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ABSTRACT

Techniques for the processing and interpretation of remotely sensed data have been
widely used for various applications relating to surface and near surface environments
(especially forest, crops, surface geological features, and oceans).  This study applies
these same techniques in an attempt to classify and quantify features which are
subsurface in nature and have been gathered by current seismic techniques, and to see if
the geology is evident in the texture of the seismic reflections.  These techniques
produce a series of images at various depths based on the reflections of the signals by
the different rock layers.  The strength of these reflections (their brightness values) can
then be processed much in the same way as airborne radar type data, giving a more
clear picture to interpreters with respect to the subsurface features.  This study found
that the selected features could be separated by the classifier very well with an average
accuracy of 95% or greater for all feature classes with the training sites selected.  The
results for the test sites also achieved accuracy values of 85% or higher for the three test
classifications.  The separability of the signatures for the test and training sites were
also found to be 1.99 or higher in average which is very good, the maximum
separability being 2.0.

STUDY AREA

The data in this study is from a standard 3-D seismic volume generated in the Cold
Lake region of Alberta by Imperial Oil Resources Ltd.  The specific location is in
Township 65 Range 4, and covers a producing pad at Cold Lake which includes twelve
injection/production wells.  Imperial Oil is producing bitumen from the Clearwater
sands via an enhanced oil recovery program.  This procedure uses steam injection at
high temperature and pressure to lower viscosity and allow for recovery.  One seismic
survey was acquired in 1990 during a production cycle, and the second was taken in
1992 during an injection cycle.  The oil sands are contained within the Mannville
group, which contain the primary reservoir of the Clearwater formation.  This
formation is a transgressive wedge with the sands being primarily deltaic and
foreshore/shoreface facies.  These sands are highly saturated with a low specific gravity
and high viscosity bitumen.  The specific gravity of the bitumen is of the order of 10
gm/cc and is free of underlying water (Isaac and Lawton, 1993)

Conditions prevalent during the injection process, high temperatures and pressure,
caused a decrease in compressional wave velocity.  The result of this decrease is the
time structures below the reservoir on the 1992 survey are later than those on the 1990
survey.  The effect has not been homogeneous across the pad but varies because of
steam communication within the reservoir.  Where the 1992 times are seen as "delayed"
it can be said that the reservoir has been steamed.

The data consisted of a series of time slices removed from the 3-D seismic volume
which included the Devonian time structure, which was the one used for this initial
study.  This image is below the reservoir and as such, will be affected by the presence
of steam shallower.  The depth of the Devonian time structure image is approximately
560 meters below the surface (Isaac and Lawton, 1994).
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METHODS

The seismic images provided by the 3-D seismic data were down loaded to a 3.5
floppy disk in a Tiff format complete with associated pseudo color table.  These images
were loaded in a compressed format which was not readable to the Easi/Pace system
and which required translation on a Mac computer.  The Mac system was able to read
the data, and the information was then translated to Jpeg format and transferred to the
disk in and uncompressed Tiff format from the Jpeg, which was then readable to the
Easi/Pace system.  The images were read into a PCI data base using the tiffread module
which automatically converts the data to a PCI data base format.  The images which
were of slightly different sizes, but were automatically scaled to fit a 512 by 512 pixel
size data base format with a pixel size of 1 meter by 1 meter.  These images were then
processed in the same way one would process satellite type surface data for
classification and enhancement purposes.  This was accomplished by using the several
types of filters, both standard and programmable, which are contained in the Easi/Pace
package.  The main filters used were the mean, median, and mode which gave the best
results in smoothing the data and removed noise and confusion, while at the same time
preserving the detail contained in the image.  Several other types of filters were also
employed in an effort to clarify the structural components contained within the image.
These included edge enhancements, and the Frost adaptive filter type as well as various
high and low pass filters.  This was done in an attempt to determine whether the
filtering was able to provide any additional clearer information not available on the
original image.

Once the images had been filtered, the Easi/Pace texture analysis package was
employed to process the images for various types of texture.  Within the package itself,
there are five types of texture which can be applied to an image and these five were the
primary ones used in the study.

TEXTURE MEASURES

The texture algorithms used were the standard ones available in the PCI image
analysis system, which use the gray level co-occurrence matrix for calculation.  The
texture measures available in the package are;
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where :

∑(j=1,n) : sum of the co-occurrence matrix elements (row).

∑(i=1,n) : sum of the co-occurrence matrix elements (column).

P(i,j) : is a co-occurrence matrix element.

IR(i) : is the gray level for a row (i.e., reference).

IC(j) : is the gray level for a column (i.e., neighbor).

The texture measures of homogeneity, contrast, and entropy relate to specific
textural characteristics of the image.  The texture measures of mean, standard deviation,
and dissimilarity characterize the complexity and nature of the gray level transitions
which occur in the image (PCI, 1991).  These measures are derived from the gray level
co-occurrence matrix.  The co-ocurrence matrix shows the relationship between a given
pixel and its specified neighbor.  Texture is related to the distance between the co-
occurrence matrix elements and the diagonal elements of the matrix.  The amount of
dispersion that the matrix elements have about the diagonal may be measured
statistically through the different texture measures.  For example, the texture measure
Contrast gives a non linearly increasing weight to the gray level transitions from a low
gray scale value to a high gray scale value.  This is the moment of inertia around the
main diagonal of the matrix and measures the degree of spread of the matrix values.
Entropy measures the number of gray level transitions from one gray level to another
and gives a high value when the elements are equal or nearly equal and a low value
when the elements are unequal.  The texture measure Homogeneity measures the degree
to which the rows and the columns of the matrix resemble each other.  The values here
are high when they are uniformly distributed in the matrix and are low otherwise
(Haralick, 1975, Weszka et al., 1974).  The standard deviation texture algorithm uses
the average gray level value for the window and is given by the sum of the gray level
values divided by one less than the number of elements in the window (i.e., n-1
elements).  The algorithm then subtracts this value from the pixel gray level value at
location (i,j) and squares the result.  The sum of all elements in the window is then
taken and divided by the number of elements in the window.  The square root of this
value is taken and this forms the standard deviation texture value of the center pixel in
the window (Pegoraro, 1994).

IMAGE  CLASSIFICATION

Once the various types of processed images were complete, training sites were
extracted using the classification package of the system.  This entailed the use of single
pixel training site for purity and to reduce confusion between the selected classes.
Using the original unprocessed image to select the training and testing sites, a set of
seven distinct gray levels were identified and used to classify the image.  These were
selected using the display control package (DCP) to designate the training and testing
sites, then using the signature generator module (CSG) to generate the signatures used
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in the classification process.  Several sets of signatures were used employing not only
the original image, but also image data produced using the filters and the texture images
generated.  Up to eight layers were combined for the classification which produced the
thematic map.  The classification process used the full maximum likelihood
classification algorithm from the classification module of the Easi pace program.  This
was the most accurate type available with this package.

The maximum likelihood classification algorithm provided in the program uses the
Mahalanobis minimum distance algorithm (Hsu, 1979).  This maximum likelihood
classifier can be regarded as a minimum distance-like classifier but with a distance
measure which is direction sensitive and modified according to class.  The Mahalanobis
distance is used to identify deviant members of the sample.  Robust estimates of the
mean and variance - covariance matrices are computed using weights which are
functions of the distance.  The effect is to downgrade the pixel values with a high
Mahalanobis distance.  These are the ones which are relatively far from the mean of the
training class, taking into account the shape of the probability distribution of the
training class members.  The advantage of using the Mahalanobis classifier is that it is
faster than the standard maximum likelihood classifiers but still retains a degree of
direction sensitivity via the covariance matrix.  The Mahalanobis distance used in the
PCI system is defined by the following equation:

Gi ( X ) = −1 / 2 ( X − Ui )t Ci−1 ( X − Ui ) − d / 2 log( 2 π ) − 1 / 2 log( det ( Ci ) ) + log ( Pi )

where:

Gi(X)             : is the result for class i on pixel x

d                     : is the number of channels in the classification

X=(x1,..,xd)  : is the (d by 1) pixel vector of gray levels

Ui                  : is the (d by 1) mean vector for class i

Ci                   : is the (d by d) covariance matrix for class i

π                    : is pi= 3.14159....

det(Ci)          : is the determinant of the covariance matrix

t                     : as a superscript denotes transpose

-1                    : as a superscript denotes inverse

Ti                   : is the threshold value THRS for class i

Pi=Bi/∑(Bi) : is the apriori probability for class i

Bi                   : is the BIAS for class i

∑(Bi)             : is the sum of biases for all classes used

(d, Ui, Bi, Ti, |Ci|, Ci−1 ;  are obtained from the signature segments)
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The full maximum likelihood classifier uses a Gaussian threshold to determine if the
pixel falls within the class or not.  The decision rule assigns each pixel having features
X to class i whose units are most probable or likely to have given rise to feature vector
i.  The classifier assumes the training data statistics for each class have a normal or
Gaussian distribution in nature.  The threshold is the radius in standard deviation units
of a hyper ellipsoid surrounding the mean of the class in feature space.  If the pixel falls
inside the hyper ellipsoid, it is assigned to the class.  This feature can be set by the
operator.  For the purpose of this study, the threshold for each classification was set at
16.  This value was chosen after an initial trial run classification in order to reduce the
number of unclassified pixels in the image to under 5%.  The class bias is used to
resolve the overlap between class (PCI, 1988).  The bias for each class can also be set
by the operator and gives a weight to the decision as to where the pixel will be
classified.  The default value of the bias is 1.00 and this value was left unchanged for
the entire set of classifications, thus equal weighting for all classes.  The confusion
matrix for each classification is presented in the following set of tables:

class cl 1 cl 2 cl 3 cl 4 cl 5 cl 6 cl 7

cl 1 96.5 3.5 - - - - -

cl 2 0.2 96.4 2.9 - - - -

cl 3 - 1.3 98.7 - - - -

cl 4 - - - 98.3 - - 1.7

cl 5 - - - - 99.0 - 1.0

cl 6 - - - - 0.6 99.1 0.3

cl 7 - - - - - - 99.9

Table 1 : Class accuracy for classification 2 (contrast texture).
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class cl 1 cl 2 cl 3 cl 4 cl 5 cl 6 cl 7

cl 1 97.8 1.9 - - - - -

cl 2 0.2 96.9 2.6 - - - -

cl 3 - 2.1 97.9 - - - -

cl 4 - - - 98.6 - - 1.4

cl 5 - - - - 99.0 - 0.7

cl 6 - - - - 0.6 99.1 0.3

cl 7 - - - - - - 99.7

Table 2 : Class accuracy for classification 3 (contrast/Dissimilarity with mode and edge
detection filters).

The values given in the main diagonal of the confusion matrix presented in tables
one and two reflect the accuracy values for each particular class.  For class 1, the
average class accuracy is 98.87% of the pixels correctly classified.  The high value for
the class is 100% with the lowest values being 94.3 % in the classifications which
combined the signatures into other classes.  Class 2 had an overall average accuracy of
92.41% over the eight classifications performed with a low value of 78.3 %
(Dissimilarity, Standard Deviation, and Contrast texture combined) and a high value of
99.7% (Dissimilarity, Standard Deviation, and Contrast with 8 channel of data input).
The areas of overlap was with classes 3 and 1, with the largest overlap being with class
3 (21.5%).  Class 3 had an average value of 97.0% correctly classified over all
classification schemes.  Class 4 had an average accuracy of 98.55% over the six
classification schemes using this class.  Class 4’s major area of overlap was with class
7 being as low as 0.0% with classification scheme 5 (Mean) and as high as 2.5% with
classification scheme 6 (Contrast, Standard Deviation, Dissimilarity).  Class 5 showed
the least sensitivity to various combinations of texture or of only one texture measure
being used for the classification.  The minimum value achieved with this class was
95.1% with classification 7 and the best was 100% with classification 5.  Class 5 also
had overlap with class 7 (2.6%) and with class 3 (2.4%), but generally was very good.
Class 6 achieved an average accuracy of 99.25% over all classification schemes and
showed little sensitivity to the various combinations of texture or whether they were
used singly.  Class 6 also achieved the highest overall accuracy of any of the classes,
and showed only minor overlap with classes 5 and 7 being less than 1% in all cases.
Class 7 achieved an average accuracy of 97.36%, and showed only very little
confusion with other classes.  The following figure compares the relative accuracy of
the various classification schemes using different texture measures both in combination
and alone.  Series 1 used dissimilarity texture ( 3 X 3 window) in addition to four
channels of data for signature generation.  Series 2 used contrast texture with a 5 X 5
window as well as four other channels of data.  Series 3 used eight channels of
information to generate the signatures used.  These included two texture images, both
dissimilarity and homogeneity texture measures.  Series 4 used only three input
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channels of information to generate the signatures, one of these being contrast texture.
Series 6 used eight channels to generate the signatures with four being texture images.
These four were contrast , standard deviation, dissimilarity , and homogeneity.

TRAINING SITE ACCURACY FOR DEVONIAN IMAGE
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Figure 1 : Training site accuracy comparison.



Pegoraro and Stewart

32-8 CREWES Research Report — Volume 7 (1995)

496

508

Time (ms)

100 m

Figure 2: Original 3D image of Devonian time structure.

The image shown in figure 2 is the original time structure map used in the study.
The pseudo coloring of the image indicates the time delay of the signal according to the
scale located in the lower right hand corner.  The scale located in the lower left indicates
the size of the image in meters.
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Figure 3: Image processes for contrast texture (3 X 3 filter size).

The image produced in figure 3 relates specifically to the textural characteristics of
the original 3-D image presented in figure 2.  The contrast texture measure gives a non
linearly increasing weight to the gray level transitions as the window is moved across
the image.  These gray level transitions relate to the time delay of the signal return as it
is presented in the original data.  As the window is moved across the image, a value is
calculated for the contrast texture for that region and is assigned to the center pixel
within the window, in this case a 3 X 3 window size.  The greater the rate of change
from one pixel to the next in the window, the greater the weight that is assigned to the
calculation, and thus the higher the pixel value assigned.  This results in the high pixel
values seen at the areas of greatest transition between one time delay value and the next.
Areas where the transition in the brightness values (which relate directly to the time
delay) was relatively low, the assigned pixel values are also low resulting in the darker
gray and black areas in the image.  From the spatial distribution of the pattern in figure
3, a visual display of the rate of change of the time delay values is presented, with
greater rates of change being where the lines are more closely spaced.
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Figure 4: Classification 3 theme map using contrast and dissimilarity texture images.

The thematic maps produced show the results of the classification process.  The
thematic map shown in figure 4 is the result of the maximum likelihood classifier using
signatures which included both contrast and dissimilarity texture measures as well as
standard filtered images and the unfiltered data.  This image corresponds to the
accuracy values given in table 3 listed previously.

The data presented on the thematic map produced by the classification process
shows an overall apparent increase in the detail presented when compared to the
original image.  The time structure presented in the image dips relatively smoothly from
the upper right corner to the lower left and from right to left., and there are no
outstanding or distinct anomalies or features present in the image.  There is a high area
also located in the upper right hand corner of the image as well as in the lower left.  The
themeatic map represents the slope as a series of steps in gray level in much the same
way that a contour map represents changes in surface elevations.  The time delay values
are related directly to the gray levels of each step.  The classification process breaks the
data into distinct classes rather than the more general shaded appearance of the original
data.  The theme map shows the area in the lower left corner as being assigned the same
class as the higher area in the upper and lower right corners.  This is a result of how the
original image was downloaded.  The image assigned similar gray levels to both areas
and then the image was pseudo colored to reflect the difference in time delay by the
operator with the colors reflecting the time structure.  When the maximum likelihood
algorithm processed the image, the similarity of the gray levels in the samples result in
the lower left area being coded the same as the areas in the lower right and upper left
hand corners.

The image produced by the contrast texture algorithm quantifies the changes in gray
level in the original image by giving a nonlinear increasing weight to changes in the
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gray levels from low to high.  This algorithm produces an image which appears much
like a edge enhancement but with different levels of gray depending upon the change of
gray level from one pixel to the next.  The bright lines or edges correspond to changes
in brightness values, with the greatest variations in the time delay over distance being
the brightest and the smallest changes being dark areas.  The image displayed in figure
3 formed one of the eight layers of image data which also included the original
unprocessed data as well as filtered information which were combined to sample for the
creation of the signature segments used in the classification process.

The classifications accuracy was confirmed by creation of test sites which were seen
as representative of the various classes.  These sites were selected as representative of
the various feature but were of approximately five by five pixels in size.  The sites were
chosen in different areas from the original training sites.  The classification process was
repeated using the same technique as the first series of classifications.  The results of
the classifications using the test sites are presented in the following tables.

class cl 1 cl 2 cl 3 cl 4 cl 5 cl 6 cl 7

cl 1 96.7 3.3 - - - - -

cl 2 - 100 - - - - -

cl 3 - 5.1 94.9 - - - -

cl 4 - - - 100 - - -

cl 5 - - - - 93.9 6.1 -

cl 6 - 0.4 - - - 99.6 -

cl 7 - 0.4 - - - - 99.6

Table 3: Test 3 accuracy (Contrast / Dissimilarity texture).

As can be seen from table 3 , the accuracy of classes 2, 4, 6, and 7 are very good.
The values for these classes are 99% or higher being correctly classified.  The lowest
value of class accuracy is with the first class when the three texture measures were
used.  This is also apparent for class 3 which showed a 10% drop in accuracy from the
other test classifications using only two texture measures.  Class 5, however, showed
an equal accuracy when either the two or three texture measures were used (95.1%).
When these results are compared to the ones achieved in the original series of
classifications it can be seen that there are small differences in the overall accuracy
values, depending upon which texture measures were used and how many were used.
Also, the number of layers of information used in the classification was noticed to have
an effect on the overall accuracy of the classifications.  The following figure compares
the relative accuracy of classifications of the three test classifications.  Series 1 used
contrast with standard deviation and dissimilarity texture measures in the layers of data
samples for the signatures.  Series 2 used only contrast and dissimilarity texture
measures.  Series three used the same texture measures as series 2, but used different
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additional layers of data processed with different filters and window sizes.

TEST SITE CLASSIFICATION ACCURACY
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Figure 5: Test site accuracy comparison.

SIGNATURE SEPARABILITY

The signatures were the statistically tested using the Bhattacharrya distance to
measure signature separability and the CSR feature of Easi/Pace package was used to
generate statistics of each signature to check for any anomalies or problems.  The
Bhattacharya Distance equation assigns real values between 0.0 and 2.0 as a signature
separability measure convention, and assumes the two classes being investigated are
Gaussian in the nature of their distributions and uses the means and covariance matrices
in the calculation.  A value of 0.0 indicates complete overlap between the signatures,
where as a value of 2.0 would indicate no overlap whatsoever (complete separability).
A separability value of 1.7 or higher is considered to be good, while a value of 1.9 or
higher is considered to be very good.  The Bhattacharyya Distance is given by the
following equation:

BD (I,J) = 2 * [ 1-EXP (-A(I,J))]
where :

BD (i,j) : is the Battacharyya Distance between class i and j.

a ( i , j ) = 0.125 M ( i ) − M ( j)[ ]t
A ( i , j ) ( M ( i ) − M ( j) )[ ]−1 +

0. 5 Ln det ( A ( i , j ) ) / SQRT det ( S( I ) * det ( S( j )( )[ ]
t : as a superscript denotes transpose of a matrix.

M(i) : mean vector of class i; vector has N channel elements.

N channel = number of channels used)
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S(i) :  covariance matrix for class i which has N channel elements.

-1 :  as a superscript denotes inverse of a matrix.

A(i,j) :  0.5*[S(i) + S(j)].

S(i) : covariance matrix for class i which has N channel elements.

det ( ) :  the determinant of a matrix.

Ln [ ] :  the natural logarithm of a scalar value.

SQRT :  the square root of a scalar value.

      The values obtained for the signature separability for the signatures used in the
classifications are given in the following table;

SEP MEAS. MAXIMUM MINIMUM AVERAGE DATA (TEX)

BD 2.0 1.999 1.999 Dissimilarity

BD 2.0 1.988 1.999 Contrast

BD 2.0 1.907 1.995 Dis/Homog

BD 2.0 1.908 1.995 Dis/ Homog

BD 2.0 1.768 1.988 Mean

BD 2.0 1.953 1.997 Con/Std/Dis

Table 4 : Signature separability values (Bhattacharrya) for the classifications.

It can be seen that the values for the average signature separability are above 1.9 for
all classifications.  These classifications not only used several texture images but also
different filter sizes to process the image prior to running a classification  Several
classifications were run to see if there would be an improvement in the accuracy’s by
combining class signatures which appeared very similar.  This was not the case,
however, as the overall accuracy decreased and there was an increase in the amount of
confusion between the various classes.  It was also noted that classification schemes
using multiple texture images as well as the original data and filtered data resulted in a
slight reduction of signature separability when compared to classification schemes
using only one texture image channel and filtered information.  This could indicate
increased confusion between the signatures due to overlap caused by the use of various
filters and texture measures.
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SEP MEAS. MAXIMUM MINIMUM AVERAGE DATA (TEX)

BD 2.0 1.999 1.999 D/CN/SD/M

BD 2.0 1.981 1.998 Dis/Mean

BD 2.0 1.985 1.998 Dis/Homog

Table 5 : Signature separability values (Bhattacharrya) for the three test sites.

As can be seen in table 5, the signature separability values of the test sites are
comparable to the training sites.  The values here are all 1.99 average or higher which
means the separability of the signatures used for each class is very good for these
particular test sites, and should have given clear and distinct signature samples for each
class.

RESULTS

The use of texture and other contextual type of information has been used in the
remote sensing community to increase the useful yield of data from a given set of
images.  This was done in an attempt to increase the accuracy of the thematic maps
produced.  The application of this type of methodology to the 3-D seismic volume
processing is an attempt to process this information in a way that allows the multi-
layering of data types to be used in order to generate signatures which would quantify
features or characteristics of interest.  This study used a data set produced from a
standard seismic package, which produced a time structure image of the Devonian layer
of the reservoir.  This data was processed in the same way as a surface image would be
and theme maps produced which represent features which were identified by the
brightness value of the returned signal.  The class accuracy values reported by the
maximum likelihood report statistics package and also by the signature separability
statistical package of the Easi/Pace system.  These show that based on the reflectance
values, features may be identified by the strength return of that particular feature, much
like the reflectance values of surface features when viewed by Landsat satellites.  The
average accuracy's for the seven classes of reflectance values was between 92.41% (for
class 2) and 100% (for class 5).  These values indicate that it is possible to obtain clear
or relatively clear signature values and therefore class accuracy’s from subsurface
features in which the time delay values are spatially depicted via the image.

The potential problem exists, however, that because of the nature of the data and the
resulting image, the separabilty may be a problematic due to the fact that the medium is
relatively homogenous in nature.  If the time structure or features being imaged is quite
smooth, as it is in this case, the separation of the reflectance values may be difficult.
This potential problem did not seem to be a factor in this study as the separability values
between each class signature achieved were very good, the average values being
between 1.98 and 1.99 for all classification schemes.  This may be attributed to the
single pixel sampling strategy which allows for very pure sample sites and therefore
very clear and distinct signature gray levels with a great reduction in the amount of
interclass confusion.  These accuracy values were repeated for the test sites.  Using the
various combinations of texture and standard filtered images, accuracy values of 94%
or higher in all cases except for class 1 and 2 in the first test classification were
achieved.  There was about a 10% accuracy reduction for these two classes and may be
a result of the inclusion of the standard deviation texture image data.  The texture
algorithms when used in the classifications allowed for an improvement in classification
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accuracy due to the ability to increase the separability of the signatures.  However, in
some cases, the use of multiple texture images in the creation of the signatures actually
decreased the accuracy of specific classes, and as a result, the overall accuracy of the
classification.  This problem may have been in the texture algorithm chosen and how it
quantifies the image data resulting in additional confusion being created rather than
eliminated.  A careful selection of the texture measures used would be necessary to
ensure the most useful information and least amount of confusion for the classification.
This reduction in accuracy may also be a result of the inclusion of filtered image data
which blurred or created indistinct regions which were sampled for the creation of the
signatures for those particular classes.  A careful selection of the appropriate window
size for filtering may reduce this type of confusion due to the fact that selection of a
large window such as 11 X 11 may actually decrease the accuracy of the resulting
classification.  There is also the risk that the use of a small window size would also
introduce noise and possible confusion.  Optimum window size selection is as
problematic here as it is in traditional remote sensing applications.

This initial study was conducted to investigate the possibility of using a remote
sensing package to process seismic data in an effort to see if the image handling
methods are able to present additional information beyond what is available in standard
seismic data processing packages.  The image of the time structure used in this study
did not effectively connect the features presented with the gray level values in the
image.  The result of this was the assigned gray levels of both the lower right and left
regions of the time structure image were the same and resulted in confusion in the
classification.  Such a connection would be required for the process to be truly effective
in providing additional useful information.  Despite the problems encountered in the
classification process, the technique shows promise in its ability to separate and
quantify features in the image by assigned gray levels.  Further research into using this
type of package for processing seismic data may show the ability to connect a specific
reflectance value to a specific feature which would allow for the automation of
classification and interpretation processes to an extent, as well as allowing the use of
multiple layers of information upon which to base an interpretation.  The images used
for this initial study were based on hue and saturation and pseudo colored to reflect the
nature of the time structure, and provided a starting point for this exploration.  By
changing the input images to ones which tie structure more directly to the gray level
values presented in the image, it should be possible to identify specific features
relatively accurately using the multiple layers of information and to increase the
usefulness of the data presented.
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