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ABSTRACT

This paper studies the design of 3-D VSP surveys. It also outlines a processing
procedure to create 3-D images. Two numerical models (a dipping layer and a dome
model) are used to test the effects of variable shot and receiver positions. We find that a
high fold can be achieved near the well for realistic shot and receiver distributions.  In
addition, we evaluate an synthetic data the 3-D VSP coverage of a current 3C-3D
seismic survey. A 3-D processing flow which includes NMO correction, muting,
binning and stack makes excellent images of the targets.

INTRODUCTION

There is often a need for a high-resolution, three-dimensional (3-D) seismic picture
around the borehole. Both 3-D VSP (using an areal distribution of surface sources and
a downhole tool ) and 3-D reverse VSP (with a surface array of receivers and downhole
source) hold great promise for near-well imaging.

In situ seismic measurements (VSP, reverse VSP and crosswell surveys) have
proven useful for imaging and estimating rock properties near or between wells.
However, because the earth is generally heterogeneous in three dimensions and our
regions of interest are usually volumetric, 3-D images are critical. Economical surveys
are also essential. Thus we must pursue practical measurements which provide 3-D
images in a cost-effective way with minimal production impact. We would argue that
the 3-D VSP is the current best candidate to solve this problem. Furthermore, the 3-D
VSP can piggyback on a conventional 3-D surface seismic survey by passive and
simultaneous monitoring of the surface shots. The reverse VSP could also be co-
recorded into the 3-D surface geophones, if there were an acceptable downhole source
and if its shooting didn't slow the surface survey down too much. There is
considerable practice of and literature on 2-D VSP surveying. In addition, a number of
authors have recently considered the analysis of 2-D RVSP data (Jackson et al., 1989;
Jones, 1991; Kragh et al., 1991; Naville et al., 1991; Hardage, 1992; Parra and Bangs,
1992). Haldorsen et al. (1992) used several 2-D surface lines to image data recorded
from a downhole drill-bit source.  Their drill-bit seismic image matched surface seismic
and conventional walkaway VSP images reasonably well. Aleotti et al. (1994) also
showed drill-bit images (prediction ahead of the bit seismograms) that were similar to
synthetic seismograms produced from logs after the well had been drilled through the
predicted depths. Less has been written on 3-D VSP. Chen and McMechan (1992)
considered the 3-D case and used synthetic data from a salt structure model to perform a
3-D pre-stack depth migration. They showed that 2-D analysis produced artifacts while
the 3-D algorithms provided a much more accurate picture.

In this work, we address the survey design issues of 3-D VSP  via a 3-D VSP CDP
binning procedure. We also propose procedures for handling and processing of model
and field 3-D VSP data. In this numerical modeling paper, we will not distinguish
between VSP and reverse VSP procedures.



Zhang ,Stewart and Sun

34-2 CREWES Research Report – Volume 7 (1995)

NUMERICAL MODELING EXAMPLES

Two numerical datasets are used here. The first data set was generated from model A
which consists of three layers with reflections from all three layers. The East-West
cross section of the model is shown in Figure 1a. The thicknesses of the three layers
from top to bottom are 800 m, 400 m (at the well location, dipping layer), 800 m
respectively. The acquisition parameters are listed as follow in Table 1:

 Table 1. 3-D VSP modelling parameters

Receiver line spacing: 50 m 61 receivers per line.
Receiver line orientation: East-West

Receiver spacing: 50 m

Source spacing: 40 m ( in borehole from 1200 m to 0 m)
Wavelet: 50 Hz Ricker wavelet

Well location: centre of model (1500 m,1500 m)

Shot gather: 3600 traces/record

Receiver line length 3000 m

Data set B is from a previous study (Sun and Stewart, 1994). The model consists of
three layers (Figure 1b). The thicknesses of the three layers from top to bottom are 800
m, 400 m and 800 m respectively. A dome centered at (1500m, 1500m) is located on
the top of the second layer with a radius of 630 m and height of 210 m, which
possesses dip angles varied from 0˚ to 36.9˚. The dataset was generated with
reflections only from bottoms of the first layer (dome structure) and second layer.

The source and receiver geometry configuration of both datasets are the same, and
are shown in Figure 2. The examples of raw records of both shots gathers and receiver
gathers are shown in Figure 3.

3-D VSP PROCESSING

There are a number of steps required to process 3-D VSP data, some of them have
been previously addressed (Sun and Stewart, 1994), for example, wavefield separation
using a velocity filter or median filter. Our discussion in this paper will center on NMO
correction, binning and stacking.

Normal moveout (NMO) correction, binning and stacking

The offset VSP survey is used to create reflection points which are laterally offset
from the borehole. Using a ray parameter approach, Stewart (1991) developed an
algorithm for 2-D P-P and P-S offset VSP mapping. These mapping techniques are
extended to the 3-D case. The mapping technique for 3-D RVSP data can be used for 3-
D VSP data by exchanging source-receiver geometry information.
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FIG. 1 Cross section of models A and B; dipping and domed structures
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FIG. 2. Surface receiver layout geometry (61 receiver lines with a 50 m line spacing and 61
receivers on each line with 50 m receiver spacing). The well location is shown as a dot in the
centre of the receivers area.
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In the 2-D case, the lateral offset of the reflection point  Xr    (in Figure 4a) is given
by:

Xr =  X

1 + VR
2
TR

VRB
2

TRB

 , (1)

where VR is the RMS velocity of upgoing raypath  or downgoing raypath , VRB is the
RMS velocity for downgoing raypath or upgoing raypath, TR is the zero-offset
traveltime (one way) from surface to reflection point; and TRB is the zero-offset
traveltime (one way) from reflection point to borehole a source (for RVSP) or a receiver
(for VSP). X  is the source-receiver offset.

The concept used to  calculate the reflection point of 3-D VSP is diagrammed in
Figure 4. The reflection point denoted by C in Figure 4(b)  is in the xy plane instead of
in x direction only .The reflection point is located in the propagation plane of the P
wave. We can define the azimuth of the reflection point by calculating the source-
receiver line azimuth angle θ with  the X or Y axis; then θ is written as

   
θ = tan

∆Y
∆X

–1

 , 
(2)

where   ∆X and   ∆Y  are the horizontal offsets from the well top in the y and x direction.

Extending equation (1) to the 3-D domain, gives:

   
Roffset =

∆X2 + ∆Y2

1 +
VR

2
TR

VRB

2
TRB

 ,
(3)

where   ∆X and   ∆Y  are the horizontal offset from the surface location to the well top in
the y and x direction.

The horizontal distance covered by the reflected wave in the  x direction is given by

   Xr =Roffsetsin θ (4)

The horizontal distance covered by the reflected wave in the y direction is given by

   Yr =Roffsetcos θ
(5)

Equation (3) provide the binning method. Once we calculate the coverage of the
reflection point by using equation (3), we can split it into the x and y axes by using
equations (4) and (5).

Since the shots  are in a two dimension plane, the 3-D VSP has the character of
surface 3-D seismic data. Therefore, it is necessary to define the bin grid in two
dimensions as in surface 3-D data binning. This is shown in Figure 5a. On the other
hand, the receivers in the well borehole, the 3-D VSP also has the character of VSP
seismic in which is the reflection points  for each recorded trace are variant in depth
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domain as shown in figure 5b. If we define the same bin origin  and grids in 2-D plane
for all depth layers of interests, for same trace at different depth points, the reflection
points will be located in different bin cell.

By combining the two characters of 3-D VSP, the bin grids are defined in a two
dimensional plane, and the reflection points are calculated in 2-D plane at each depth
point by using equations (3) to (5) and the reflection points of the 3-D VSP are mapped
in 3-D position.
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FIG. 4. VSP ray geometry for a flat horizontally layered medium , (a): 2-D case; (b): 3-D case.
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FIG. 5. Schematic diagram showing binning algorithm. (a) surface diagram; (b): depth
domain diagram
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3-D VSP fold distribution

For reflection imaging, the stacking fold or multiplicity, is a critical parameter. In
this study, we have done several tests on model A, in order to learn how the surface
geometry and down hole operation influence the bin interval and the fold distribution.

Figures 6 and 7 are used to illustrate the binfold distribution as depth (time)
increases. These two results are the binning algorithm performed on the same dataset
where the inline and crossline receiver coordinates are from 200 to 2800 meters, the
inline and crossline receiver intervals are 50 meters. There are 30 shots located at the
surface 1500 m in both directions, and located from surface down to the well to
borehole 1200 m with depth interval 30 meters. All the shots are above (one is on) the
second layer in the model A, which means the results in Figure 6 and 7 based on the
same surface and depth geometry.

We use same bin interval, azimuth and bin origin on these layers. the bin origin and
azimuth  are the same as  surface layout coordinate origin and azimuth. the bin interval
in both directions is 15 m.

 Figure 6 shows the areal bin fold distribution (Figure 6a) around 600 ms (the
reflection of the second layer in model A). The bin fold statistics are shown in the
histogram (Figure 6b). The overall the fold distribution is not quite uniform. Two
"black" strips across the covered area East-West and North-South through the Well
with low fold  coverage (from 3 fold to 40 fold) along which higher fold coverage (60
to 70 fold) are surrounded (Figure 6a).  Two "bright" strips across the covered area
through the Well 45˚ from any of the "black" strips with high fold coverage (80 to 100
fold).The dominant coverage is about 50 to 60 fold but they are distributed in the 45˚
azimuth of receiver line direction. There also have quite big portion of bin cell with low
fold (3 to 10 ) coverage distributed along the first and last 10 inline and crossline. As
the depth (time) increases, the bin fold distribution gets more uniform as illustrated in
Figure 7. As in figure 6, there are two "black" strips across the well top in receiver
inline and crossline direction. The major fold distribution  becomes much more uniform
and this also can be viewed in figure 7(b),the histogram shows better distribution, and
much higher fold. The dominant fold coverage of the third layer is around 40-75 fold,
and there is almost no low fold less 35 between 10-80 inline and crossline of CRPs
(reference numbers) as displayed in figure 15 except the two "black" strips cross the
well top.

Comparing Figures 6 and 7, we find out that as the depth increase the bin fold will
distributed more uniformly and is higher than in  shallower layers.

Figure 8 shows the bin fold distribution of the same dataset of layer 3 by using same
parameters except now shifting the bin origin 7.5 m towards east and north directions.
We can see the two "black" strips have disappeared. Figure 9 shows the bin fold
distribution of layer 3, the bin size of 30 m in both direction. Comparing Figure 9 and
7, we can see by increasing the bin size, the binfold will distribute more uniformly with
high fold.

Figures 10 illustrate the fold distribution when few shots are used. In this Figure,
we take out every second shot as shown in Figure 7, giving only 15 shot, They located
from the surface down to the well to 1160 m with an 80 m interval. Comparing Figure
10 with Figure 7, we find that the binfold distribution is not much different. The
dominate binfold is 22 to 27, which is half amount of its shown in Figure 7. This
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indicates that the number of shots or receivers downhole does not strongly influence the
fold distributions.

Figure 11 illustrates the fold distribution when the surface geometry changes. In this
test, we keep the shot depth and number the same as in Figure 7, but we take out every
second receiver in the surface ,giving a  receiver interval 100 meters in both inline and
crossline. The result in Figure 11 shows the binfold is low and there are lot of zero bins
inside the offset 700 meters. This tells us the surface station geometry heavily
influences both the bin size and the bin fold.

 Through these tests, we find that the minimum bin size is 1/3 inline interval * 1/3
crossline interval

NMO correction application

The approximate traveltime for 2-D VSP of P-P reflected wave (Stewart 1991) is:

t = TR + TRB + X 2

2 VR
2
TR + VRB

2
TRB   

, (6)

where VR, VRB, TR and TRB are defined as in equation (1).

Extending equation (6) to the 3-D domain, the traveltime of the P-P reflected wave
from the source to the receivers is written as

   
t = TR + TRB +

∆X2 + ∆Y2
2

2 VR

2
TR + VRB

2
TRB

  , (7)

where   ∆X and   ∆Y  are the horizontal offset from the surface location to the well top in y
and x direction.

Equation (7) provides the NMO correction method for 3-D VSP wavefield. That is
to put the amplitude of seismic wavefield at t  time to a two-way normal incidence P-P
time (TR) in two dimensional domain.

 In this paper, the NMO algorithm is performed on two numerical 3-D VSP  model
datasets. The procedure is shown in Figure 12. The input data is the preprocessed
upgoing wave. RMS velocities and the raypath travel time are calculated by using
known interval velocity and depth information.

Figure 14 shows some of the upgoing waves of model A and B. Three receiver
gathers from each model are located at north-southing 1500 m (cross well top) and east-
westing 1500,2000, 2700 meters, the shot depth are from 1200 meters down the
borehole up to the surface. The preprocessed upgoing wavefield is the input into the
NMO processing flow.

Figure 15 shows some of the results of NMO applied crossline section of model A.
Data are sorted in common shot gathers at different surface inline locations and variant
shot depths. Figure 15a and 15b are the same shot gather at shot depth at surface, but
the inline location of the receivers are located at 1500 meters ( at the well top), and 2200
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meters (700 meters away from the well top) differently. Comparing these two, we can
see as the horizontal offset of receiver increase, the accuracy of NMO correction on the
event at the far offset of the shallow layer decrease. Figure 15c is a shot gather located
at the some location of figure 15a but the shot depth is 120 meters down the well
borehole. Comparing this two, we found out as the shot depth becomes deeper, the
error grows bigger. Figure 9d is the inline receiver located at 50 meters away form the
well top, but the shot depth at 320 meters down the borehole. This figure have proved
the effect at the far offset at the shallow layer.

Figure 16 shows the result of NMO applied on dome model B. The geometry is the
same as described (in Figure 15).We can see from this Figure, that the NMO algorithm
performed well, except at shallow layer at far offset, the deeper shots depth (320 m in
the figure 10d).

Over all, particularly the NMO correction performed well on the deeper layers of
both dipping layered model and dome structured model.

 NMO correction error discussion

The NMO correction error at far offset at the shallow layer can be explained by
viewing equation (7). First, we use equation (7) to calculated the two-way traveltime.
This equation assumes that the angle of the raypath with the vertical direction  is small.
This is true only when the horizontal offset is small comparing with the layer depth of
interests. Second, the depth of the tools down the borehole is another parameter effect
the NMO traveltime, this is denoted as  TRB in equation (6) and (7). When the angle is
not  small,  TRB will be very small at the deeper tool depth and this will exaggerate the
error caused by the large offset. In our research, we found that for a the horizontal
offset great than 1000 m in our model, NMO correction by using equation (7) will
produce a large error at layer depth 800 m down the surface.

Binning and stacking

The binning algorithm is used on both dataset A and B. The flowchart of binning is
shown in Figure 13. Since the far offset effects, the input dataset is the NMO applied
dataset with NMO stretch mute. Like surface 3-D processing , there are four  important
parameters for binning algorithm: the maximum coverage in 2-D plane; bin intervals;
bin azimuth; and the bin fold. In this study, the maximum offset coverage in calculated
as the half of the maximum offset  at surface. The bin inline and crossline directions are
in the surface inline and crossline directions. The bin interval and the fold will
discussed in fallow section.

As discussed above 3-D VSP binning is depth variant. Therefore, we need to
calculate RMS velocity and raypath traveltimes, and these are the input parameters of
equation (7).  In practice, we find out that the bin interval of 15 m for both inline and
crossline gave good results. Figure 18 and 19 show some further binning and stacking
results.

Figure 18a and 18b are inline common reflection point gather (CRP) stack section
(east-west direction) for the dipping layered model A. Figure 18a is the CRP bin
located at crossline near offset 1515 meters, which is 15 meters away from the well top
horizontally. Figure 18b is the CRP bin located at crossline far offset 1930 meters ,
which is 430 meters away from the well top. These two figures show that the binning
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algorithm performed well. On the first layer (400 ms in time) there is not much data,
that is because the error of NMO correction.

Figure 19 shows some of the crossline CRP stack sections. Figure 19a shows the
inline CRP bin at 1530 meters, which is 30 meters away from well. Figure 19b shows
the inline CRP at 2025 meters, which is 525 meters away from well top. These figures
indicated the binning and stacking algorithm works reasonably well.

Figure 20a and 20b show some CRP stacks from model B. Figure 20a is located at
inline CRP bin coordinate of 1515 m while 20b is at 1230 m.  In areas of high dip there
are some mapping errors.  This is due to mapping velocity errors and the flat layer
assumptions. We expect that the depth migration will migrate the structure to it true
location and this will be part of our future work.

CONCLUSIONS

In this study, we have developed a 3-D VSP NMO and binning algorithm. The
raypath NMO traveltime performs well when the horizontal offsets were less than 1200
meters for the dipping layered model A, and 1000 meters for structure layered model B
at shallow layer. When the offset is too large or the velocity at the shallow layer is too
slow, a large error will occur in the mapping.

3-D VSP binning has both characteristics of VSP and surface 3-D seismic.

Surface geometry is used to determine the bin size and bin azimuth. The surface
intervals are the major influence on the bin fold. The number of downhole positions is
the major parameter for the bin fold. Changing the number of the downhole locations or
the tool interval has no much influence on the distribution of the bin fold.

FUTURE WORK

There are numerous aspects of 3-D VSP survey design to  investigate. For example,
if we have a limited receiver array, where should it be positioned to give the most
broad, but uniform fold coverage? In processing, there are many algorithms to adapt to
the 3-D VSP case. We need to be able to do velocity analysis (from direct arrivals and
reflections ) as well as ray trace mapping and prestack migration
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FIG. 6 Bin fold distribution display of second layer of the full shot and receiver dataset of
model A. The receiver interval is 50 m; shot interval is 40 m; bin size: 15*15 m. (a): Areal fold
distribution, (b): histogram of fold distribution.
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FIG. 7. Bin fold distribution display of the third layer for the full dataset of model A. (a):  Areal
fold distribution, (b): histogram of fold distribution.
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FIG. 9. Bin fold distribution display of third layer of full dataset of model A. (a) : Areal fold
distribution, (b): histogram of fold distribution. Receiver interval 50 m, shot interval: 40m, bin
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Input NMO applied dataset

Calculate RMS velocity and raypaths
traveltime

FIG. 13. 3-D VSP P-P wave binning and stacking flowchart
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FIG. 17. The binning and stack section of model A. (a): the Inline section at cdp_x  1530 m,
(b):the Inline section at cdp_y 1935 m.
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FIG. 18. The binning and stack section of model A. (a): the Cross-line section at cdp_x  1530
m,  (b): the cross-line section at cdp_x 2050 m.
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FIG.19. The binning and stack section of model B. (a): At near offset cdp_x 1515 m; (b): At far
offset cdp_x 1230 m.


