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ABSTRACT

Stewart and Schieck (1993) show that a conventional 2-pass 2-D f-k filter fails
to provide an axially-symmetric response. They suggest using a true 3-D one-pass filter
for specific pass ranges and symmetric results. They also approximate a true 3-D f-k
symmetric response by axially rotating a 2-D f-k filter. In this paper a true 3-D f-k filter
will be compared with this 2-D rotated filter. During the investigation, it is found that
an interpolation scheme is required when rotating a discrete filter to avoid an aliasing
problem. A special 2-D filter that has a 2-pass symmetric 3-D f-k response can be
defined. This Gaussian shaped filter is applied in two passes and produces a symmetric
response, however it has a very gradual cut-off region.

INTRODUCTION

The amount of 3-D data collected has been increasing and the need for 3-D
filtering can be understood. Stewart and Schieck (1993) show that a simple 2-pass 2-D
f-k filter for 3-D fails to have a circular symmetry on application. Instead, they suggest
an axially rotated 2-D f-k filter version to maintain the symmetry. However they also
claim that this filter is a good approximation for a true one pass 3-D f-k filter but it is
not exact. In this paper a true 3-D f-k filter is derived and is compared with a 2-D
rotated version. A sampling problem occurred during rotating the 2-D filter. This
problem is also examined. A special filter that has a two-pass symmetric 3-D f-k
response is developed and is discussed.

Methods

A 3-D f-k filter has the following expression in m-kx,ky domain.

I co >v L

F(cO,kx,ky))= k
0 _--- <V L

k -

where k = (kZx+k_)_- .

|

From thisexpression, each frequency slicehas an amplitude of zero outside a circular
radius k and one inside thisradius.This radius k isa function of frequency and cut-off
velocity.In thispaper, the analysis willbe focused on a frequency slice,hence the 3-D
f-k can be reduced into 2-D problem. Bracewell (1978) shows that the Fourier
transformofa 2-D circularsymmetricalfunctionisequivalenttotheHankeltransform
ofthesame functioninI-D.Furthermorehe alsoshows that

Hankel transform of H(_a) - aJl(2_q)q
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0 Ixl>_-
and J1 is 1st order of Bessel function.

Therefore the response of a true 3-D f-k filter in o)-x,y domain is an axially rotated 1-D
Bessel function of first order. Stewart and Schieck (1993) approximate this filter by an
axially rotated 1-D sinc function. The differences are shown in Figure la. In the x-
domain the Bessel function has less oscillation than the corresponding sinc function,
therefore the roll-off of amplitude for a Bessel function is very gentle and can be
thought as a special taper being applied to the box-car function (Figure lb). After 2-D
Fourier transforming, a rotated Bessel function gives a cylindrical shape of amplitude
spectrum with much less over-shooting at the edge than a 2-D Fourier transform of a
equivalent sinc function (Figure lc).

In the test above, analytical expressions exist for both sinc and Bessel function,
and they can be easily rotated. However if an analytical expression for a filter is not
easily available (for example a filter with a taper), it may be economical to just rotate a
discrete filter. In this case, sampling a discrete filter during the rotation can be an issue.
In Figure 2, cross-sections of a 2-D amplitude spectrum for Bessel function, sinc
function and sinc function with 5 Hz linear taper, are shown. It is generated by rotating
a discrete filter without interpolation. In Figure 2a the Nyquist of the filter is 125 spatial
frequency, the amplitude spectrum shows a lot of ripple inside the pass-band. In Figure
2b the pass-band of the filter is reduced into 50 spatial frequency, and in Figure 2c the
pass-band is kept at 100 spatial frequency, however the Nyquist is increased into 250
spatial frequency. Both spectra have relative better fiat top in the pass-band than that in
Figure 2a. In addition, significant amplitude of high frequency noise outside the pass-
band are noticed. In Figure 3, same filters as in Figure 2 are rotated but with linear
interpolation. This time the spectra are much better than that in Figure 2. High
frequency noise, however, are not noticed in Figure 3. Therefore it is concluded that
nearest sampling (no interpolation) can generate high frequency noise and even worse
they can wrap around and alias inside the pass-band.

For large data sets, a two-pass 2-D f-k filter may be more efficient than one-
pass 3-D f-k filter. Conventional two-pass 2-D f-k filter, however lacks circular
symmetry (Stewart and Schieck, 1993) after application. In the following paragraph, a
circular symmetric two-pass 2-D F-K is introduced and discussed.

A 2-D filter slice can be separated into two-pass, if the filter f can be written as:
f(x,y)=g(x)h(y) (1)

where g and h are some filters.
Also circular symmetry requires the filter f to have the following properties:
f(x,y) = f(y,x)

=f(r) (2)
where r = sqrt(x 2 + y2)

Combining (1) and (2),
f(x,y) = g(x)g(y)

= f(r)
or

f(r)=g(x)g(y) (3)
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A Gaussian function of the form f(x) = exp(t_x 2) satisfies equation (3) with g(x) = f(x)
if

f(r) = exp(o_r 2)

= exp(t_(xE+y2))

= exp(t_xE)exp(o_y 2)
=f(x)f(y) (4)

This function behaves like a low-pass filter with a smooth build-in taper. The pass-
band is determined by ct. This filter has another interesting property that the Fourier
transform of this filter is another shape of a Gaussian filter (Bracewell, 1978). Figure 4
shows an example of f-k filter with a Gaussian function in o3-x and _-k. When this
filter is applied in two-passes, it produces a circular symmetric response with the same
shape as the filter being rotated and rejects low velocity events.

Although this filter has some good properties and is efficient when applying in
3-D, it cannot well-define a cut-off velocity due to the gentle shape of the taper. This
filter also cannot reject high velocity without saving the original input or the symmetry
of response will be destroyed.

Conclusion

In this paper a true 3-D f-k filter is compared with a 2-D rotated sinc function.
This 2-D rotated filter requires a taper to reduce it's Gibb phenomena in 2-D. A
interpolation scheme is required to rotate a discrete filter in order to avoid the aliasing.
A 2-pass 2-D symmetric filter is also discussed and it is attractive in terms of speed,
however it also has some disadvantage.

REFERENCES

Bracewell, R., 1978, The Fourier transform and its applications, 2nd edition: Mcgraw-Hill Book
Company.

Stewart, R.R. and Schieck, D.G., 1993.3-D F-K filtering, J. Seis. Expl., 2: 41-54.

CREWES Research Report Volume6 (1994) 15-3



C
ha

n
an

d
St

ew
ar

t

-
_

,
\_

o
_ =
_

_
.

_g ,_
"

_
,

_
n

c_
o

=

_.
_

_
_

-
.

_
_

,,
_o f_ _.

_,
.

.=
_. _

.

.;,
__

__
_k

15
-4

C
R

E
W

E
S

R
es

ea
rc

h
R

ep
or

t
V

ol
um

e
6

(1
99

4)



3-
D

F
-K

fil
te

rin
q

Y
_

g

_
o

•

o
s_

_-
...

.
,

,

%
?

.o
o

•_
0

o
=

_-
_

_'
_

_
/8

_'
_-

.

_
-_

/

tJ
l

°
_

=
_

_
-

._

_
0

.
_.

.;
.

_.
.,.

0

0_
.

_
'

''

,_
._

-_

e
,,_

r
§.

I

.

C
R

E
W

E
S

R
es

ea
rc

h
R

ep
or

t
V

ol
um

e
6

(1
99

4)
15

-5



C
ha

n
an

d
St

ew
ar

t _o
'_

.
_

_&
.._

0
0

tO
.

r_
l

C
fJ

_
0

f2
_t

O

r,

2:
=. r_

3
*

_
I

_
_

t_

_
/o

.
o

tO
N

£_
..

0
,..

-_
=

-.
_.

"

_ •
,-

_
_

.

_.
...

,*
0

_#
,.

,,
...

...
.

... 3
1

_
.

15
-6

C
R

E
W

E
S

R
es

ea
rc

h
R

ep
or

t
V

ol
um

e
6

(1
99

4)



3-
D

F
-K

fil
te

rin
g

C
R

E
W

E
S

R
es

ea
rc

h
R

ep
or

t
V

ol
um

e
6

(1
99

4)
15

-7


