
Fromvelocitiesto anisotropicstiffnesses

From group or phase velocities to the general anisotropic
stiffness tensor

Robert W. Vestrum and R. James Brown

ABSTRACT

Two numerical inversions were designed to calculate the 21 independent
stiffnesses that define, in general, an anisotropic medium from either group- or phase-
velocity data. The accuracy, robustness and computational complexity of the two
inversion procedures - group velocity to stiffnesses and phase velocity to stiffnesses -
were then compared.

This group-velocity inversion overcomes the difficulty of calculating group
velocity in a prescribed direction and can calculate group velocities accurately even in
directions near shear-wave singularities. Although phase velocities are easier to
calculate than group velocities, the group-velocity inversion performed better in
laboratory tests because group velocities are easier to measure.

INTRODUCTION

Some laboratory measurements yield group velocities and others yield phase
velocities (Vestrum and Brown, 1993). The velocities calculated from ray-tracing in
VSP surveys are group velocities and the velocity calculated from time delays
between receivers - downhole or on the surface - are phase velocities. This inversion
from either group or phase velocities is specifically designed for the inversion of
laboratory-measured group or phase traveltimes and may be useful in the case of the
multicomponent VSP survey where there are velocity measurements at a broad range
of angles through, for example, a fractured reservoir.

The latest numerical inversion methods for calculating the 21 independent
elastic stiffnesses from velocities have been proposed by Jech (1991), Arts et al.
(1991) and Arts (1993). Jech's (1991) method is a least-squares inversion of qP-wave
group velocities for stiffnesses and Arts's (1993) method involves a similar type of
inversion using qP, qS 1 and qS 2 phase velocities to perform a generalized linear
inversion (GLI) for stiffnesses. These two authors use similar linear-inversion
techniques. Other stiffness-determination procedures have been proposed by
Neighbours and Schacher (1967) and Hayes (1969).

Arts (1993) performs his inversion for the stiffnesses of what is referred to as
a general anisotropic medium, meaning a medium were nothing is assumed about the
21 independent elastic stiffnesses. He identifies the major problem involved in
inverting from group velocities. In discussing why he chose to invert from phase
velocities, he points out that the group velocities, in general, cannot be calculated
directly in a prescribed direction, so an iterative procedure must be used to find the
group velocity in a particular direction.
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In Arts's inversion, which is very similar to the inversion by van Buskirk et al.
(1986), he solves Christoffel's equation for the stiffnesses in terms of the phase
velocities, the wavefront normals and the polarizations. He acknowledges, however,
that it is very difficult, if not impossible, to obtain accurate measurements of
polarizations. An iterative procedure is then performed to improve the estimate of the
polarization vectors by minimizing the difference between the phase velocities
calculated from the inverted stiffnesses and the observed phase velocities. This
iterative procedure is the improvement added by Arts et al. (1991) to the van Buskirk
et al. (1986) inversion, which requires an accurate particle-displacement
measurement.

Because his inversion requires phase-velocity observations, Arts (1993) makes
traveltime measurements between large opposing faces of a truncated cube with the
assumption that he can generate plane waves across the sample between the faces.
This limits his measurement of traveltimes to certain directions where faces have been
cut into the sample. The upper limit on the number of observations for the inversion
imposed by his experiment is 27, nine measurements of each of the three wave phases
(qP, qS1, qS2).

Jech (1991) has overcome the difficulty involved in calculating the group
velocity in a prescribed direction by using an iterative method to find the group
velocity given a particular direction. He uses only qP-wave velocities in his inversion
technique, likely because of the difficulty in finding qS-wave velocities. Jech (1991)
says "a problem arises for quasi-shear [qS] waves, as there is a danger that we may
not follow the right value of the normal [phase] velocity of two quasi-shear waves in
regions where the normal velocity surfaces of two quasi-shear waves intersect." He
goes on to propose that if one kept track of the particle polarizations during a search
for a group velocity, one could discriminate between the two qS waves. This would
not, in general, work because when two qS phase-velocity surfaces intersect, the
polarizations usually change dramatically in any type of anisotropic medium.

Jech's inversion method is a straighforward GLI which is somewhat similar to
the method outlined here. The main difference between the methods is the use of the
qS 1 and qS 2 velocities.

In the method proposed here, a standard least-squares inversion is employed
to find the stiffnesses which yield the best fit to the observed velocities. The same
method is used for the group-velocity inversion as for the phase-velocity inversion,
but there is an additional step involved in finding the group velocity in a prescribed
direction when performing the group-velocity inversion.

No regard is given to the polarization vectors in the inversion developed in
this paper; they can't effectively be measured and they behave unpredictably at times,
so they are not considered in these inversion procedures. The criterion for establishing
which velocity belongs to which phase is the order of highest to lowest velocity or
from first to last arriving wave phase. The first arriving phase is qP, next is qS 1 and
last arriving wave phase with the slowest velocity is defined as qS2.The numerical
scheme for inverting for the stiffness tensor used here is general in the sense that there
is no assumption made of the symmetry class of the medium or the orientation of the
symmetry axes. From group-velocity traveltime measurements of qP, qS 1 and qS 2
waves the stiffnesses for the medium are estimated using a generalized linear
inversion (GLI).

Laboratory experiments were performed to test the inversion algorithm.
Material used in this physical modelling is Phenolic CE, an industrial laminate. This
material consists of canvas layers which are saturated and bonded together by
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phenolic resin. The layers are woven in such a way that the canvas fibers are straight
in one direction whereas the fibers in the direction orthogonal to the straight fibers
weave or cud over and under the straight fibers. There has already been work done on
this material (Brown et al. 1991, 1993; Cheadle et al. 1991) where the material is
assumed to have orthorhombic symmetry.

The symmetry planes are assumed to be oriented with one in the plane of the
layers and two orthogonal to this plane, one parallel to the curly fibers and one
parallel to the straight fibers. The Cartesian coordinate system used here for this
material has the z axis normal to the canvas layers, the y axis in the direction of the
straight fibers and the x axis in the direction of the curly fibers. The x axis is the
direction of maximum qP-wave velocity, the y axis that of intermediate qP-wave
velocity and the z axis that of slowest qP-wave velocity. This is due to the layering
and the woven nature of the fabric. When convenient, spherical coordinates are used
with O being the angle of colatitude measured from the z axis and • the angle of
azimuth from the x axis.

Since the inversion developed here is general, i.e., assuming no symmetry, the
assumption of orthorhombic symmetry can be investigated. In this investigation, an
inversion for the nine independent orthorhombic stiffnesses is performed and the
results are compared to the general inversion to determine whether or not the
inversion incorporating the assumption of orthorhombic symmetry produces a
solution as good as the inversion for the general anisotropic stiffness tensor.

METHOD FOR CALCULATING GROUP VELOCITIES

With a given set of stiffnesses the magnitude of the group or ray velocity
cannot be explicitly calculated in a particular direction. On the other hand, given the
stiffnesses and a wave normal, the phase velocity may be calculated analytically.
With this phase-velocity information, the group velocity associated with that
particular phase velocity may be calculated. The group velocity does not, in general,
lie in the same direction as the wave normal or the phase-velocity direction. The
group velocity is dependent on the phase-velocity magnitude, v, and the phase-
velocity direction or wavefront normal vector, n. If the group velocity is to be
calculated in a prescribed direction, a search must be performed to find a phase-
velocity vector which will yield a group velocity in the desired direction.

This is the first task performed by the least-squares inversion method. In the
search for a group velocity in the prescribed direction, a guess is made for the phase-
velocity direction, in the spherical coordinates O (colatitude relative to the z axis) and

(azimuth relative to the x axis) associated with the desired group-velocit), direction.
In the first-order approximation, the observed group-velocity vector, gOOS,and the
calculated group-velocity vector, gcalc, from the guessed O and • are related by:

_gi __giAdp
gi °bs = gi calc + _--_AO + _tI) " 1

In this equation, the only unknowns are AO and A_, the errors in the O and

estimates. The partial derivatives are calculated numerically.

If matrix notation is used, such that
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Lg b, _alc

then we get an equation in the form:

which has a solution in the standard least-squares form (Twomey, 1977) given by

z_ = [aT&]-lft r _. 4

Once values for At and A_ are estimated using this technique, they are then
added to the initial guesses and the process is repeated. The iterations continue until a
group velocity is calculated in a direction within some allowable deviation from the
desired direction or the changes in the angles 19 and • decrease to within an
acceptable tolerance level.

In performing this least-squares inversion, group velocities, gcalc, are
calculated using Kendall and Thomson's (1989) equation and the stiffnesses and
density of the material.

Because of the unpredictable behaviour of the polarizations of the different
wave phases, the decision as to which wave phase is associated with a particular
velocity is made using the which-came-first criterion. The wave with the highest
velocity is assumed to be the qP, the second fastest phase is considered the qS 1 and
the slowest wave phase will then be the qS 2.

The only problem with this method is in the difficulty in finding a solution
close to a shear-wave singularity. At a point singularity or conical point (see Brown et
al. 1993), the first derivative of the velocity with respect to • or 19 is discontinuous,
which can make searching around these point singularities unstable. Near singularities
or other problem areas on the wave surface where this search method fails, the
program switches into a recursive random search in an attempt to find the appropriate
group velocity.

Computationally intensive and limited in accuracy, this method pays no
attention to the shape of the surface and can get the search algorithm within a degree
or two of the desired group direction. The routine calculates 500 points chosen in a
Gaussian distribution around an initial-guess direction. The point with a group-
velocity direction closest to the desired direction is taken as the new mean and the
standard deviation of the Gaussian-distributed random search is decreased by a factor
of five and the search starts over. This process continues until a solution is found or
there is little improvement.

In most cases, the GLI method will converge if the random search can get
close enough to the desired group direction. Occasionally the GLI will still diverge
and the program has to settle for a group velocity that is usually in a direction less
than 1ofrom the desired direction.
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METHOD FOR CALCULATING STIFFNESSES

Stiffnesses from group velocities

The previous application of this linear-inversion technique was merely to
calculate a group-velocity vector in a prescribed direction. In the inversion for the
stiffnesses, the approach taken is similar to the method used in calculating the group
velocity.

It is similar because the problem is essentially the same. The goal is to
minimize the difference between the observed group velocities and the calculated
group velocities. The relationship between the ith observed group-velocity magnitude
and the ith calculated group-velocity magnitude is:

Ogi At.

g i°bs = gi calc + "_j"''J 5

where Cj is thejth independent stiffness, j = 1, 21. Using the matrix notation:

_gi and Ai = ACi, 6_)gi gObS _calc
= -- gi , O_ji = _Cj'

the difference between the observed and calculated group velocities can be expressed
in an equation of the same form as equation 4:

=[a"a]-'a,

This mathematical problem is similar to that of calculating group velocities in
a prescribed direction, except that now the gfatc and gi°bs are the ith magnitudes of
the calculated and observed group velocities, respectively, instead of the ith
components of a group-velocity vector as defined in equation 2. Also, the variables
that are to be obtained by the inversion are the stiffnesses and not the phase angles or
wave normals associated with a desired group-velocity direction. Another difference
between the problems is that this inversion is attempting to solve for 21 independent
parameters instead of two. Since we are now solving for many more variables, 21
instead of two, there may be some instability in the solution. To stabilize the
inversion process, a small scalar quantity _, is added to the diagonals of the matrix to
be inverted in order to dampen the solutions. This damping factor is added into
equation 4 to give

= [(zT_ + _'I]-I&T _g" 7

Because of all of the numerical calculation of derivatives and the numerical
inversion of a large matrix, this operation is computationally fairly cumbersome.
What makes this process extremely computer-intensive is the inversion used to
calculate the group velocity at a prescribed direction every time a group velocity or a
derivative of the group velocity with respect to a stiffness parameter needs to be
calculated.
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Sfiffnesses from phase velocities

The method discussed here for calculating the 21 independent stiffnesses is a
least-squares inversion for stiffnesses from group velocities. In the case where phase
velocities are measured, like in the experiments done at the Institut Franqais du
P6trole (Arts, 1993), the same scheme is utilized for the inversion. The exception is
that the phase velocities may be calculated directly so the effort and computer time
involved in finding a velocity in the appropriate direction is not required.

The calculation of stiffnesses from phase velocities works like the same
calculation from group velocities. The only change required in the algorithm is the
substitution of the phase-velocity magnitude v for the group-velocity magnitude g in
equation 7. After the appropriate substitutions are made, this equation for the
corrections to the stiffnesses becomes

= [era +xt]-'ar #v 8

where

_obs _calc tXji = OVi
5Vi = vi -- vi , OCj ' andAi = ACi. 9

This inversion is 200 to 500 times faster than the same inversion from group
velocities due to the absence of the search for a group velocity at each step of the
program. Also, these calculations are able to yield a more numerically accurate result
because the velocities are calculated directly and exactly instead of being estimated
from a least-squares inversion. An additional bonus in this method is that there are no
limitations in the calculation of velocities even at or near singularities, where there
can be problems when calculating the group velocity in a prescribed direction.

Error analysis

In performing the inversion, it is desirable to know how well the velocities
that are calculated from the stiffnesses match the observed velocities, i.e. how well
the model fits the data. A statistical velocity error is defined to quantify the goodness
of fit. Also, once a set of stiffnesses is determined, a statistical estimate of the
uncertainty in each stiffness will need to be calculated.

The velocity error for each iteration is simply defined here as the standard
deviation between the measured and calculated velocities _, which, modified from
Kanasewich (1985), is

¢_= -(M+I)(6r6-AT(zT6)" 10

where N is the number of measurements and M is the number of model parameters
that are to be solved for; M = 21 in this general case.

Once the standard deviation has been calculated for the experimental
observations, the uncertainties for the calculated model parameters, in this case
stiffnesses, are calculated from the diagonal elements of the covariance matrix, CM,
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which is defined (Jenkins and Watts, 1968; Kanasewich, 1985) as:

11

Each diagonal element of the covariance matrix is the variance of the
respective inverted stiffness. By assuming a near-Gaussian distribution of error, the
square root of each variance is used as an estimate of the uncertainty in the respective
stiffness.

APPLICATION OF THE INVERSION TO
LABORATORY MEASUREMENTS

Two experiments were performed to obtain each of phase and group velocities
for the two methods of inversion for material properties. Velocity data were acquired
in each experiment for all three wave phases, qP, qS l, and qS 2, in Phenolic CE, the
industrial laminate.

The first experiment, designed for the acquisition of phase velocities, involved
the measurement of traveltimes between large transducers on flat parallel faces of a
small (9.6 cm) bevelled cube of phenolic. Nine measurements were made on the 18-
sided block for each wave phase yielding 27 velocity measurements for input into the
inversion.

Group velocities were calculated from the traveltimes of the second
experiment which involved smaller transducers transmitting ultrasonic waves through
a larger (23-cm diameter) sphere of the industrial laminate. Traveltimes were acquired
on the sphere with transducers at antipodes. Measurements were made at 15° spacing
along lines of equal azimuth which were spaced 45 ° apart, so that data were collected
in the yz plane, the zx plane and in a plane bisecting the angle between the yz and zx
planes. The resulting 105 data points were used for the inversion from group velocity
to stiffnesses.

Phase-velocity measurements

Figure 1 shows photographs of the cube with the bevelled edges and the large
transducers used in the experiment. The measurements of traveltimes were across the
sample between opposite faces which are approximately parallel. The 18 faces of the
cube enabled the experimenters to make nine such traveltime measurements for each
wave phase, including three in the principal-axis directions and six measurements at
angles bisecting each axis pair.

When designing this experiment, large transducers were chosen to try to
ensure that phase traveltimes would be measured across the sample. The shear-wave
transducers have a diameter of 3.8 cm and the compressional-wave transducers are 5
cm in diameter. The qP sources and receivers cannot be considered to be this large,
however, because the faces on the sample are only 4 cm across. The maximum group-
minus-phase angle, _5_, that allows determination of phase velocity (from Vestrum
and Brown, 1993) is 3'1.6° for qS waves and 22.6 ° for qP waves, if phase velocities
are to be acquired. Vestrum and Brown (1993) have shown that the largest angle
between the group- and phase-velocity vectors is 11.6 ° for this medium which is close
to half of 5m; so there should be no doubt that the measured traveltimes are phase
traveltimes.
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FIG. 1 (a) Bevelled cube of Phenolic CE. (b) The large transducers used to obtain
phase traveltimes.

Traveltimes were measured as the time elapsed between pulse initiation and
the arrival of the first discernible energy in the waveform on the oscilloscope. The
time is determined to three significant figures, the first arrivals being picked to the
nearest 0.1 (is, with an uncertainty in the pick of around +0.5 (is. The distances have
an uncertainty of a few tenths of a millimeter because of the thin layer of coupling
agent between the transducers and the cube. The uncertainty in the calculated
laboratory velocities based on uncertainties in distance and time measurements is
estimated at ±2%.

The algorithm was applied to the velocity data and the inversion converged at
a velocity error (defined by equation 10) of 18.0 m/s, less than 1% of the average
velocity which is well within the estimated experimental uncertainty of ±2%. The
resulting stiffnesses and their statistical uncertainties are listed in table 1. If the
statistical error estimates in the stiffnesses appear high, this may be caused by the
inversion being only somewhat overdetermined. With 27 measurements to determine
21 parameters, there are only 1.28 times more measurements than the minimum
required.

m=l
m=2

m=3

m=4

m=5
m=6

Final inverted stiffnesses (GPa)

n=1
15.91

6.48

6.10

0.06

-0.08

0.21

n=2

6.48

14.43

5.72

-0.15

-0.05

-0.12

n=3

6.10

5.72

10.88

0.07

0.05

0.15

n=4
0.06

-0.15

0.07

3.05

0.01

0.01

n=5

-0.08

-0.05

0.05

0.01

3.44

-0.02

n=6

0.21

-0.12

0.15

0.01

-0.02

3.76

Error in the stiffnesses (GPa)

n=1
0.14
0.13

0.13

0.34

0.14

0.23

n=2

0.13

0.13

0.14

0.18

0.28

0.22

n=3

0.13

0.14

0.12

0.23

0.18

0.26

n=4

0.34

0.18

0.23

0.05

0.06

0.06

n=5

0.14

0.28

0.18

0.06

0.05

0.08

n=6

0.23

0.22

0.26

0.06

0.08

0.05

TABLE 1 Stiffnesses estimated by phase-velocity inversion and their associated
uncertainties.
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Velocities from those stiffnesses and the velocities from the experiment are
plotted (Wessel and Smith, 1991) in figures 2a-c for the xy, yz and zx planes,
respectively. These graphs show the agreement between the velocities computed from
the inverted stiffnesses and the observed velocities.

(a) (b) (c)

xyplane yzplane zxplane

3500 3500 3500

 3ooo  3ooo
c c "_ 2>,2500 >,2500 500
0 0 (.)

_o _o _o
>e2000 >e2000 >e2000

• " I ' ' I ' ' I ' ' I == t , I ' ' I " " I ' ' I " " I ' ' I " " I ' " !
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azimuthindegrees colatitudein degrees colatitude indegrees

Fro. 2 Phase-velocity plots for the phenolic block. The crosses represent the
observed velocity data and the solid curves are the phase velocities computed
from the inverted stiffnesses.

Collecting the data for this inversion went quickly since only 27
measurements could be made of traveltimes between fiat faces with parallel normal
vectors without further carving up the sample. The inversion took a few seconds of
computer time making this method of determination of stiffnesses fast and easy. The
small velocity error (< 1%), less than the estimated relative experimental error (2%),
indicates that this is also an effective method.

Group-velocity measurements

For the second experiment performed on the phenolic material, a 23-cm
diameter sphere of the material was used. This large sphere was manufactured out of
two cylinders of the material glued together and machined into a sphere. The glue
seam is at the equator of the experimental coordinate system, the xy plane, and holds
the top canvas layer of one piece to the bottom canvas layer of the other. It was
desirable to make a sphere large enough to gain more clear separation between the
two shear arrivals as well as separation between the shear arrivals and the reflected or
refracted qP arrivals.

One of the advantages of performing an inversion from group velocities is
realized here. Since flat faces and large transducers are not required or even desired in
these experiments, a sphere is used and velocity measurements may be taken
anywhere on the sphere. This freedom from taking measurements on flat faces has
allowed the measurement of traveltimes yielding 105 velocities for the inversion. The
sphere was placed in a jig that holds both transducers and has a protractor surrounding
the sphere to make it easy to determine where on the sphere the measurements are
taken (figure 3). Using the protractor, measurements may be taken as closely spaced
as every half-degree around the sphere.
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FIG. 3 Experimental set-up for measuring group velocities on the sphere. In this jig,
the sphere is clamped to a ring inside the protractor and can be rotated about a
vertical axis at an increment measured on the protractors.

After the first arrivals were picked for each wave phase and a few anomalous
data points at the glued seam on the equator of the sphere were removed, 99 velocities
were used in the final inversion - removing anomalous data is an affordable luxury
when one has 105 data points. The velocity error after the final iteration is 7.7 m/s,
approximately 0.3% of the average velocity, well within the estimated experimental
uncertainty of ±2%. The resulting stiffnesses are listed in table 2 along with the
statistical uncertainties in those stiffnesses which were calculated as described earlier.
The uncertainties in the stiffnesses for this inversion are substantially lower than the
statistical uncertainties calculated from the phase-velocity inversion (table 1). This
difference in the error in the stiffnesses is probably a result of this inversion being
much more overdetermined, with nearly five times as many measurements as number
of required parameters.

The data points used for the inversion, as well as the velocity curves from the
inverted stiffnesses are graphed in figure 4. In these velocity plots the data acquired in
the experiment fit rather neatly on the velocity curves calculated from the inverted
stiffnesses. The relatively high statistical accuracy of the inversion is likely due to the
large number of data points. The consistency of these velocity data is likely also a
factor in the low statistical error result and this is probably a positive side-effect of
using a sphere in the experiment. The transducers are moved along the sphere as it is
rotated in the jig (figure 3) so they stay in contact with the sphere from measurement
to measurement with the same couplant between the transducer and the sphere. The
experimental set-up is not disturbed as much as it is when removing the transducers
from one pair of faces and attaching them to other faces, as done for the phase-
velocity measurements.
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Final inverted stiffnesses (GPa) Error in the stiffnesses (GPa)

n=l n=2 n=3 n=4 n=5 n=6 n=l n=2 n=3 n=4 n=5 n=6

m=l 16.85 7.88 6.81 0.07 -0.18 0.12 0.06 0.06 0.04 0.05 0.02 0.06

rn=2 7.88 16.03 6.51 0.00 -0.26 -0.08 0.06 0.06 0.05 0.02 0.06 0.07

m=3 6.81 6.51 11.14 0.00 -0.05 -0.04 0.04 0.05 0.02 = 0.01 0.02 0.03

m=4 0.07 0.00 0.00 3.03 0.01 0.04 0.05 0.02 0.01 0.01 0.02 0.02

rn=5 -0.18 -0.26 -0.05 0.01 3.40 -0.01 0.02 0.06 0.02 0.02 0.01 0.02

m=6 0.12 -0.08 -0.04 0.04 -0.01 3.89 0.06 0.07 0.03 0.02 0.02 0.02

TABLE2 Final inverted stiffnesses and their respective uncertainties from the group-
velocity inversion of the laboratory data.

The velocity curves appear to be nearly symmetrical on either side of the
equatorial plane or 90° colatitude. The possibility of these symmetries existing is
supported by the relatively small values that were calculated for the off-diagonal
stiffnesses where m or n is greater than three. If the medium displayed orthorhombic
symmetry, these values would be zero and each axis, x, y, and z, would be an axis of
symmetry. The likelihood that this medium has orthorhombic symmetry will be
discussed in a later section.

(a) (b) (c)

yz plane 45 degree azimuth plane zx plane

3500 3500 3500

C ¢" ¢"

• 2soo 2soo 2soo
i 8 _8
-_ 20oo _ 20oo >=2000

15oo 15oo 15oo
• ' I ' ' I ' ' I ' ' I ' ' I ' ' I ' ' I ' ' i , • I • • I ' ' I ' ' i

0 45 90 135 180 0 45 90 135 180 0 45 90 135 180

colatitude in degrees colatitude in degrees colatitude in degrees

FIG.4 Group-velocity plots for the phenolic sphere. The crosses represent the data
points from the experiment and the solid lines are the group velocities from
the inverted stiffnesses.

Despite the lack of robustness and accuracy in the group-velocity-inversion
method that was apparent in the numerical example, the inversion yielded relatively
accurate stiffnesses with an excellent fit of the model velocities to the velocities
measured in the lab. Whatever this inversion lacks in numerical accuracy and
stability, it appears to make up for when used on real data. In the measuring of group
traveltimes, there is freedom to take several measurements from many different
angles without the need to cut faces into the material whose normals are in the desired
direction of wave propagation. It is this freedom to make as many measurements as
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are desired and the freedom to make the measurements as consistent as possible that
redeems this inversion method.

Why bother with two separate inversions?

The difference between group and phase velocities is relatively small (= 2% in
Vestrum and Brown (1993)) even for a medium of moderate (= 20%) anisotropy. Arts
(1993) performs an experiment where traveltimes are measured through a small (6.5-
cm diameter) sphere. He then performs his phase-velocity inversion on the velocities
calculated from those traveltimes arguing that there is very little (< 1%) difference
between group and phase velocities in a medium with weak (< 10%) anisotropy. The
question is: will there be a significant difference a medium of moderate anisotropy
between the phase-velocity-inverted stiffnesses and the group-velocity-inverted
stiffnesses or is the additional effort involved in the group-velocity inversion a waste
of computational time?

Group-velocity inverted stiffnesses (GPa) Phase-velocity inverted stiffnesses (GPa)

n=l n=2 n=3 n=4 n=5 n=6 n=l n=2 n=3 n=4 n---5 n=6

m=l 16,85 7.88 6.81 0.07 -0.18 0.12 16.37 7.47 6.44 0.04 -0.16 -0.01

m=2 7.88 16.03 6,51 0.00 -0.26 -0.08 7.47 15.58 6.20 -0.00 -0,26 -0.11

m---3 6.81 6.51 11.14 0.00 -0.05 -0.04 6.44 6.20 11.03 0.01 -0.03 -0.15

m=4 0.07 0.00 0.00 3.03 0.01 0.04 0.04 -0.00 0.01 3.00 0.04 0.03

m=5 -0.18 -0.26 -0.05 0.01 3.40 -0.01 -0.16 -0.26 -0.03 0.04 3.35 0.01

m=6 0.12 -0.08 -0.04 0.04 -0.01 3.89 -0.01 -0.11 -0.15 0.03 0.01 3.88

TABLE3 Stiffnesses from the group- and phase-velocity inversions of the same data.

In trying to answer this question, an inversion was performed on the velocity
data from the large sphere assuming that the velocities are phase velocities. These
stiffnesses are then compared with the stiffnesses already derived from the group-
velocity inversion. Table 3 shows the stiffnesses from the group-velocity inversion
and the phase-velocity inversion of the same data. The differences between
corresponding elements in the stiffness matrix are listed in table 4.

Difference between the stiffnesses (GPa)

n=l n=2 n=3 n=4 n=5 n=6

m=l 0.48 0.41 0.38 0.02 -0.02 0.14

m=2 0.41 0.44 0.31 0.00 0.00 0.03

m=3 0.38 0.31 0.11 -0.00 -0.02 0.11

m=4 0.02 0.00 -0.00 0.03 -0.03 0.01

m=5 -0.02 0.00 -0.02 -0.03 0.04 -0.01

m=6 0.14 0.03 0.11 0.01 -0.01 0.02

TABLE4 Differences between the ;roup-velocity inverted stiffnesses and the phase-
velocity inverted stiffnesses.

There appears to be a fairly significant difference in stiffnesses between these
two inversions and these differences are not uniform over the entire matrix. For
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example, the difference between the values for C44 , C55, and C66 are very small (<
0.04 GPa or < 1%) compared to the differences between the values for C12 and C13
which are over 5%.

This exercise shows that there can be a fairly significant difference between
the stiffnesses derived from the group-velocity inversion and from the phase-velocity
inversion. This difference emphasizes the value of using the correct inversion method
with the appropriate type of data. It is theoretically incorrect to perform a phase-
velocity inversion on group-velocity data and there can be significant differences
between stiffnesses when the wrong type of velocity is assumed in the inversion when
dealing with velocities from moderately or highly anisotropic materials.

There are also significant differences between the stiffnesses of table 1 (from
phase velocities) and table 2 (from group velocities). However, the velocities for these
two cases were measured on two different samples of phenolic and we believe these
differences to be real. The internal inconsistency and low error level of each inversion
support this conclusion.

Inversion for a not-so-general elastic tensor

The previous work on the phenolic laminate cited here (Brown et al. 1991,
1993; Cheadle et al. 1991) was done assuming that the anisotropy of the material
belonged to the orthorhombic symmetry class. In order to investigate whether or not
the velocity data obtained in the laboratory may be interpreted as velocities from an
orthorhombic medium, an inversion was attempted in which only the nine
independent stiffnesses required to define an orthorhombic medium were free to vary.

In the orthorhombic case, the nine independent non-zero stiffnesses in the
general anisotropic stiffness tensor are as follows:

"C11 C12 C13 0 0 0
C22 C23 0 0 0

Cmn = C33 0 0 0 12
C44 0 0

C55 0
C66

The inversion procedure is identical to the general inversion with the
exception that all 12 of the stiffnesses not included in equation 12 are held at zero
throughout the inversion process. This ensures that the inversion program will derive
the best solution for stiffnesses with orthorhombic - or higher order - symmetry.

When the program was run on the group-velocity data from the sphere, the
velocity error was minimized at 16.1 m/s. This is more than double the velocity error
found in the inversion of the same data for the general elastic tensor, but this is still
less than 1% (=0.6%) of the average velocity.

Table 5 contains the stiffnesses and uncertainties for the inversion that
assumes that the medium is orthorhombic. Note that the stiffnesses are not very
different from those calculated in the general inversion (table 2), but the uncertainties
are almost double the uncertainties associated with the general inversion. This is not
surprising, since the velocity error for this inversion is twice that of the previous
inversion.

The match of the laboratory velocities to the model velocities does not appear
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to be quite as good in this case, as seen in figure 5, as in the general inversion, shown
in figure 4. The most significant discrepancy between the model and observed
velocities appears to be in the qP-wave velocity. The observed velocities appear to be
shifted slightly to the right in figures 4b and 4c. This shift of a few degrees in
colatitude could be due to an error made while aligning the transducers at the
estimated z-axis or zero-colatitude points.

Final inverted stiffnesses (GPa) Error in the stiffnesses (GPa)

n=l n=2 n=3 n=4 n--5 n=6 n=l n=2 n=3 n=4 n--5 n=6

m=l 17.00 7.85 6.65 0 0 0 0.11 0.09 0.06 0 0 0

m=2 7.85 15.97 6.56 0 0 0 0.09 0.10 0.06 0 0 0

m=3 6.65 6.56 11.16 0 0 0 0.06 0.06 0.04 0 0 0

m=4 0 0 0 3.03 0 0 0 0 0 0.02 01 0

m=5 0 0 0 0 3.35 0 0 0 0 0 0.02 0

m=6 0 0 0 0 0 3.88 0 0 0 0 0i 0.03

TABL] 5 Final inverted stiffnesses and their respective uncertainties from the group-
velocity inversion of the laboratory data assuming an orthorhombic medium.

(a) (b) (c)
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Fz_. 5 Group-velocity plots for the phenolic sphere. The crosses represent the data
points from the experiment and the solid lines are the group velocities from
the orthorhombic stiffnesses.

The assumption that this material displays orthorhombic symmetry appears to
be quite reasonable. A solution for the stiffnesses of the large sphere was found that
fits the data within a reasonable margin of experimental error when orthorhombic
symmetry was assumed. The inversion used here is a little faster than the inversion
for the general elastic tensor and would be appropriate for media that display cubic,
hexagonal or orthorhombic symmetry where the orientation of the principal axes is
known.

10-14 CREWESResearchReportVolume6 (1994)



Fromvelocitiesto anisotropicstiffnesses

CONCLUSIONS

A method has been developed to calculate the twenty-one independent elastic
stiffnesses from either group or phase velocities. This method is general in the sense
that it requires no prior knowledge of the symmetry class of the medium and no prior
knowledge of the polarization of the individual wave phases. The which-came-first
criterion is used to decide which velocity is associated with a particular wave phase in
the sense that the qP is the first or primary phase, the qS 1 is the secondary phase and
the qS2 is the third phase.

An additional inversion step is necessary for the group-velocity inversion
since the group velocity cannot be directly calculated in a prescribed direction. This
search for a group velocity adds computational complexity and decreases the
accuracy of the inversion. Even though the group-velocity inversion is not as robust
or as accurate as the phase-velocity inversion, the inversion of the numerical-model
data yielded stiffnesses nearly identical to the input model stiffnesses.

Each of the three inversions performed on the data from the two laboratory
experiments generated stiffnesses that yield forward-model velocities that match up
well with the velocities observed in the laboratory.

Despite the limitations imposed by the algorithm and shown in the numerical
testing, the group-velocity inversion for the general anisotropic tensor yielded the best
results in its inversion of the 99 velocity data-points from the sphere of phenolic. The
smallest velocity error (7.7 m/s) and the least average statistical uncertainty in the
stiffnesses (0.04 GPa) came out of this particular application of the algorithm. The
excellent performance of this inversion is attributed to the freedom that the
experimenter has to make as many measurements in whatever directions as are
desirable, without having to cut the sample so that plane waves may be generated.

In contrast to the group-velocity method, the phase-velocity inversion was the
most robust and most accurate method in the theory and numerical testing, but did not
perform as well when faced with real laboratory data. The only drawback to the
application of this method appears to be the limitation of inverting only plane-wave
velocities. The model velocities fit the observed velocities with a statistical error of
18 m/s resulting in an average uncertainty in the stiffnesses of 0.16 GPa, statistical
errors that are substantially higher than those for the group-velocity inversion.
Despite this higher statistical error due to fewer measurements, the errors from the
phase-velocity inversion are still well within the uncertainty estimates for the
laboratory measurements.

It was shown here that if we assume that the velocities from the sphere are
phase velocities so that we can use the faster and more-accurate phase-velocity
inversion, the resulting stiffnesses can be significantly different than the stiffnesses
resulting from a group-velocity inversion. Even though there isn't much difference
between the group and phase velocities of this moderately anisotropic medium, it is
important to use the appropriate inversion when dealing with moderately to highly
anisotropic media if accurate stiffnesses are to be calculated.

One additional group-velocity inversion was performed on the data from the
phenolic sphere to see how well the model would fit the data if the medium were
constrained to be orthorhombic, with the symmetry axes coincident with the
coordinate axes used in the experiment. This orthorhombic model fits very well to the
observed velocity data. The velocity error of 16.1 m/s, 0.6% of the average velocity,
is well within the experimental error estimate of +_2%. From this inversion exercise
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one may conclude that the assumption of orthorhombic symmetry appears to be valid
for this medium.

\
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