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ABSTRACT

Dip moveout (DMO) processing for converted-waves (P-SV) differs from that
for either P- or S-waves only because of the asymmetry of down-going and up-going
raypaths, even in an isotropic and homogeneous medium and with a zero-dip reflector.
This makes the kinematics more complicated than that for P-waves or S-waves.
Previous work on DMO processing for a depth-variable velocity medium has been
concerned with DMO processing for either P- or S-waves.

In this paper, an analytical expression for the P-SVDMO operator in a medium
with a vertical, linear velocity gradient is derived. The differences between DMO
operators in constant velocity medium and a linear velocity gradient medium are
discussed. Finally, an approximate operator for a linear velocity gradient medium is
proposed, and we show that this operator fits the accurate operator very well, making
the P-SV DMO processing in a depth-variable velocity medium practical.

INTRODUCTION

Dip-moveout (DMO) analysis in a medium of constant velocity is well
understood and is readily implemented when dealing only with either P-waves or S-
waves (Hale, 1984). DMO processing tries to overcome the reflection point dispersion
associated with dipping events.

DMO processing for converted-waves differs from normal (P-P or S-S) waves
because of the asymmetry of down-going and up-going raypaths, even in an isotropic
and homogeneous medium and with zero-dip reflector. This makes the kinematics more
complicated than that for normal waves. Harrison (1990, 1992) proposed exact
integral solutions for the DMO processing for converted-waves in a constant velocity
medium. Alfaraj and Larner (1991) extended Gardner DMO method to converted-
waves by transforming (t, x) domain into (t 1, k) domain in which the relationship
between time tl and offset k is hyperbolic and dip-independent. Based on the
hyperbolic approximation to the converted-wave DMO expression, an approximate
DMO processing method for mode-converted waves in the frequency-wavenumber (f-
k) domain was proposed by Alfaraj (1992).

DMO processing for a depth-variable velocity medium has been discussed by
many authors (e.g., Perkins and French, 1990; Artley,1991; Dietrich and Cohen,
1992), but, their work was concerned mainly with DMO processing for either P-waves
or S-waves. Harrison (1992) tried to adapt the DMO operator for a constant velocity
medium to fit the layered velocity model by using approximations.

In this paper, an analytical expression for a P-SVDMO operator in a medium
with linear velocity gradient is derived, then the differences of DMO operators in
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constant velocity medium and linear velocity gradient medium are discussed. Finally,
an approximate DMO operator for a linear velocity gradient medium is proposed.

DERIVATION OF THE DMO OPERATOR FOR A LINEAR VELOCITY
GRADIENT

Figure 1 shows P-wave energy being mode-converted by a dipping reflector
and recorded by a multicomponent receiver in a medium with a linear velocity gradient.

S: Source position;

R: Receiver position;

C: Conversion point;

P: Position of the conversion point on the surface;

2h

2h-xp

S Xp M R

0

FIG. 1. Generating the zero-offset response for constant velocity gradient medium
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M: Zero offset position;

O: Middle point between S and R;

sin Oi
pj = -- : Ray parameter for P-wave;

Vp(z)

sin 02: Ray parameter for S-wave;
P2- V._(z)

The velocity along path SC is Vp(z) and the velocity along CR is V,(z ). For the
constant velocity gradient model, they are

Vp =- Vp(z) = VpO+k z, (la)

Vs =- Vs(z) = Vso+kk z, (1b)

where Vp0 and V,o are P- and S-wave velocities at the surface respectively. Vp(z) and

Vs(z) are the velocities of P-waves and S-waves at the depth Z and denoted as Vp and

Vs for convenience. The velocity gradient is given by k, and the VplVs ratio is given by
_. In order to simplify the derivation while not losing the general application of the

conclusions, 7 is assumed to be constant, i.e.,

Vp/Vs = 7(constant). (2)

According to Snell's law, the travel time tsc for P-waves from source S to conversion
point C is

f0 Idz I dVp k_0

t,c= vp41-p_v2p_Jvpo vp41p2v2p

- l l° Vp 1+_/l-p?%

__ f(vpo)___]. (3)
In the same way as above, the travel time tcR for S-waves from conversion point C to
receiver R is

tcR = 71o_ (,_-)1+ _/, '-p2V20 . (4)

L vsol+Vl-p_v}j
The total travel time t is given by
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t=-tsc+tcR. (5)

Substituting for tscand tcRfrom equations (3) and (4) into equation (5) and simplifying
it gives:

P 1+_/ 1-p_V 2 [ 1+_/ 1-p2V 2 J (6a)

Using a similar approach, the horizontal distances from S to C (for P-waves) and from
C to S (for S-waves) can be derived as following

xl'=

/1-p%-J"-p22v2s2h-X = r kp2

Solving the above equations and express Pl and P2 as the function of Vp or Vs, we get:

2Xpk

22 2 22 2 2
Pl _/(Xp k +Vpo+V_)-4V_Vpo (6b)

2(2h-Xp)k

P2= 2k 2 2 22 2 2

From the equations (2) and (6), Pl, P2 and vp(or z) can be calculated for given offset

Xp from the source and two-way travel time t.

The dip angle o_can then be computed from the two ray parameters Pl and Pz-
Referring to Figure 1, it is seen that

sin (01+o_) _ sin (02-c_)

P- Vp Vs

where p is the ray parameter for at the mode-conversion position on the dipping
interface. Expanding the above equation and simplifying it, sin c_ can be expressed as

PZ-Plsin a =

_/t l "/1 _2V2+_"2-1 "e- - ",2 (7)'_pp' -t"1 p _ss v l-P2 Vs ) kF2-P1)

From the above equation, we can see that when P2 ->Pl, o_is positive; when P2 < Pl,
is negative.
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The DMO curves are made by constructing the zero-offset response. Figure 1
has been drawn to indicate that the zero-offset down-going and up-going raypaths are
coincident. This is true only for constant _/ value (Harrison, 1992). Due to the
assumption in equation (2), the P-wave and S-wave ray parameters can be expressed as

p

Pl - sin av,,'
t

P2 = sin 0_.
Vs

Then, just as the derivation of the two-way travel time t, the zero-offset two-way travel
time x can be derived as

"r= l-log ( Vp ) L -pJ ( Vs ). , VsJ . (8a)
k _ VpO I+cos a L VsO l+cos a

The offset Xmp from the point of mode conversion C in Figure 1, must be the same for
down-going and up-going zero-offset raypaths, i.e.,

- i

__p'12V20 _a/ I-Pl 2V2 _ 4 VZ-sin2osV_o-Vp cos O: (8b)
Xmp =

kp' 1 k sin ct

The midpoint-offset of the DMO operator X is then given by

X = Xp+X,,,p-h. (8c)

Equations (8) are used to generate the shape of the DMO response.

IMPLEMENTATION OF P-SV DMO FOR A MEDIUM WITH A LINEAR
VELOCITY GRADIENT

If an integral-summation algorithm (Deregowski, 1985) is implemented, the
algorithm consists of first constructing a time domain DMO response for each input
trace, then summing the response to get the final DMO-corrected output. In the
implementation, dip aperture width, amplitude and phase corrections of the operator
must be discussed.

Aperture width and maximum dip limit

Equations (8) are used to generate the shape of the DMO curves, but it is still
necessary to determine their maximum physical extents. These extents establish the
maximum aperture width, corresponding to some maximum physical dip. In turn,
given the maximum physical dip to be dealt with, the corresponding aperture width is
determined.

In equation (7), c_ is actually the physical dip. If we let
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Isin otl< Isin O_maxl,

where _max is the maximum physical dip, then the maximum aperture width can be
determined. The smaller the O_max,then the smaller will be the aperture width. Small
aperture prevents spatial aliasing, suppresses the steeply dipping coherent noise, and
saves run-time for DMO processing.

Amplitude and phase corrections of the P-SV DMO operator

To assess the effect of the DMO operator on the input data, it is necessary to
analyze how the data are changed by summation across the operator width, which
generates the final DMO-corrected output. According to Harrison (1992), if the gain
Go at the zero-dip conversion point, where the curvature is Co, is defined as

Go = ffU_,

where f is the frequency. The gain at any point along the DMO curve will then be

G =_o-0 GO,

where C is the curvature at that point.

An asymptotic -45 degree phase correction is applied in the implementation to
test the DMO operator.

APPROXIMATIONS OF DMO OPERATOR

It has not been possible to determine an explicit solution of "_with respect to
offset X from the mid-point, so there is a disadvantage in run-time to generate the shape
of the DMO response. However, for constant velocity DMO (Harrison, 1990, 1992),
the zero-offset travel time "_can be explicitly expressed as the function of X, i.e.,

vi;+v; vi;v;, IT= VflV-_--f-/V [11-A )[ih(VI.2(_s,2(h+X) ) 1 , (9)

U

where Vp and Vs are the approximated velocities for P- and S-waves respectively. If
we try to use the constant velocity DMO operator for depth-variable velocity model,
then we must find a proper velocity approximation to make the approximated operator
fit the accurate operator. Harrison (I992) pointed out that the average P- and S-wave
velocities at the depth of zero-dip conversion point are the best velocities to use in the
construction of the DMO response. In this paper, it is shown that both average velocity
and RMS velocity at the depth of the conversion point, at which zero-offset travel time
is calculated, are very good velocity approximations for using equation (9) in the
construction of DMO response.

For a medium with a linear velocity gradient as expressed in equation (1), the
RMS velocity can be derived as
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[ ,, _1/2 [k V + k2z2\l/2
,,,,,.,s_/±|,..2.,/ _/'_z,'°"_-/ (lO)

and the average velocity can be obtained as

1l,A .... k z (l l)
V_ - V(t)d t =

From the equations (10) and (11), VfiMs and V¢w are the functions of depth z at the
conversion point C, as denoted in Figure 2.

We have yet to know the depth z in order to obtain the RMS velocity or average
velocity at that point. In the constant velocity model, there are following relationships

2h b

?- 2h-x o

S Xp _ Xmp R

0

P1 Z

FIG. 2. Generating the zero-offset response for constant velocity medium
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Harrison, 1992):

2h= /_/ l_[h_X-]+ 1 -z2 + +"Ph+X I-z 2, (12)
V ' ",+X" _ (h-X)]

m which, V_ is the approximated velocity for P-waves. In this paper, it is the RMS

velocity V_ Msor average velocity V¢ '_.

Using equations (12), coupled with equation (10) or equation (11), the RMS
velocity or average velocity can be calculated.

DISCUSSION

Figures 3 and 4 show that the shapes of the DMO trajectories for constant
velocity medium and a linear velocity gradient medium are similar. The DMO
trajectories shift to a later time along the zero-offset travel time ('c) axis and the
curvatures become larger with the increase of velocity gradient k. If the ratio of P-wave
velocity and S-wave velocity is constant, the positions of the zero-dip conversion
points of constant velocity model and linear velocity gradient model are the same at a
given depth. For the same physical dip limit, the aperture width is obviously reduced
as k increases. This means that if the same DMO aperture width is used, the ability to
deal with the steeply dipping events will be increased with an increasing velocity
gradient k increases. Compared with the aperture width in Figure 4, in which the
maximum physical dip angle U,max is 80 degrees, the aperture width in Figure 5 with
O_maxequal to 40 degrees is obviously reduced. In Figures 4 and 5, amplitude and
phase corrections of the P-SVDMO operator were applied. From the comparison of
Figure 4 with Figure 6, it was also found that with the increasing offset, the response
seems to shift to a later time and the aperture width is proportionally increased for the
same physical dip limit.

Figure 7 shows the curves of interval, RMS and average velocities calculated
using equations (la), (10) and (11) respectively. It is seen that RMS velocity and
average velocity are very close for a medium k value. Even when depth z is as large as
10,000 m and velocity gradient k is 0.8, the difference between the RMS velocity and
average velocity is less than 10%. But because average velocity is smoother than the
RMS velocity, it is often preferred in practice.

DMO curves, using the average (dash-dot line) and RMS (dash line) velocities
at the depth of zero-dip conversion point as the velocity approximation in constant
velocity DMO operator discussed by Harrison (1992), and the accurate DMO curves
discussed in this paper (solid line), are shown in Figures 8 and 9. Here, the accurate
DMO curves are referring to the DMO curves calculated using the analytical formula
(equations 8) without any approximations. The dash-dot lines (average velocity
approximation) overlap the dash lines (RMS velocity approximation). This means the
error due to the use of different velocity approximation is negligible, because the
difference between RMS velocity and average velocity is small, and more importantly,
unlike migration, the accuracy of DMO processing is fairly insensitive to velocity error.
For small velocity gradient (Figure 8), the approximate DMO curves fit the accurate
curves very well, but the velocity gradient increases, this match becomes worse,
especially as the horizontal position of DMO operator from zero-dip conversion point
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(Figure 9) increases. In the generation of the approximate DMO curves, ray bending
was not taken into account and the aperture width of the approximate DMO curves is
much wider than that of the accurate DMO curves.

The DMO curves for the velocity approximations discussed in this paper are
shown in Figure 10, in which the approximate velocities are the RMS velocity and
average velocity at the depth of the conversion point, rather than at the depth of zero-dip
conversion point. Compared with the DMO curves shown in Figure 9, the DMO
curves with new velocity approximations fit the accurate DMO curves very well. For
the same reason discussed above, the aperture width of the approximate operator is
wider than that of the accurate operator. If the maximum dip angle of the approximate
operator is limited to 45 degrees, as shown in Figure 11, while the maximum dip angle
of the accurate operator is still 80 degree, the aperture widths for the approximate
operators and accurate operator are very close. Based on this discussion, a very
important property about DMO processing for linear velocity gradient medium can be
obtained. In the use of the approximate DMO operator with new velocity
approximation, we can use a DMO operator with 45 degree maximum dip angle to
DMO-correct an event with an 80 degree physical dip angle. This will help to reduce
run-time, prevent spatial aliasing and suppress steeply dipping coherent noise.

CONCLUSIONS

An analytical expression for the P-SV DMO operator in a medium with linear
velocity gradient was derived and the differences of DMO operators between constant
velocity medium and linear velocity gradient medium were discussed. It is shown that
with an increase in velocity gradient, the aperture width of the DMO operator becomes
smaller. The presence of ray bending is seen to enhance the steep-event accuracy of the
DMO result.

RMS and average velocities for the linear velocity gradient medium are very
close, even when the velocity gradient and/or the depth is large. The accuracy of DMO
processing is fairly insensitive to the velocity error. Due to these two properties, there
is almost no difference between using the RMS velocity and using the average velocity
as the velocity approximation in the generation of the DMO response for the constant
velocity DMO operator.

Compared with the average or RMS velocity at the depth of zero-dip conversion
point, the average velocity or RMS velocity at the depth of conversion point at which
zero-offset travel time is calculated is a better velocity approximation used in the
generation of DMO response using constant velocity DMO operator. Even with large
offset, in fast varying velocity medium and in later time, the approximated DMO
operator with new velocity approximation can fit the accurate operator very well.

Some of the methods discussed in this paper may be suitable for conventional
P-wave DMO processing in the linear velocity gradient medium and the derivations of
the accurate DMO operator for linear velocity gradient medium may be extended to the
discussion of 3-D converted-wave DMO correction for the linear velocity gradient case.
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FIG. 3. P-SV DMO response for constant velocity medium without amplitude and
phase corrections. The time indicated for each DMO curve is two-way travel time.
Vp0=3000 m/s, V50= 1500 m/s, 2h=2000 m, amax=80°
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FIG. 4. P-SVDMO response for constant velocity gradient medium with amplitude and
phase corrections. The time indicated for each DMO curve is two-way travel time.
Vp0=3000 m/s, Vs0=1500 m/s, 2h=2000 m, ccmax=80° and k=0.4.
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FIG. 5. P-WDMO response for constant velocity gradient medium with amplitude and
phase corrections. The time indicated for each DMO curve is two-way travel time.
VpQ=SOOO m/s, VsQ=ISOO m/s, 2h=2000 m, otmax=^ and k=0.4.
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FIG. 6. P-SV DMO response for constant velocity gradient medium with amplitude and
phase correction. The time indicated for each DMO curve is two-way travel time.
Vpo=3000 m/s, Vs0=1500 m/s, 2h=1000 m, ccmax=80° and k=0.4.
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FIG. 7. The curves showing the relationship of interval, RMS and average velocities
for constant velocity gradient model with velocity gradient: 0.8.

_tu_e DMO Curves For Different Two-way Times _cciv¢r
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FIG. 8. P-SV DMO curves calculated using constant velocity DMO operator with
approximated RMS (dash lines) and average (dash-dot lines) velocities at the depth of
zero-dip conversion point, as suggested by Harrison. Solid lines are for accurate DMO

operator. Vp0=3000 m/s, Vso = 1500 m]s, 2h=2000 m, 0(,max=800and k=0.1
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FIG. 9. P-SV DMO curves calculated using constant velocity DMO operator with
approximated RMS (dash lines) and average (dash-dot lines) velocities at the depth of
zero-dip conversion point, as suggested by Harrison. Solid lines are for accurate DMO

operator. Vp0=3000 m/s, Vs0=1500 mls, 2h=2000 m, Otmax=800and k=0.8
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FIG. 10. P-SV DMO curves calculated using constant velocity DMO operator with

approximated RMS (dash lines) and average (dash-dot lines) velocities at the depth of

conversion point, as discussed in this paper. Solid lines are for accurate DMO

operator. Vpo=3000 m/s, Vs0=1500 m/s, 2h=2000 m, 0_max=800 and k=0.8
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_ DMO Cunles For Different Two-way Times t_cmiv_r
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FIG. l 1. P-SV DMO curves calculated using constant velocity DMO operator with
approximated RMS (dash line) and average (dash line) velocities at the depth of
conversion point, as discussed in this paper. Solid lines are for accurate DMO

operator. Vp0=3000 m/s, Vs0=1500 re]s, 2h=2000 m and k=0.8

0_max=800 and (Zmax=450 for accurate and approximated DMO operators respectively.
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