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Implementation of numerical modelling in anisotropic
media by pseudo-spectral method
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ABSTRACT

Numerical simulation or forward modelling of wave propagation is an efficient
method to produce test data and examine the mechanism of wave propagation. In this
paper, implementation of the numerical modelling in anisotropic media by the pseudo-
spectral method is examined, examples of forward modelling in azimuthally anisotropic
media are presented. It proves that the pseudo-spectral method is feasible and
successful in modelling wave propagation in anisotropic media.

INTRODUCTION

Anisotropy analysis is of great interest to exploration geophysicists. Due to the
complexity of anisotropy, analytical solutions are usually not available. Physical and
numerical modelling are necessary means for the analysis of wave propagation in
anisotropic media. Numerical method is usually preferred when physical modelling is
relatively expensive and restrictive.

Numerical modelling in anisotropic media has been a topic for many researchers and
several algorithms have been proposed and used in the last decades, including ray
tracing method (Guest, 1993), finite-difference method (Carcione, 1990; Dong and
McMechan, 1995) and pseudo-spectral method (Lou and Rial, 1995). Pseudo-spectral
method uses Fourier transform to compute the spatial derivatives and finite-difference
method to compute the time derivative. Compared to other methods, pseudo-spectral
method is faster and accurate and easy to implement. It has been successfully applied to
the isotropic media case (e.g., Kosloff et al., 1984). Lou and Rial (1995) successfully
used the pseudo-spectral method to compute wavefields in 2-D inhomogeneous
anisotropic media. In this paper, the pseudo-spectral method is used to compute the
wavefields in azimuthally anisotropic media. Examples of forward modelling show that
this method is feasible.

PRINCIPLES

The wave equation governing wave propagation in elastic media is:

ρ ˙̇ui = Cijkluk,lj + ρgi (1)

where ρ  is the density, ui  is the infinitesimal displacements vector, ",lj" denotes the
partial derivatives with xl  and x j , Cijkl  is the stiffness tensor, gi  is the body force per
unit mass (Cheadle et al., 1991). And Cijkl  relate the stress tensor σij  and strain tensor
εkl  as Hooke’s law:

σij = Cijklεkl (2)

To compute the spatial derivative by Fourier transformation, we forward-transform
the displacement to the wavenumber domain, perform complex multiplication in the
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wavenumber domain and then reverse-transform it back to the space domain. For
example, the derivative
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where Uk ki( )  is the Fourier transform of uk xi( ) , which can be calculated by a 3-D
FFT, and ki  is the circular wavenumber in the xi direction.

Based on the second-order finite-differencing approximation of ˙̇ui  in equation (1),
the displacement ui t + ∆t( ) can be expressed as:

ui t + ∆t( ) = ∆t( )2 ˙̇ui t( ) + 2ui t( ) − ui t − ∆t( ) (4)

where ∆t  is the sampling interval in time.

The source function for the modelling computation is simulated by introducing a
force to the source point and its vicinity. The source force gradually decrease to zero
away from the source point to prevent aliasing (Lou and Rial, 1995).

By multiplying a weighting function to make the wave-fields to be attenuated when
approaching the boundary, good non-reflecting boundary condition has been achieved.
Exponential function proves to be a good weighting function (Cerjan et al., 1985).

Though the pesudo-spectral method is relatively fast, it is still not feasible to run 3-D
anisotropic modelling in a Sun workstation, because of the huge computation of 3D
modelling.

2-D ANISOTROPIC MODELLING RESULT AND ANALYSIS

2D modelling assumes the model is infinite and identical along x2 direction and the
sources are line sources. Here we present two modeling examples.

Model 1

Model 1 is a homogeneous azimuthally anisotropic model created by introducing a
set of fractures that are at an angle of 45° from the x1 direction. The crack density is
0.07. Other parameters are shown in Figure 1. A source polarized in the x2 direction is
introduced at grid point (128,128). The model is 256 grid point by 256 grid point in
size, with the grid size being 25 m by 25 m. The time step is 2 ms. The stiffness tensor
is computed by Hudson’s theory (Hudson, 1981, 1982; Crampin 1984).

Figure 3 shows the snapshots of the wave propagation in this model. Due to the
shear-wave splitting in anisotropic media, waves are also recorded in x1 direction from
a  source polarized in x2 direction. Also boundary reflections is greatly reduced.
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Figure 1. Illustration of model 1.

Vp=4000 m/s, Vp/Vs=1.7, ρ=2.7 crack density=0.07
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Figure 2. Illustration of model 2.

Vp=5800 m/s, Vp/ Vs=1.75, ρ=2.7 crack density=0.07

Vp=4000 m/s, Vp/ Vs=1.8, ρ=2.3
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Model 2

Shown in Figure 2 is a two-layer model with the first layer being isotropic and
second layer being anisotropic. The anisotropic layer has the same setting as model 1
and the parameters of the isotropic layer is shown in the figure. The source point  is in
the isotropic layer and also polarized in x2 direction. At first, there is only wavefields in
x2 direction, due to the isotropy. Upon the propagation of waves into the second layer,
the anisotropic layer, shear-wave splitting occurs and wavefields is recorded in x1
direction, as shown in Figure 4.

CONCLUSIONS

Pseudo-spectral method proves to be successful in modelling wave propagation in
anisotropic media. It is accurate and fast. 3D modelling of wave propagation in
anisotropic modelling could be feasible by using super-computer.
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Figure 3. Snapshots of wave propagation in model shown in Figure 1.
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Figure 4. Snapshots of wave propagation in the model shown in Figure 2.


