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ABSTRACT

Devonian Carbonate Reservoirs types in the Western Canada Sedimentary
Basin are presented. A review of the reservoir parameters: geometry, lithology,
porosity, fluid content, pressure, stress and their seismic estimation with compressional
and shear waves velocities introduce the seismic method as a powerfull tool in
carbonate reservoir characterization.

INTRODUCTION

In Western Canada the carbonate rock reservoirs of Devonian age host large
reserves of hydrocarbons (GSC, 1989; 1993). As these reserves depletes production
optimization is a expensive and strategic goal for the oil companies.

The Devonian deposition history in the Western Canada Sedimentary Basin
(WCSB) is that of a dominant carbonate-evaporite sedimentation province. The
carbonate reservoir types recognized and their seismic characterization are discussed.
The sensitivity of compressional Vp and shear V, wave velocities to structure, lithology,
porosity, permeability, fluid content, temperature, stress and anisotropy variations
confirm the seismic method as a principal tool in reservoir characterization. As the
reservoir rock parameters are independent variables, specific geological constrains at
the well control points are necessary to resolve the inverse problem: from wave seismic
velocity measurements to the reservoir parameters.

3-D seismic, well-to-well tomography, amplitude, multicomponent, seismic
borehole studies enhanced by innovative processing are promising tools to improve the
geophysical abilities in imaging the subtle carbonate reservoirs.

THE WESTERN CANADA SEDIMENTARY BASIN

THE DEVONIAN SYSTEM

The Western Canada Sedimentary Basin (Fig. 1) through time is a product of
two major tectonic settings:

1). From Late Paleozoic to Middle Jurassic the basin acting as a passive
continental margin, was filled eastward in a series of episodic transgressive events,

2). From Late Jurassic to Tertiary, the Colombian and Laramide orogenesis
controlled the sedimentation in the Foreland Basin.
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The Phanerozoic Time Scale records six major unconformities as a result of
sporadic epirogenic and orogenic movements.

During the Devonian, Western Canada was situated in equatorial latitudes. Five
major transgressive-regressive sequences separated by unconformities are identified by
Moore (1988; 1989) The relatively thick epeiric sea sediment complexes were deposited
during eastward pulsatory transgression over the craton. Seven associated deposifional
cycles are correlated with the eustatic fluctuations of the sea level in North America as is
proposed by Johnson et all (1985) are discussed and shown in Fig 2
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Figure 1. Basin Fill Map, Western Canada Sedimentary Basin.

Lower Elk Point (Cycle CI and Cycle C2)

From Basal Red Beds to Upper Chinehaga a succession of redbeds, evaporites
and carbonates was deposited within a restricted epieontinental sea. These strata have a
maximum thickness of 300m and pinchout over the Tathlina, Peace River and Westem
Alberta arches.

Upper Elk Point (Cycle C3)

A major transgression is marked by ramp-to platform carbonates of Lower Keg
River Formation. As the subsidence of the basin continued, the Upper Keg River
barrier reef complex developed toward the northern limit of the basin. Isolated pinnacle
reefs and reef mounds, (60m to 250m thick) within the central part of the basins.
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The Muskeg-Prairie Evaporite Formations deposited in evaporitic conditions
cover the entire basin with the exceptions of the north region of the Presquile' Barrier
Complex where the normal marine sedimentation continued.

At the end of the Elk Point Cycle during a minor marine incursion peritidal to
shallow-marine carbonates of Sulphur Point Formation covered the Northeastern
Alberta.

Coastal marine and continental shale and sandstones of the Watt Mountain
Formation terminates this cycle as the sea level drops.

Figure 2. Table of Formations, Devonian, Western Canada Sedimentary Basin

Beaverhill Lake Group (Cyele 4).

Peritidal anhydrites and carbonates of Fort Vermilion Formation overlain during a
gradual marine transgression the relatively fiat surface of the Watt Mountain Formation.
The sedimentation continued with the open-marine platform carbonates of the Slave
Point Formation ranging from 20 m along the flanks of Alberta Ridge and the Peace
River Arch to 150m near the Presquile' Barrier Complex. An extensive reef rimmed
carbonate platform and the atoll like reef complex of the Swan Hills Formation
developed in west-central Alberta. Basinal shales and argilaceous limestones of
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Waterway Formation overlie the Swan Hills reef-complexes. In northern Alberta, the
Waterways strata overlap the Slave Point reef complexes and in the southern Alberta
interfmger with the shelf complex.

Woodbend Groups (Cycle 5)

In the deep water condition created by a renewed marine transgression and
continuum deepening of the entire basin organic rich limestone and shale were
deposited within the Duverney, Majeau Lake and Muskwa Formations. South and
Southeast Alberta platform carbonates of Cooking Lake Formation were deposited in
shallow waters. Leduc Formation and equivalents developed as reef-rimmed complex
(Southern Alberta Shelf Complex).

In the Deep Basin area isolated Leduc reef complexes up to 250 m thick overlay
direct Cooking Lake or Beaverhill platforms. Leduc reefs also developed in an arcuate
fringe around Peace River Arch. The thick Ireton - Fort Simpson shales close the
Woodbend Cycle as the Central Alberta basin was nearly Idled.

Winterburn Group (Cycle 6)

The regressive sedimentation started in cycle 5 continued with the shelf
carbonates of the Nisku Formation. A major regression terminated the Nisku
sedimentation. The terigenous Calcar Formation deposits interfinger with shelf
carbonates of Blue Ridge Member deposited during a shallow marine incursion.

At the end of the cycle the Gramina Silt was deposited as a second regression
occurred.

Wabamun Group (Cycle 7)

A trangressive prograding carbonate ramp was initiated over central and
northern Alberta and northeastern British Columbia. In southeastern Alberta the Nisku
carbonates interfinger with the evaporitic deposits of the Stetller Formation. In
northeastern British Columbia, the equivalent deeper water shales belong to the Besa
River Formation.

DEVONIAN CARBONATE RESERVOIRS

The Carbonate reservoirs in The Devonian System in Western Canada
Sedimentary Basin follow standard carbonate depositional models. In the Geological
Survey of Canada (GSC) classification the typical Devonian carbonate reservoirs and
their associated traps are illustrated in Figures 3,6,7 and 8.

Barrier Reef

A belt of transgressive phase reefs which separates deep seaward deposition of
landward sedimentation. Open marine circulation was restricted behind the barrier reef.

Reef Complex

A large transgressive phase reef with complex facies surrounded by deeper-water
deposits.
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4 UPDIP TERMINATION OF PLATFORM

5 PA TCR REEF ON PLATFORM

6 SUBTLE FACIES CHANGE IN REEF COMPLEX

Figure 5. Trap Styles, Devonian transgresive phases (GSC)

Pinnacle Reef

A transgressive phase reef with a simple facies distribution and an areal extent
less than a half square kilometer. Its thickness is larger than its diameter.

Patch Reef

A transgressive phase reef with less than three square kilometer in area with
complex internal facies.
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Platform Carbonate

Extensive, carbonate strata deposited during the first stages of marine
transgression.

Shelf Carbonate

A sequence of thin, cyclic carbonate and evapotite sediments deposited in
shallow marine waters.

Shelf Margin Reefs

Thinner barrier reefs with little impact on water circulation.

Shelf Interior Reefs

Regressive phase patch reefs that are surrounded by shelf carbonate and evaporite
units.

Continental

to Shallow Marine
(Supratidal to Subtidal) (Subtida D

4

A
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GSC

TRAP TYPES

I LOCAL FACIES CHANGE

2 DFiAPE OVER OLDER REEF

3 CHANNEL IN SHELF MARGIN

4 UPDIP TERMINATION OF SHELF MARGIN

5 PATCH REEF IN BASIN

Figure 6. Trap Styles, Devonian regressive phases (GCS).
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Figure 7. Structural and Structural-stratigraphic traps, Devonian (GSC).
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SEISMIC VELOCITIES IN SEDIMENTARY ROCKS

In the laboratory and in situ, seismic velocities and densities for typical rock
forming minerals (Table 1) and for typical sedimentary rocks (Table 2) have been
measured as outlined below:

Table 1. Seismic Velocities and Densities in Typical
Rock-Formin_ Minerals. (After Anderson & all_ _1966)

Vn (km/_/ Vs (km/s'_ Vp/Vs o (k/m3-).
Qumtz 6.057 4.153 1.46 2.65
Calcite 6.259 3.243 1.93 2.71
Dolomite 4.689 2.720 1.73 2.87
Halite 4.525 2.616 1.73 2.16

Table 2. Seismic Velocities and Densities in Typical
Sedimentary Rocks. (After Domenico. 1984)

Vp/Vs
Sandstone 1.46-1.76
CalcSandstone 1.67- 1.76
Dolomite 1.78-1.84
Limestone 1.84- 1.99
Shale 1.70 - 3.00

It is evident that each mineral or rock has a set of values (Vp, Vs,Vp/Vs)which
in particular conditions could identify with accuracy that material. Ideal these conditions
will be determined by the medium in which the measurements are made, only. Based
on these facts researchers over the last fifty years were trying to establish equations
which will increase the probability of a realistic identification of these rocks.

RESERVOIR PARAMETERS

Gassman (1951) calculated the bulk modulus K of a fluid-saturated porous
medium from the known bulk moduli of the solid matrix Kin, the frame dry Kd,, and
the pore fluid Kf. The shear modulus of the rock is not affected by fluid saturation.

(1 K%2
K = Kd -t - Kin" (1)

¢0 1-tp Kd--I
Kf Km K2

In Figure 8 and 9, from Wang and Nur (1992), Gassman calculated compressional and
shear velocities versus measured velocities for typical carbonates are displayed. The
deviation between observed and calculated velocities recommends caution in any use of
Gassman equation when predicting saturating fluids.
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VELOCITIESIN CARBONATEROCKS
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Figure 8. Comparison of laboratory measured compressional (a) and
shear (b) wave velocities with those calculated using the Gassman
equation at lower pressure (6.9 MPa).(after Wang and Nut. 1992).
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VELOCITIES IN CARBONATE ROCKS
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Figure 9. Comparison of laboratory measured compressional (a) and
shear (b) wave velocities with those calculated using the Gassman
equation at lower pressure (34.5 MPa).(after Wang and Nur. 1992).
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Figure 10. Maximum Biot dispersions of compressional (a) and shear (b) wave

velocides in sandstone and samples saturated with water. (After Wang and a1.,1992)
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Figure 11. Maximum Biot dispersions of compressional (a) and shear (b) wave
velocities in carbonate samples saturated with oil. (After Wang and a1.,1992)
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Wyllie et al. (1956) from experimental data discovered that in arock of porosity
¢pthe compression wave velocity Vp, the velocity in the matrix Vm,and the velocity in
the saturating fluid V_fit the equation

1__=_+ 1-_0 (2)
vp vf vm

Since its beginning this formula has been used to derive porosity from the sonic
log. It has to be mentioned that this equation should not be used for carbonates as stated
in Wyllie et al (1958).

Biot (1956; 1962) developed a theory for elastic wave propagation in porous
media. The equations derived interrelates the compressional and shear velocities with
the elastic constants of the rock and saturating fluid. In Figure 10 and Figure 11 from
Wang et al. (1992) compressional and shear wave velocities calculated by the Gassman
Vo and Blot VB equations are compared for sandstones and carbonates.

BiotDispersion= VB-Vo (3)
Vs

Lithology

Picket (1966) from laboratory measurements stated that Vp/Vs discriminates
between clean sandstone, carbonates and limestones (fig. 12). Later other researchers
confirmed this result with new measurements: Hamilton (1979), Domenico (1984),
Robertson (1987).

0.5(_--_v)2c= (4)
Vp2_I
V,

The possibility of mapping lithologies throughout elastic wave velocities
measurements has very important value for reservoir evaluation. Recording S- and P-
wave seismic data on the surface in optimum conditions of S/N information from the
subsurface can be derived accurately.

Porosity

Gregory (1976) studied the variation of elastic wave velocities with porosity in
dry and saturated sedimentary rocks at low and high pressure as illustrated in Figure 13
and 14. A remarkable conclusion is that for a given lithology and porosity V_rv", can
discriminate between liquid and gas pore.

Fluid Content

Pore fluids consist of oil, water mixtures and gases. Identification of pore fluids
cannot be made with confidence based on Vp/V, alone. To reduce the ambiguity detailed
litological information is critical.

27-14 CREWESResearchRelJort Volume5 (1993)



Carbonate reservoir

501_ .I--L -_ -_. I I I

• ,:e el

_'_. •

<_ .

,, .... #e_

so- = DOLOMITE _• LIMESTONE

° SANDSTDNE _lfe _90 I I I I
90 t00 t10 t20 t30 140 150

1/Vs = Ats(,_s/ft) (0.3),_s/m

Figure 12. Separation of lithology types (after Pickett,1963).

Pore Shape

Kuster and Toksoz (1974) and Toksoz et al. (1976) developed a model for the
propagation of elastic waves in porous media that considers the effect of pore shape on
Vp and V,.

Pressure, Depth of Burial.

The variations of Vp and V, in carbonate rocks with pressure/depth is larger for
the f'wst 1000 m and is mainly due to the closure of the elongated pores.
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Figure 13. The ranges of Vp/Vs for dry and saturated rocks versus porosity.
(After Gregory, 1976)
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Figure 14. Location of P- and S-wave velocities plotted versus porosity for different
pressures and water saturation. (After Gregory, 1976)

Temperature

The relation between elastic wave velocities and the temperature are less studied
but from the reported studies, Timur (1977), the nature of the pore fluids is driving the
bulk of the variations. For a brine-oil mixture a decrease in both V- and S- wave
velocities are recorded.
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Anisotropy

The anisotropy of carbonate rocks is controlled by factors as pore shape, pore
and crack orientation, pressure, stress. The Devonian carbonates in Western Canada
had a history of intense mechanical deformations. It is very likely that in the field,
accurate anisotropy measurements will add to the techniques of reservoir description.

SEISMIC IMAGING THE CARBONATE RESERVOIR

The reflection seismic method for reef identification is well established for
transgressive reef complexes, patch, and pinnacle reefs. These reefs present lateral
velocities contrasts as well as differential compaction. Their seismic identification as
structure anomalies appears easy but in many cases such structure tested dry. Criteria
for reservoir characterization do not follow standards and is the geophysicists chalange
to predict reservoir properties.

We have seen that compressional and shear wave velocities together carry
pertinent data to predict reservoir parameters. Theoretical and field studies recommend
multieomponent seismic as the method for detailed reservoir characterization.

The daily problem the geophysicist is facing is that only seismic compressional
reflection is available for interpretation. Through innovative modeling with geological
and well information it is possible to calibrate the seismic data to extract from the
seismic amplitude the missing Vs value. AVO measurements and amplitude calibration
might be adequate to properly assess the reservoir.

Seismic inversion plays an important role in assessing the carbonate reservoir.
Theoretical models and direct application to real data fit the best case histories but care
is recommended in drawing general conclusions.

Meckel and al (1977) have modeled two carbonate reservoirs: a Carbonate
Shelf Margin (Figure 15) and a Carbonate Platform (Figure 16). For the first case the
morphological appearance of the reservoir makes possible its identification. In
favorable situation amplitudes can be calibrated for reservoir characterization 0. In the
second case due to the low acoustic impedance contrast the reservoir is seismically
transparent (Fig. 13). These are the extreme cases for the vast field of the carbonate
settings as they are encountered in all the geological times.
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Figure 15. Seismic model of carbonate shelf margin (after Meckel and al., 1976)
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Figure 16. Seismic model of tidal-flat margin reservoir (after Meckel an al., 1976).
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CONCLUSIONS

The reflection seismic method, the most used geophysical method in geoscience
studies, is finding applications in reservoir characterization. The Devonian carbonate
reservoirs in WCSB represented by a multitude of structural and stratigraphyc types are
the target of intense exploration and development effort. To make this effort more
efficient, the quality of these reservoirs have to be well known prior to new
investments.

Today, the 3-D seismic method, sophisticated computer technologies and in
depth knowledge of the petrophysical properties of the reservoir rocks open new
domains in hydrocarbon reservoir studies.

Lithological calibration of the 3-D seismic amplitudes, acquisition of VSP and
multicomponent (V, SV, SH) surveys, seismic anisotropy measurements, AVO
studies, etc. expand the geophysicist potential to describe the subsurface, to make
critical contributions in reservoir evaluation. Reservoir characterization is today an
multidisciplinary effort of significant economic importance in the oil industry.
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