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ABSTRACT 

In this paper we analyze effects of shear-wave propagation in orthorhombic 
Phenolic CE (PCE). This industrial laminate provides a physical model for the study of 
wave propagation in anisotropic media and has been used in a number of laboratory 
experiments. In a recent experiment by Brown et al. (1993) polarity reversals were 
found on seismogram traces along two profiles through a sphere of PCE. The 
observations were attributed to the rapid variation of polarization in the neighbourhood 
of slowness surface conical points (point singularities). Based on numerical modelling 
experiments we attempt an interpretation of these observations. The numerical results 
show amplitude variations similar to those observed in the physical modelling. The 
amplitude variations for receiver positions along a symmetry plane of the anisotropic 
medium may indeed be attributed to rapid polarization changes due to conical points. 
However, the numerical examples indicate that relatively smooth variations of the 
displacement on crossing a symmetry plane can result in rapid amplitude variations 
(polarity reversals) on seismogram traces, depending on the transmitter/receiver 
configuration used. The calculated seismograms also show characteristic (Hilbert- 
transform type) waveforms due to wavefront folding. This folding is a direct results of 
slowness surface conical points and the related waveform characteristics may be used in 
future experiments to detect conical point effects. However, the detectability of these 
waveform variations depends strongly on the frequency range emitted by the source. 

INTRODUCTION 

In recent years considerable effort has been made to physically model elastic 
wave propagation effects in anisotropic media. Cheadle et al. (199 1) first employed 
Phenolic CE (PCE) to model an anisotropic elastic medium. It was found that the 
variations of the quasi-longitudinal (P) and the two quasi-shear (S and T) wave speeds 
with direction resembled those of an orthorhombic elastic medium. The corresponding 
elastic stiffnesses were determined form observed body-wave velocities. In another 
experiment by Brown et al. (1991) a slab of PCE was used to model the effects of 
multiple receiver offsets on anisotropic wave propagation. Pronounced shear-wave 
splitting was observed in seismogram records from off-symmetry planes. 

In a more recent study by Brown et al. (1993) the PCE model was used to 
analyze the effects of slowness surface conical points (or point singularities, see e.g. 
Crampin, 1981) on the propagation of shear waves through a homogeneous sphere of 
PCE laminate. Piezoelectric source and receiver transducers, placed in antipodal 
positions on a sphere, were used to record seismogram sections along two orthogonal 
profiles. Using experimentally determined stiffness values for the sphere, sections 
through the phase and group velocity surfaces corresponding to the recorded 
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seismogram sections were calculated. The numerical results showed the existence of a 
conical point on the slowness surface (or similarly on the phase-velocity surface) in the 
3 1 -symmetry plane. The profiles were recorded along a line corresponding to this 
symmetry plane and along a line perpendicular to it (Figure 1). The most striking 
feature of the seismograms observed was a polarity reversal for arrivals on the cross- 
component records (combinations of radial and transverse transmitter/receiver 
configurations) for the two profiles through the sphere (Figures 2 and 3). The polarity 
reversals were attributed to rapid variations of the polarization in the neighbourhood of 
conical points on the slowness surface. 

3 

LINE 1 LINE 2 
1: FAST 3: SLOW 

5: NEAR-SINGULARITY 

FIG. 1. The two perpendicular lines, Line 1 (solid) and Line 2 (dashed). The symmetry 
axes (1, 2 and 3) are labelled as well as the directions (4, 5 and 6) halfway between 
axes. Point 7 marks the direction equidistant from the three axes, 

In the study presented here we will investigate the relationship between 
slowness surface conical points and related seismogram features more closely by means 
of numerically calculated shear-wave seismograms. A direct comparison between 
numerically calculated and observed seismograms for these physical models of 
anisotropic media has not been carried out before and we expect that the numerical 
results will guide the interpretation of the complex features observed. First, we try to 
illuminate the wave propagation effects of conical points in a homogeneous 
orthorhombic material. Therefore, we show examples of shear wavefronts and high- 
frequency seismograms for receiver directions at and close to the acoustic axis (i.e. the 
axis in slowness space that points from the origin into the direction ( pn, p,,p,) of a 
conical point or point singularity on the slowness surface). In a second step we will 
numerically model and analyze some of the effects observed in the experiment by 
Brown et al. (1993) for an orthorhombic sphere of PCE. For simplicity, we assume 
wave propagation through a homogeneous orthorhombic material. The transmitter is 
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modelled as a point source and effects due to reflection and refraction of phases on the 
sphere boundary will not be included. Nevertheless, we hope that some of the basic 
observations can be explained with this simple model and that the results my guide the 
setup and observations-of future experiments. 

R-R Line 1 

T-R Line 1 
s 
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R-T Line 1 

T-T Line 1 

FIG. 2. Four-component seismograms for Line 1. The R-T and T-R seismograms have 
an applied gain factor of 2. Traveltimes have been scaled up by a factor of 104. Arrows 
on (b) and (c) indicate the approximate position of the polarity change. 

EFFECTS OF CONICAL POINTS IN ORTHORHOMBIC PCE 

The equation for the slowness surface for a general anisotropic medium may be 
given in the form (e.g., Fedorov, 1968; Musgrave, 1970; Helbig, 1994): 

d+ijkzPiPz - Pq= 0 (1) 

where ctikz is the tensor of elastic stiffnesses, pi the slowness and p the density. For 
an orthorhombic medium there are nine independent elastic stiffnesses of nonzero value 
and the usual symmetry conditions for the tensor cijkl apply. For given horizontal 

CREWES Research Report Volume 6 (1994) 11-3 



Rijmpker and Brown 

slowness components px and py, equation (1) may be regarded as a sixth-order 
equation for the vertical slowness pz corresponding to three “upgoing” and three 
“downgoing” waves. On the other hand, for each wavefront normal, yli = Vpi, we may 
find three eigenvalues v corresponding to the phase velocities of one quasi-longitudinal 
(P) and two quasi-shear (S and T) waves. Here, we use values for the elastic 
stiffnesses c@ and the density p determined by Brown et al. (1993) for a sphere of 
PCE laminate. This will allow a direct comparison with the results of the physical 
modelling. 

R-R Line 2 R-T Line 2 

T-R Line 2 
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FIG. 3. Four-component seismograms for Line 2. The seismograms have the same 
applied gain factor. Otherwise as for Figure 2. 

Figure 4 shows three sections of the shear-wave slowness along symmetry 
planes of the slowness surface and corresponding sections of the wave (group) velocity 
calculated for these values of the elastic stiffnesses. The l-axis and the 3-axis coincide 
with the fastest and slowest directions of the P wave velocity, respectively. Results are 
only shown for the two shear waves. There are two conical points in the 2-3 plane and 
one more in the 3-l plane of the slowness surface. As a result of conical points on the 
slowness surface the sections of the S-wave velocity exhibit small gaps, whereas the 
curve for the T wave velocity intersects itself and is multivalued. This is due to the fact 
that slowness and wave surface are related by a polar reciprocal relationship: The 
direction of the group velocity vector is given by the normal to the slowness surface. 
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Note that the sections of the group velocity shown in Figure 4 are not 
“complete”: only group velocities are shown that relate to slowness values in symmetry 
planes of the slowness surface. The complete group velocity sections should also 
include values corresponding to slownesses out of the symmetry plane but with “in- 
plane” slowness-surface normals. The two conical points in the 2-3 plane are not stable 
with respect to small changes in the material properties (see Brown et al., 1993). 
Therefore, we will concentrate on the effects of the conical point in the 3-l plane. By 
making use of analytical expressions for the slowness surface sections in symmetry 
planes (see e.g. Musgrave (1970, 1981)), the position of the angular distance from the 
3-axis can be calculated. We find this distance to be 63.1”. 

PCE LAMINATE 
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FIG. 4. Shear-wave slowness and group velocity in symmetry planes of the PCE 
laminate sphere. The stiffnesses and density used are reported by Brown et al. (1993). 
The thick and dotted lines refer to the fast (S), and slow (T) shear waves, respectively. 

To further investigate the effect of out-of-plane slowness contributions we 
show contours of the vertical slowness pz as a function of the horizontal slownesses px 
and pY for the S and T sheets of the slowness surface in the neighbourhood of the 
conical point (Figure 5). The coordinate system has been rotated with the pz -axis in the 
direction of the acoustic axis. The 3-l plane coincides now with the plane px = 0 and 
the pY-axis is in the 3-l plane. The maximum on the S-wave slowness sheet and the 
minimum on the T-wave sheet mark the position of the conical point, where the two 
sheets touch like two cones placed tip to tip. There are two maxima on the T-wave sheet 
in the 3-l symmetry plane and two saddle points slightly out of this plane. The x and y- 
components of the slowness-surface normals at these “stationary points” on the T-wave 
sheet vanish and give rise to four overlapping geometrical arrivals in the T-wave 
seismogram for a receiver on the acoustic axis ( x = y = 0). [See Buchwald (1959) for a 
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FIG. 5. The vertical slowness pt as a function of the horizontal slownesses px, pr in 
the neighbourhood of the conical point at the origin for (a) the S wave and (b) the T 
wave. 

S-T WAVEFRONT SECTIONS 

FIG. 6. Sections of the two shear wavefronts calculated from slowness values around 
the acoustic axis: (a) viewed obliquely above the z axis; note the hole in the (light) S 
wavefront filled by the (dark) T wavefront; (b) and (c) show sections for x IO and (c) 
y 2 O., respectively. A small gap between the S and the folded T wavefronts is left for 
purposes of representation, 
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more complete explanation of this]. At the conical point, the normal to the slowness 
surface is not defined. In fact, the normal varies discontinuously for all curves on the 
slowness surface that pass through the conical point. This gives rise to a hole in the S 
wavefront and self-intersection of the T wavefront. Figure 6 shows corresponding 
wavefront sections (group-velocity surface) for slowness values in the neighbourhood 
of the conical point. Figure 6a shows the almost planar S-wavefront with a hole in the 
center. The S and T wavefronts are connected along the rim of the hole (for the purpose 
of representation a small gap is left between the two wavefronts). The slowness along 
the rim corresponds to the slowness at the conical point. The slower T wavefront is 
folded with self-intersections. This is shown in detail for two sections (b) x I 0 and (c) 
y 2 0. Tips of so called swallowtail structures (see Rtimpker and Thomson, 1994) of 
the T wavefront are marked in (b) and (c). At these tips the cusps due to the folding of 
the wavefront terminate. Note the two swallowtail tips along the symmetry plane 
(x = 0) in Figure 6b. 
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FIG. 7. T-wave seismograms for receiver positions along (a) x = 0 m and (b) y = 0 m 
with z = 1000 m. The source has components (1,l ,O) and scalar waveforms are 
shown. The dotted line marks the traveltimes of geometrical arrivals. 
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Figure 7 shows corresponding T-wave seismograms for a point source with 
components (1,l ,O) in the rotated coordinate system. Seismograms are calculated for 
receiver positions along lines (a) x =0 and (b) y= 0 with z = 1000 km 
(corresponding to the wavefront sections shown in Figure 6). A pulse width of 
At = 5 x lo4 s has been chosen to give a sufficient separation between individual 
arrivals. In (a) the T wavefront and the S wavefront are connected at approximately 
y = f80 m and t = 0.610 s (S wave contributions are not shown here). At y = 0 there 
are two distinct geometrical arrivals: the first arrival results from the two out-of-plane 
saddle points of the T slowness surface in Figure 5. The superposed signals show 
characteristic Hilbert-transformed waveforms. The second is a superposition of two 
signals due to the maxima of the T slowness surface. On moving off the axis, the 
signals separate and merge with the saddle point arrivals to form a triplication of the T 
wave traveltime curve. Points where the three signals merge (near y = -20 m and 
y = 30 m) correspond to tips of swallowtail structures of the wave surface. This is 
related to Hilbert-transform-type waveforms with large amplitudes. 
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FIG. 7. (continued). 
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For a perpendicular line of receiver positions (Figure 7b) travel times are 
symmetrical with respect to the plane x = 0. However, there are strong variations in 
amplitude and net-waveforms. For x > 0, amplitudes of the first arrival are almost 
negligibly small compared to the first arrivals for x < 0, which clearly exhibit Hilbert- 
transformed waveforms. The amplitudes of merging signals near cusps at y = rt30 m 
are relatively large. However the net-waveforms differ dramatically as a results of 
different contributions form the signals merging here. Strong diffraction effects are 
shown off the cusps in particular for traces with offsets of f40 m. Note that the 
traveltime curve shows three arrivals at x = 0. This agrees with findings in Figure 7a 
on taking into account that the intersection of the two wavefronts shown occurs not 
exactly at y = 0. In fact we have three arrivals at y = 0. However, the pulse width 
chosen does not allow the identification of all three arrivals on the seismogram trace. 

NUMERICAL MODELLING RESULTS 

To model the observations made in the physical experiments we assume a point 
source in a homogeneous medium with receiver positions that vary along circular arcs 

d z OY 
& d Y 53 s fz 

0 d d d 

(9 awL 

FIG. 8. S- and T-wave seismograms along Line 1 for (a) R-R polarization and (b) T-T 
polarization. An offset of 0” corresponds to the 3-axis, 90” to the l-axis. 
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around the source. The source/receiver distance is taken to be equal to the diameter of 
the sphere. In doing so, we assume complete coupling between transmitter/receiver and 
surface of the sphere. We also neglect the effects of reflections from the spherical 
boundary, and of conversions. Seismograms are calculated for radial (in the sagittal 
plane) or transverse (perpendicular to this plane) source and receiver polarizations. 
Vertical (compressional) source/receiver components are not taken into account. 

Line 1 

Figure 
We start with examples of numerically calculated seismograms along Line 1. In 
8 seismograms are shown for (a) radial (R-R) and (b) transverse (T-T) source 

and receiver combinations. The cross components, R-T and T-R, vanish since 3-l is a 
symmetry plane. Seismogram traces have been calculated at intervals of So, slightly less 
than the 5.625” chosen in the physical experiment described. Traveltime curves for S 
and T waves are superposed and a pulse width of At = 0.001 s has been chosen. The 
maximum separation between the two shear wavefronts, near offsets of 30” and 150”, 
is approximately 0.42 s. For the transmitter/receiver combinations shown here, S- and 
T-wave arrivals appear on different traces. Note how the “gap” in the S wavefront near 
offsets 60” and 120” (due to the conical point) is “closed” by self-intersecting T wave 
arrivals. 

0 
cc 

FIG. 8. (continued). 
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The R-R section (Figure 8a) shows S-wave arrivals only at offsets of 0” to 55” 
and 125” to 180”, and T-wave arrivals only in the interval from 60” to 120”. The 
waveforms in these intervals are simply smoothed S-function pulses in correspondence 
with the assumed source waveform. Strong variations in waveform and amplitude are 
only found at offsets of 60” and 65” (and at 115” and 120”), where T-wave arrivals 
merge as a result of the swallowtail structure of the T wavefront. For the T-T section 
(Figure 8b) we have a similar but opposite situation with T-arrivals at offsets of 0” to 
65” and 115” to 180”, and S-wave arrivals only from 70” to 110”. To analyze these 
waveforms in greater detail we calculated seismogram traces similar to those in Figure 
7a but with the same transmitter/receiver configuration used here. The results are 
shown in Figure 9. 

On the T-T section (Figure 9) two arrivals merge near a positive offset of 
y = 40 m. On comparison with Figure 7a we have to take into account that scalar 
waveforms are displayed there so as to show all geometrical arrivals in one set of 
seismograms. Note the reduction in relative amplitudes for the two arrivals at offset 
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FIG. 9. T-wave seismogram for receiver positions along x = 0 m with z = 1000 m; 
source and receiver oriented in the T-direction 
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y = 0 in Figure 9 compared with Figure 7a. This is due to the elimination of two 
arrivals for this specific source/receiver configuration. The resulting seismogram traces 
can now be matched up with traces at offsets of 60” and 65” (or 115” and 120”) in 
Figure 8b. By comparing the T-T sections we find that offsets of 60” and 65” in Figure 
8b correspond to offsets of -30 m and 20 m, respectively, in Figure 9. The Hilbert- 
transform-type waveform at 65”, therefore, indicates the merging of geometrical 
arrivals near a swallowtail tip on the T wavefront. Arrivals on the R-R sections (not 
shown) correspond to arrivals in Figure 8b in a similar manner. 

The physical experiments did not show (at least it is not obvious) the waveform 
effects described here. A possible explanation for this could be the contamination of the 
seismograms with arrivals due to reflections from the spherical boundary, or to 
conversions. Another important effect is the pulse width or frequency used in the 
experiments. To illustrate this we calculated seismograms similar to those in Figure 8 
but with a pulse width of 0.03 s. The results (Figure 10) show that individual signals, 
near offsets of 60” and 120”, cannot be separated for the pulse width chosen and that 
the waveform effects are less pronounced, though some waveform variability remains. 
Furthermore, in the physical modelling, rather than point sources and receivers, the 
transducers covered relatively large areas leading to spatial smearing of arrivals. 

FIG. 10. Same as Figure 8, but for a pulse width of At = 0.03 s. 
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In the physical experiment, polarity reversals were shown on the cross- 
component sections, R-T and T-R, of Line 1 (a symmetry plane), whereas in our 
numerical analysis these cross-components vanish. To give a possible explanation for 
this we calculated displacement vectors corresponding to the first S- and T-wave 
arrivals for offsets along Line 1 with three different source orientations. The first two 
examples (Figure 11) with sources polarized radially (R) and transversely (T) 
correspond to the situation in the seismograms shown. The cross-components are zero 
in both cases. In a third example we assume a source orientation of 45” between R and 
T. In this case, the cross-components do not vanish and would indeed register with 
polarity reversals near offsets of 60” and 120” on a receiver polarized between R and T. 
The effect is strongest for 45” source and receiver orientations and gradually decreases 
for smaller or larger angles. This indicates that if the transducers were slightly 
misaligned or if they were not positioned exactly on the symmetry plane, there would 
be some energy on the cross-components and this could account for the physical 
modelling results. 

Line 2 

We now turn to examples of seismograms for source/receiver positions along 
Line 2 (Figure 12). Here, the zero offset corresponds to a position in the 3-l symmetry 

-//A‘\, 

FIG. 10. (continued). 
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plane 45” off either axis. The cross-components (R-T and T-R) along Line 2 (Figure 
12~) are generally nonzero. The separation between the two shear wavefronts ranges 
from 0.027 s near offsets of k20” to 0.061 s at k90” (along the 2-axis). 
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FIG. 11. The displacement corresponding to the profile along Line 1 for three source 
orientations as indicated by the arrows on the left. The dashed lines indicate the 
orientation of the cross-component. 

On the R-R section (Figure 12a), the amplitude of the S-wave arrival vanishes 
in the symmetry plane and amplitudes are largest for offsets of about k45’. The T-wave 
amplitudes are large in the symmetry plane with maximum amplitudes for offsets of 
about &BY. There are no multiple arrivals and all waveforms are of s-function type. On 
the T-T section (Figure 12b), the T-wave amplitude vanishes in the symmetry plane and 
remains relatively small for offsets up to f15”. The amplitude reaches its maximum 
near +35” and becomes only slightly smaller for larger offsets. The S-wave amplitude 
decreases gradually from its maximum in the symmetry plane to offsets of about &45”, 
and then remains relatively constant. 

On turning to the cross-component sections (Figure 12c), we note that results 
for the R-T and T-R combinations agree completely and therefore only one section is 
shown here. Physical results for these sections also seem to be quite similar, but there 
is a high noise level. The most striking feature here is the polarity reversal for both the 
S and T waves on passing across the symmetry plane, where the displacement 
vanishes. Note also that S and T have opposite polarization. This might give the 
impression of a Hilbert-transform-type waveform for lower frequencies. Amplitudes 
for S are largest at offsets of about rtr40”, whereas the T wave amplitudes are largest at 
GO”. For larger offsets, the amplitudes for both, S and T wave, decrease only slightly. 
We note that in the physical experiments seismogram traces show polarity reversal on 
the cross-components on passing the symmetry plane. However, due to the high noise 
level, travel times of the first shear wave arrivals are difficult to estimate from the 
observations. 
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To analyze the variation of the amplitudes along Line 2 in greater detail we 
calculated displacement vectors as function of offset for the two source orientations R 
and T. The displacement for a given source orientation depends on the polarization as a 
function of slowness. To find the polarization as a function of offset, the slowness of 
the Snell wave corresponding to a given receiver position has to be found. This can be 
done by finding the stationary point on the slowness surface for a given receiver 
position. For each receiver position along Line 2 there is only one stationary point on 
the slowness surface - there are no multiple arrivals. We have identified stationary 
points for receivers along Line 2. Traces of stationary points for receivers along Line 2 
for S and T are shown in Figure 13 and the corresponding displacement vectors for two 
source orientations, R and T are shown in Figure 14. For a radial source orientation 
(Figure 14, top), the S-wave displacement is zero in the symmetry plane (zero offset), 
whereas the T-wave displacement reaches its maximum (in the R direction) here. For a 
transverse source (Figure 14, bottom), the S-wave displacement is largest (in the T- 
direction) in the symmetry plane, whereas the T-wave displacement vanishes. In both 
cases, the cross-component, indicated by the dashed line, for all wave types changes 
sign on passing the symmetry plane. Note that the total displacement changes only 
slightly. 

FIG. 12. S- and T-wave seismograms along Line 2 for (a) R-R, (b) T-T, (c) R-T and 
T-R polarizations. An offset of 0” corresponds to a position in the 3-l plane half-way 
between the axes. Offsets of -90” and +90” correspond to shots along the 2-axis. 
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FIG. 12. (continued). 

extent of the area on the sphere affected by these waveform effect is relatively small. In 
our examples, with an increment of 5” between offsets, only two neighbouring traces 
exhibit these waveform effects. However, effects are strongly diminished at lower 
frequencies and it remains doubtful whether they can still be detected with the present 
experimental setup. For this reason, a similar experiment is being shot on a larger 
phenolic sphere with over twice the radius. 

Away from these, all traces contain only single arrivals of either S or T. The 
seismograms recorded by Brown et al. (1993) do show arrivals on the cross- 
components with a polarity reversal on passing the acoustic axis. This is not directly 
supported by our results where the cross-components vanish. However, a possible 
misalignment of transmitter and receiver with the symmetry axis, either in polarization 
or position, can cause sign changes on the cross-components for receiver positions 
crossing the acoustic axis. Another possibility seems to be a poorly defined symmetry 
plane due to inhomogeneities of the material. 

Along Line 2, S- and T-wave arrivals are always completely separated. The 
cross-component profiles in our examples show polarity reversals for receivers 
crossing the symmetry plane The sign changes observed here cannot directly be 
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attributed to rapid variations of polarization in the neighbourhood of the acoustic axis. 
We consider the effects of small variations in the displacement together with the specific 
transmitter/receiver configurations to be a more likely explanation for this. 

FIG. 13. Quadrants of the (top) S- and (bottom) T-wave slowness surfaces. The thick 
lines trace the positions of stationary points for receiver positions along Line 2. 
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FIG. 14. The displacement corresponding to the profile along Line 2 for two source 
orientations as indicated by the arrows on the left. The dashed lines indicate the 
orientation of the cross-component. The displacement has been calculated from 
polarization vectors corresponding to slownesses along lines shown in Figure 13. 
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