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The characteristic biquadratic: An illustration of transmission
in anisotropic media.

Michael A. Slawinski

ABSTRACT

Methods describing ray bending at interfaces between anisotropic media are often
very complicated.  Under the assumption of weak anisotropy, and considering quasi-
compressional waves, a concept of graphical illustration of analytical expressions
governing the ray bending is presented.  The main purpose of the presented approach
is to gain an intuitive understanding of anisotropic phenomena.

PHASE VELOCITY SLOWNESS AND RAY PARAMETER IN WEAKLY

ANISOTROPIC MEDIA

The very appearance of equations involving phenomena of wave propagation
through anisotropic media is often intimidating.  It is of great benefit to gain an
intuitive insight into some of these formulæ.  This can be achieved, at times, with the
help of graphical illustrations. Graphical illustrations can often allow one to observe
the effects of a smooth transition between isotropic and anisotropic cases, i.e., from a
well known scenario to a less intuitive one.   There exist various approximations
rendering some of these equations more manageable.  Notably, Thomsen (1986),
under the assumption of weak anisotropy, provided a set of formulæ which achieve the
required simplicity of form, while retaining their validity in the context of most
situations encountered in exploration geophysics.  A weakly anisotropic medium, as
far as compressional waves are concerned, can be characterized by a vertical speed and
a pair of anisotropic parameters.  The notation of Thomsen (1986) is strictly followed
in this note.

Consequently, the phase velocity, v, of a compressional wave is given in terms of
the vertical speed, a0, anisotropic parameters, d and e, and the phase angle, q,
measured with respect to the normal to the interface, so that:

( )v( ) sin cos sinθ α δ θ θ ε θ= + +
0

2 2 4
1 . (1) 

The reciprocal of the phase velocity, v, i.e., the phase slowness, plays an important
rôle in various studies of anisotropic phenomena, notably in ray-tracing methods for
layered media. The horizontal component of phase slowness (for horizontal interfaces)
is equal across all boundaries. It is referred to as the ray parameter, p.

Using the expression for this horizontal slowness component in terms of polar
coordinates, one can write the equation for the ray parameter, p, in weakly anisotropic
media:
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QUARTIC EQUATION AND THE CHARACTERISTIC BIQUADRATIC

Expressing all trigonometric functions in terms of sinq, and rearranging, one
can write equation (2) as a fourth-order polynomial:

p p p
o o o

α ε δ θ α δ θ θ α( ) sin sin sin− + − + =4 2
0 . (3)

A general solution of a fourth-order polynomial is a very laborious task.  But, a

rather trivial manipulation gives a great insight into the character of the solution of

equation (3).  One can write:

 α ε δ θ α δ θ α θ
0
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( ) sin sin sin− + + =

p
. (4)

The left-hand side of equation (4) is a biquadratic expression with coefficients

dependent only upon the vertical speed, a0, and anisotropic parameters of the medium,

e and d.  The coefficients are independent of the ray direction, and are characteristic of

a given medium (as long as one is considering compressional waves only).
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Fig. 1. A graph of a characteristic biquadratic for a medium with the following parameters: a0

= 2925 m/s, e = 0.224 and d = 0.183, i.e., corresponding to the phenolic CE laminate used in

many laboratory studies of anisotropy at The University of Calgary, e.g., Cheadle et al.

(1991).  The units of the vertical axis are metres per second, while the horizontal axis is

dimensionless.  The plot corresponds to the expression on the right-hand side of equation (4)

y = − + +α ε δ θ α δ θ α
0

4

0

2

0
( ) sin sin  plotted against x = sinq.

 The coefficient on the right-hand side of equation (4) depends only on the ray
parameter, p, which is a function of the angle of incidence.  Letting both sides of
equation (4) equal y, and setting sinq º x, and plotting both sides of equation (4)
separately versus x, one notices that the left-hand side is a curve whose y-intercept
y(0) = a0, as illustrated in Figure 1. The right-hand side is a straight line passing
through the origin, with a slope equal to the inverse of the ray parameter, p.
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Fig.2. A graph of a characteristic biquadratic  curve (for parameters see Figure 1) and the

straight line plotted versus x º sinq.  The inclination of the straight line corresponds to critical

incidence, calculated using equation (6) as qc = 39
o

, i.e., it is such that the intercept occurs at

x º sinq = 1. Counterclockwise rotation of the straight line would yield normal transmission,

while clockwise rotation would yield postcritical refraction.  For this illustration, the medium

of incidence is assumed to be isotropic with a compressional-wave velocity, v = 2250, i.e.,

PVC used in numerous laboratory studies at The University of Calgary.

Such innocent transformation leads immediately to several interesting conclusions.
The original quartic (equation (3)) has at most two real solutions. They correspond to
the points of  intersection of the straight line and the curve corresponding to the right-
hand side, which often resembles a parabola. These two real roots can degenerate to
just one real when the straight line is tangent to the graph. Finally, the original
equation may have no real solutions if the straight line and the graph never touch.

For a given medium, the parameter that determines which case is applicable is the
slope of the straight line.  The biquadratic remains constant for all angles of incidence
as long as one is considering compressional waves.  Hence, it is referred to as a
characteristic biquadratic.

THE CRITICAL ANGLE

For a  physically meaningful solution, i.e., real q, it is required that sinq not be
greater than unity.  This leads to the formulation of the critical-angle expression.  The
critical angle corresponds to the point where q = p/2 in equation (2).  This gives a
value of the ray parameter, p, that corresponds to the critical angle for compressional
waves at the boundary between weakly anisotropic media:

p =
+

1

1
0

α ε( )
. (5)

Recalling the definition of the ray parameter in isotropic media, i.e., p º sinqi/v, one

obtains the critical angle for compressional waves at the isotropic/anisotropic

interface:
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Setting the anisotropic parameter, e, to zero reduces equation (6) to the case of an

isotropic/isotropic interface.  One can easily rewrite equation (6) as:

θ
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2

 , (7)

where v º v1 is the velocity in the medium of incidence and a0 º v2 is the velocity in
the medium of transmission.  Equation (7) is the well known formula for critical angle,
qc, at the boundary between two isotropic media.

REDUCTION TO THE PURELY ISOTROPIC CASE

To complete the concept, one notices that in the limiting case, e = d = 0, i.e.,
isotropy, equation (4) reduces to the standard form of Snell�s law.  Thus, similar
graphs can be obtained for isotropic media.  As the values, d and e, approach zero,
tending towards isotropy, the curve opens up.  For a perfectly isotropic case, the curve
of the left-hand side of equation (4) becomes a horizontal straight line,  y(x) = ao.
Also, in the context of isotropy, just as in the anisotropic case, transmission occurs for
values of sinq  < 1, the critical angle at sinq  = 1, and postcritical incidence for sinq  >
1, as illustrated in Figure 3.
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Fig.3. Degenerate biquadratic, the graph of a fourth-order polynomial becomes a horizontal

straight line.  A sloping line corresponds to critical incidence at the interface between two

isotropic media with velocities of 2250 m/s and 2925 m/s, i.e., it is such that the intercept

occurs at x º sinq = 1. Counterclockwise rotation of the straight line would yield a normal

transmission, while clockwise rotation would yield postcritical refraction.

CONCLUSIONS

A graphical illustration corresponding to the fourth-order polynomial governing the
transmission/refraction of compressional waves at the boundary between weakly
anisotropic media  has been presented.  The concept of a characteristic biquadratic, a
curve whose shape depends only on anisotropic parameters of a given medium, has
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been introduced.  The presented graphical approach allows one to gain a more

intuitive understanding of the phenomenon in question than offered by equations

alone.
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