ I Im [e-'"ar/_s][1_qS'"12

(22)

Similarly, the horizontal displacement can be easily obtained by taking the
differentiation of the asymptotic expression

1 Re{tlJ(Ps) /_ _ eir°[tRz(P,)] }Sz(r'z't) _ Jr _
(23)

where
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fit = p - p2 L - C rl2s

( F + L ) (24)

Thus

(-9 (_ eit°[t-x(P,)] _.__ +O(e_2) )Sr(r'z't) ~ - _ lr Re ( Ps ) R TlqS
(25)

CONCLUSIONS

We applied the wavenumber-frequency (og-k) technique to compute full-wave
synthetic seismograms for a homogeneous transversely-isotropic half-space. The
method has the merit of producing complete seismograms including geometrical and
nongeometrical arrivals for a particular model. The source is either a vertical point
force or an explosive point source. Numerical simulation for two anisotropic solids
demonstrated the existence of the nongeometrical S* arrival. However, the less
anisotropic half-space generates much stronger S* wave. This seems to suggest,
inconclusively in this paper, that isotropy produces the strongest nongeometrical S*
arrival.
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APPENDIX A : COMPLETE SOLUTIONS FOR A BURIED SOURCE IN
A HALF-SPACE

The problem was formulated in the wavenumber-frequency space where we
seek the displacement-stress vectors describing the wavefields in a homogeneous
transversely isotropic (TI) solid with a vertical axis of symmetry coinciding with the z-
axis (Fig. 2). Since cylindrical symmetry is assumed for the medium and the source,

the transformed displacement-stress vector u = [ w(z), q(z); W(z), Q(z) ]T in (m-k)
space where T is the transpose of a vector are :

Bqp + BqS
k

(Uqe)±= e ±_Pz and (Uqs)+= -_qS e±(_s z
+ CqSk

Cqp _

+-DqPk(qP ; Dqs

(A.1)

where the subscripts qP and qS denote quasi-compressional and quasi-shear components
of the wavefields, the plus and the minus signs describe the upgoing and downgoing
wavefields respectively,

vo_-k2c +c(,;qp)2 ; _- k_L+c(Cqs)2
Bqe = F + L ' Bqs = F + L

-F(pa_-kZL)+LC((qp) 2 -F(pco2-k2L)+LC((qS) 2
Cql" - F + L Cqs = F + L '

L[pgo2+k2F+C(_qp) 2] L[po)2+k2F+C(_qS) 2]
Dqp = F + L and Dqs = F + L

(A.2)
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The quasi-eigenvalues _qp and _qS are given by

(A.3)
and

)"2
(A.4)

where

L A I C L-I CL
, (A.5)

(A.6)

and only eigenvalues in the first quadrant of the complex _-plane are used to ensure
radiation condition is satisfied. Note that the eigenvectors given by (A.1) govern the
propagation of the wavefields in a homogeneous TI space and are determined up to a
multiplicative constant. Their singularities can be removed by multiplying with k and

_qS respectively. However, the present expressions are preferred since they reduce to
the isotropic eigenvectors when the elastic constants are isotropic (Abramovici, 1992).

The vertical displacement Sz and horizontal displacement Sr can be written in
terms of a double Bessel-Fourier integrals:

Sz(r'z't)= 2 _2 Re f£ G(o))e 'c°tdo) fo So(o),k,zs)Jo(kr)kdk
(A.7)

and

s,rzt :2 Ref° °
(A.8)

where G(O)) is the Fourier spectrum of the time dependence of a causal pulse g(t), k,

the horizontal wavenumber, co, the angular frequency, Jo and J1, the zeroth and first

order Bessel functions. The response functions S0 and "_1are a linear combination of
the displacement components corresponding to the incident and reflected wavefields
and Re(...) stands for the real part of a complex quantity. The unknown coefficients of
the response functions can be determined by imposing boundary conditions on the
displacement and stress components at the source level and the stress-free surface.
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Depending on whether the receiver is above or below the source level (Zs = h). the
response functions are given as follows:

("¢O)z<h =al ( _'qe e -(M z-h I + _qe Rqpqp e-_qe(z+h) _ _qS RqPqS e-_h-#,,z }

+ a2{k e-_sl z-hi + _qp Rqsq P e-#_sh-#ql.z -k Rqsqs e-_q s(z+h} },

(A.9)

(30)z>h =--a3 :qP e-#,,Iz-h I +a 1( :qp Rqpqp e-(,,(z+h) - :qS RqPqS e-;"h-#"_ }

+a4ke-_ M z-hi +a2{ _qp Rqsq P e-_sh-_ez -k RqsqS e-_q s(z+h) },

(A. 1O)

(_l)z<h =al{-B--_e-',.*lz-hl-_Rqpq, e-_e(z+h) +_--Rqpqs e-',._h-_ z }

( BqSe-_slz-hl Bqp _qsh-_qeZ BqS D e-_qs(z+h)+ a2 _qS T RqsqP e - + _qS nqSqS

(A.II)

('l)z>h =a3_e-',elz-hl +al (-_Rqpqp e-_,e(z+') +B--_-_RqgqS e-',_'h-_,sz )

f Bqp
R,,

I_- h I e__,sh__qe z + -qa _ e-_,s(z+h)

-- a4 _ e- + a21- ---k-MqSqP _qS HqSqS

(A. 12)
where

Cqp Oqs _qS + Cqs Dqp _qp

Rqpqp = Cqp Dqs (qS - Cqs Dqp (qp ' (A.13)
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2 Cqp Dqe _qp

RqPqS - Cqp Dqs (qS - Cqs Dqp (qp ' (A.14)

2 Cqs Dqs k

RqsqP = Cqp Dqs _qS - Cqs Dqp _qp " (A.15)

_qSqS = Rqpqp

(A.16)

and the unknown coefficients (al, a2, a3 and a4) are determined by the source type: a
vertical point force or an explosive point source.

There are six terms in Eqns (A.9)-(A.12): the first term denotes an incident qP
arrival, the second, a reflected qP-qP arrival, the third, a converted reflected qP-qS
arrival, the fourth, an incident qS arrival, the fifth, a converted reflected qS-qP arrival
and the sixth, a reflected qS-qS arrival.

For a vertical point force, the coefficients al, a2, a3 and a4 are

p
a I =- a3 =fo 2C(p(02_k2L)l(Copi2_(C.si2] (A.17)

and

a2 = a4 = -fo (qs P w'2- k2 L + C ((qe)2

k 2C(pol2_k2L)[(Cqp)2_(_qs) 2 ] (A.18)

where fo is the force per unit area per second. For an explosive source, they are
(Abramovici and Le, 1993):

fo k2(F + 2L)-pco2-c (Zs

at = a3 = (qp 2 C ((2qe - (q2S) (A. 19)
and

fo k:(F + 2L)-PC°2-C _q_

a2 = - a4 = k 2 C (_-2p_ _-q2S) (A.20)

wherefo is the strength of the source dictating the volume of the material injected per
second.

CREWES Research Reoort Volume5 (1993) 19-13



Le and Krebes

L
0

wavefront
(r,z)

Z

Figure 1: A schematic diagram showing the relationship between the phase and ray
angles for a homogeneous transversely isotropic elastic solid. Line L is tangent to the

wavefront at point A. 0,_ denotes a ray with ray angle ¢ and OB', a phase vector

_ with phase angle O.
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0 _r

source R

\
V

receiver

Z

Figure 2. A buried source in a homogeneous transversely isotropic half-space. _bis a
ray angle.
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Figure 3. Phase (...... ) and group ( ) velocities of Austin Chalk. The
parameters are A = 22.0x1010 dynes/cm 2, C = 14.0x1010 dynes/cm 2, F = 12.0x10 l0

dynes/cm 2, L = 2.4x1010 dynes/cm 2 and p = 2.2 g/cm 3. (a) qP wave velocity, (b) qS
wave velocity, (c) anisotropy factor of qP wave and (d) anisotropy factor of qS wave.
The angles are phase angles for phase velocity and group angles for group velocity
accordingly.
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S* wave in transversely isotropic solid
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Figure 4. Synthetic displacement seismograms showing the effect of source depth on

the generation of the S* wave for a single receiver at a fixed location ir = 12 A,and z =

3 ,_ ). The source is a vertical point force. The amplitudes are scaled by a factor of
2.0E8.
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Figure 5. Synthetic displacement seismograms showing the effect of receiver depth on

the amplitude of the S* wave for a single source (Zs = 0.1 _ ) at fixed receiver offset (r

= 12 ,_). The source is a vertical point force. The amplitudes are scaled by a factor of
2.0E8 except the first trace of vertical motion which is scaled by a factor of 2.0E7 for
display purpose.

19-18 CREWES Research ReDort Volume5 (1993)



S* wave in transversely isotropic solid
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Figure 6. Synthetic displacement seismograms for a horizontal array of receivers at a

depth of 3 ,,1,with offset ranging from 1 ,f,to 16 ,,1,.The source is a vertical point force

buried 0.1 3, below the free surface• The amplitudes are scaled by a factor of 5.0E7.
The dashed curve shows the arrival time o[ the direct qS arrival from the source.
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Figure 7. Synthetic radiation pattern showing the effect of direction on the generation

of the S* wave in Austin Chalk. The source is a vertical point force (Zs = 0.1 ,q,).

Nine receivers are placed around a circular arc with a radius of 13,1, from the source
located at the center of the arc. The ray angles range from 50 to 850. The amplitudes
are scaled by a factor of 1.0E9. The dashed curve shows the arrival time of the direct
qS arrival from the source.
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S* wave in transversely isotropic solid
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Figure 8. Synthetic radiation pattern showing the effect of direction on the generation

of the S* wave in Austin Chalk. The source is an explosive point source (Zs = 0.1 _ ).

Nine receivers are placed around a circular arc with a radius of 13 ,,1,from the source

located at the center of the arc. The ray angles range from 50 to 85 o. The amplitudes
are scaled by a factor of 5.0E6. The dashed curve shows the arrival time of the direct
qS arrival from the source.
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Figure 9. Phase (...... ) and group ( .) velocities of Gypsum Soil. The
parameters are A = 28.4x1010 dynes/cm 2, C = 8.5x1010 dynes/cm 2, F = 4.3x1010

dynes/cm 2, L = 1.5x1010 dynes/cm 2 and/9 = 2.35 g/cm 3. The angles are phase angles
for phase velocity and group angles for group velocity accordingly.
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S* wave in transversely isotropic solid
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Figure 10. Synthetic radiation pattern showing the effect of direction on the generation

of the S* wave in Gypsum Soil. The source is a vertical point force (Zs = 0.13), ).

o, Nine receivers are placed around a circular arc with a radius of 17.3 ,,1,from the source

located at the center of the arc. The ray angles range from 50 to 850 . The amplitudes

are scaled by a factor of 1.0E9. The dashed curve shows the arrival time of the direct
qS arrival from the source.
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Figure 11. Synthetic radiation pattern showing the effect of direction on the generation

of the S* wave in Gypsum Soil. The source is an explosive point source (Zs = 0.13 ;_).

Nine receivers are placed around a circular arc with a radius of 17.3 Z from the source

located at the center of the arc. The ray angles range from 5° to 850 . The amplitudes
axe scaled by a factor of 5.0E6. The dashed curve shows the arrival time of the direct
qS arrival from the source.
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