
Forward modelling in anisotropic media

CREWES Research Report - Volume 7 (1995) 6-1

Numerical simulation of wave propagation in anisotropic
media

Kangan Fang and R. James Brown

ABSTRACT

Numerical simulation or forward modelling of wave propagation is a cheap and
effective way to produce test data and to examine the mechanism of wave propagation.
Because of the complexities of anisotropy, forward modelling is a practical means to
aid the anisotropy analysis. Although a lot of work has been done on the forward
modelling in anisotropic media, it rarely reaches the level of practical use. In this paper,
the pseudospectral method is proposed to do the forward modelling in anisotropic
media.

INTRODUCTION

It is now commonly accepted that most upper-crustal rocks are anisotropic to some
extent (Crampin, 1981). Anisotropy may be caused by fine layering in sedimentary
rocks, by preferred orientation in crystalline solids, or by stress-aligned fractures or
cracks (Crampin & Lovell, 1991). Shear-wave splitting is considered to be the most
diagnostic phenomenon caused by anisotropy.

The detection of orientation and density of stress-aligned cracks in anisotropic media
using multicomponent data is of much interests to petroleum explorationists. However,
the analysis of data from anisotropic media is very difficult and uncertain due to the
complexities of anisotropy. A lot of problems remain unsolved both in theory and in
practice. It is also difficult to find test data for anisotropy research. It is very common
to use physical modelling techniques to examine wave-propagation properties in
anisotropic media and to produce test data (e.g., Cheadle et al., 1991; Ebrom et al.,
1990). However, physical modelling also has its own limitations, such as costs and
inflexibility to changes in model structure and parameters. Numerical modelling proves
to be a good alternative in getting around some of these difficulties.

There are some analytical solutions that can be used for forward modelling (e.g.,
Daley and Hron, 1977; Guest et al., 1993). However, because of the complexities of
anisotropy, analytical solution is not always available. Several papers have been
published on the finite-difference modelling method in anisotropic media (e.g.,
Carcione, 1990; Dong and McMechan, 1995). But for large and complex models,
finite-difference methods will not work well. This is because in anisotropic media,
where there are at least three independent elastic parameters and usually at least five
parameters (as for TI media), the finite-difference algorithm will become very complex
and slow in implementation.

The pseudospectral method uses the Fourier transform to compute the spatial
derivatives and finite differences to compute the time derivative, and hence is fast. The
pseudospectral method has been successfully applied in the isotropic case (e.g.,
Kosloff et al., 1984). Lou and Rial (1995) used this method to compute wavefields in
2-D inhomogeneous anisotropic media. In this paper, we try to use the pseudospectral
method to compute the wavefields in an azimuthally anisotropic medium.
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PRINCIPLES

The wave equation governing wave propagation in elastic media is:

ρ ˙̇ui = Cijkluk,lj + ρgi (1)

where ρ  is the density, ui  is the infinitesimal displacements vector, ",lj" denotes the
partial derivatives with xl  and x j , Cijkl  is the stiffness tensor, gi  is the body force per
unit mass (Cheadle et al., 1991). And Cijkl  relate the stress tensor σij  and strain tensor
εkl  as Hooke’s law:

σij = Cijklεkl (2)

where

εkl = 1
2

ul,k + uk,l( ) (3)

The stiffness tensor has the following symmetries:

Cijkl = Cklij = Cjikl (4)

which reduces the number of independent elastic constants from 81 to  21.

Also  the fourth-order stiffness tensor follows the transformation law:
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With the symmetry property of the stiffness tensor, one may apply the Voigt recipe
(Thomsen, 1986), which uses two indices instead of four indices to represent the
stiffness tensor as Cαβ : If i = j  (or k = l ), α = i  (or β = k ); if i ≠ j  (or k ≠ l ),
α = 9 − i + j( )  [or β = 9 − k + l( )].

The evaluation of the stiffness tensor determines the type of medium under
consideration. For example, an isotropic medium has the following stiffness matrix:
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and a TIV (transverse isotropy with vertical symmetry) medium has the stiffness
matrix:
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To compute the spatial derivative by Fourier transformation, we forward-transform
the displacement to the wavenumber domain, perform complex multiplication in the
wavenumber domain and then reverse-transform it back to the space domain. For
example, the derivative

∂uk

∂x j∂xl
= − 1

2π
2πkj( )

−∞

+∞

∫ 2πkl( )Uk ki( )exp −2πikixi( )dxi (8)

where Uk ki( )  is the Fourier transform of uk xi( ) , which can be calculated by a 3-D
FFT, and ki  is the wavenumber in the xi direction.

Based on the second-order finite-differencing approximation of ˙̇ui  in equation (1),
the displacement ui t + ∆t( ) can be expressed as:

ui t + ∆t( ) = ∆t( )2 ˙̇ui t( ) + 2ui t( ) − ui t − ∆t( ) (9)

where ∆t  is the sampling interval in time.

THE EFFECTIVE STIFFNESS TENSOR

Suppose that we have an isotropic medium with Lame constants λ  and µ. We
introduce into it a weak distribution of parallel penny-shaped cracks to make it
anisotropic. The crack is specified by the crack orientation and the crack density
ζ = Na3 v   (ζ << 1) , where N  is the number of cracks of radius a  in volume v .
Hudson (1981, 1982) gave the expression for effective stiffness tensor in a cracked
medium for long-wavelength seismic waves as:

Cijkl = Cijkl
0 + Cijkl

1 + Cijkl
2 (10)

where Cijkl
1  is the first-order and Cijkl

2  is the second-order perturbation of the isotropic
elastic constants, Cijkl

0 , of the uncracked medium. The first-order and second-order
perturbations are computed using the crack density and the Lame constants.

Using equation (10), we can determine an expression for an azimuthally anisotropic
medium by, in effect, introducing a set of vertical cracks through the effective stiffness
tensor. Together with equations (1), (2) and (3), the problem of wave propagation in a
cracked anisotropic medium is then fully specified.
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CONCLUSIONS

In this paper, the principle of forward modelling of wave propagation using the
pseudospectral method in anisotropic media has been presented. The effective stiffness
tensor can be computed via Hudson's (1981, 1982) method. The computation of
synthetic data for anisotropic media is thus feasible and we propose to implement this
forward modelling over the next year.
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