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ABSTRACT

In order to process P-S converted elastic waves from a 3-D multicomponent
survey, several geometric transformations must be performed on the recorded data.
These include locating traces' common conversion points and rotating their horizontal
components into a radial and transverse system. Given these, the data can be binned
and standard 3-D P-P processing techniques can be applied. This paper discusses these
transformations and demonstrates their application to a dataset derived from a physical
model.

INTRODUCTION

Most current seismic datasets contain only the vertical component of ground
motion. Techniques to process these datasets are well established and understood.
However, by recording ground motion in all three spatial directions, the possibility of
extracting new information exists. Even with seismic sources emitting only
compressional (P) waves, shear (S) waves may be produced at boundaries and
reflected or scattered back to the surface. With horizontally layered media, only
vertically polarized S waves, SV, are produced. With straight line recording
geometries, there are two corrections which must be made to the recorded SV seismic
traces. One is locating traces by common conversion point (CCP) instead of common
mid point (CMP). The second is to reverse the polarity of either the trailing or the
leading spread (Schafer, 1992, 1993, Tessmer and Behle, 1988)). When collecting 3-
D data, these corrections must also be made, but in a more general sense. The
following describes the more general 3-D transformations and illustrates their
application to physical model data.

COMMON CONVERSION POINTS

Consider the simple case of a horizontally layered Earth. For unconverted
elastic waves, the reflection point lies under the midpoint between the source and
receiver. However, for P-S converted waves, this is no longer generally true. The
conversion point lies inline between the source and receiver, but its location depends on
the ratio of the P to the S velocities (Vp and Vs). It also depends on the depth of the
conversion point. However, as the depth increases, this depth dependence approaches
an asymptotic value (Eaton et al., 1990, Schafer, 1992). We consider this asymptotic
location as a first approximation for binning and stacking purposes. The location error
will increase as the conversion point depth decreases. The asymptotic location is given
by
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where S is the vector location of the source and R is the vector location of the receiver.

As these locations lie on a straight line connecting the shot to the receiver, in the
special case of 2-D surveys, they lie in the plane of the spread.

VECTOR ROTATIONS

In the 2-D P-SV conversion case, there is an apparent polarity reversal from one
side of the shot to the other. This is because we usually record with all geophones
oriented in the same direction, inline with the spread. Thus a surface motion away
from the shot will be recorded as positive on one side of the spread and as negative on
the other, and vice versa. In the 3-D case, however, we must mathematically rotate the
recorded signals so that one horizontal channel contains the component within the
source-receiver plane, and the other contains the component perpendicular to this
component (transverse). In the isotropic case the radial component will contain only P-
SV data while the transverse component will be null. It should be kept in mind that
these are vectors and thus a trace rotated radially from shot to receiver would be polarity
reversed relative to the same trace rotated radially from the receiver to the shot. Thus
this more general rotation case includes the 2-D polarity reversal implicidy.

Although there is only one geophone rotation required to go from the field to the
rotated data, one can consider it as the difference of two rotations. These are the
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FIG. 1. Data recorded in the (X,I) system are rotated to the (T,R) system to isolate the
radial and transverse components. The reference angle I_is usually constant for a
survey while the source-receiver angle 0 varies with each source-receiver pair.
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reference direction, aligned to one of the horizontal channels, and the direction from the
shot to the receiver. The reference is usually a constant, as geophones are laid in the
same orientation, while the second varies for each shot-receiver pair (Figure 1). We
call the reference direction the inline, as it is common to orient geophones in the fine of
receivers, and the angle 90 degrees clockwise the crossline direction. Thus the rotation
is from the (crossline,inline) system to the (transverse,radial) system. Figure 1
illustrates the coordinate systems and angles used for the rotation. In order to perform
the rotations, we do not need the rotation angle, but rather its sine and cosine. In
practice we know the angle of the geophone, 13,as it is fixed in the field, and can
calculate its sine and cosine. The angle 0, from the shot to the receiver, is not known,
but we can calculate its sine and cosine directly from the source and receiver's relative
positions. Let 00= 90* + 0. Then sin(C) is the receiver northing minus shot northing,
divided by the shot-receiver distance. Cos(C) is the receiver easting minus shot easting,
divided by the shot-receiver distance. These relate to 0 through the formulas sin(0) =
-cos(C) and cos(0) = sin(c). Then, as we want to rotate the traces by the negative of _,
or I_-0, we can use the difference angle formulas giving sin(-_) = sin(l_-0) = sin13cos0-
cosl3sin0 and cos(-_) = cos(l_-0) = cos13cos0 + sinl3sin0. Substituting the 90* formulas
yields sin(-_) = sinflsin¢ + cosl3cosC and cos0¢) = cos13sin¢ - sinl_cos¢. Thus the
rotation matrix from the I-Crossline] to the l-Transverse] system is

/ Inline J / Radial ]

R [ cos13sin* - sin13cos_ -(sin_sin* + cos13cos*)= sin13sin, + cos_cosC cos13sin_ - sin13cosC ] "

We can rotate in the horizontal plane because, with real data, the low velocity
near the surface causes the wave direction to be nearly vertical when it strikes the
receivers. If this was not the case, we would need to know the impinging wave angle
and rotate in a 3-D space. With model data this may present a complication. Any P
component on the horizontal channels will be oriented in the radial direction. Then,
after rotation, it will be distributed into the other two channels. In order to have a
correct rotation there must also be identical coupling in both directions and identical
geophone outputs. For model data, as we used, where different shots are used for each
component at a given receiver location, the shots must have the same coupling.

EXAMPLES

In order to illustrate the effect of the rotations on seismic data, we acquired a
small 3-D survey using the University of Calgary elastic physical modelling system
(Gallant and Bertram, 1992). The portion of the survey shown here was over a
horizontally layered structure. Thus the reflections are dependent only on angles and
not on location, assuming uniform layer bonding. This means that we can demonstrate
rotations with waves not having a common CCP. We wrote a computer program
which bins according to asymptotic CCP and rotates the data to radial and transverse
components. The acquisition geometry is shown in Figure 2. Figure 3 shows the
input inline and crossline data and the rotated transverse and radial components. Note
the apparent polarity reversal on the inline channels between the first two and the next
two traces. Note also that there are some deviations from symmetry apparent on the
crossline channels. These are likely due to transducer coupling differences and lack of
uniformity in the medium's layer bonding. After rotation, essentially all the energy is
now on the radial (SV) channels with the same polarity, suitable for stacking. The
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residual energy on the transverse channel energy is due to the model imperfections
mentioned above.

CONCLUSIONS

We have demonstrated the successful rotation of physical P-S data into radial
and transverse components, containing SV and SH components respectively. We have
also shown the mathematical transformation required to extend 2-D CCP asymptotic
binning to the 3-D case.
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FIG. 3. Model data. The inline, crossline data have been rotated to the radial,
transverse system. Note that essentially all the energy is in the shot-receiver (radial)
direction.
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