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ABSTRACT

Rotation of horizontal components of shear-wave data is one of the key processing
procedures in anisotropy anaysis. Several shear-wave rotation agorithms are available
and suitable for different situations. In this paper, a new agorithm for the rotation of
shear-wave data is proposed. This new agorithm can be used to rotate the horizonta
components of shear-waves generated by multiple sources that have different
amplitudes and wavelets in azimuthally anisotropic media. Synthetic data test and field
data exampl e showed that the algorithm are successful and robust.

INTRODUCTION

It is now commonly accepted that most upper-crustal rocks are anisotropic to some
extent (Crampin, 1981). Anisotropy may be caused by fine layering in sedimentary
rocks, by preferred orientation in crystalline solids, or by stress-aligned fractures or
cracks (Crampin & Lovell, 1991). Shear-wave splitting is considered to be the most
diagnostic phenomenon caused by anisotropy.

Shear-wave splitting may degrade the quality of the shear-wave data and cause mis-
tie (Alford, 1986). We want to obtain the attribute information of anisotropy, such as
natural polarization directions and degree of anisotropy, by analyzing shear-wave
splitting. Through rotation, effect of anisotropy can be compensated for and the fast
and slow shear-wave can be sparated. In the case of azimuthal anisotropy caused by
vertically-aligned fractures or cracks, the strike of fractures or cracks and the time lag of
fast and slow waves can be determined by shear-wave rotation, which is of great
interest to exploration geophysicists.

Several agorithms for the shear-wave horizontal component rotation have been
invented. Alford’ s agorithm is devised especially for four-component rotation analysis
and it can determine the orientation of the natural coordinate system (Alford, 1986). It
requires that the two sources have the same wavelet signature. It has been shown that,
for data acquired with a single source polarization, such as converted-wave data,
Alford’ s rotation method does not work, without modifications (Thomsen, 1988).

Much work has been done using hodogram analysis methods to study S-wave
splitting (e.g., Schulte and Edelmann, 1988). As discussed by Winterstein (1989),
these methods require both very high signal-to-noise ratio and the presence of a single
wavel et within the analysis window in order to be effective.

Other two-component birefringence-analysis schemes that do not involve hodograms
have largely been based upon ether the autocorrelation or crosscorreation of rotated
components (Narville, 1986; Peron, 1990). Harrison (1992) presented an agorithm
using the autocorrelation and crosscorrelation of rotated radial andtransverse
components, which is particularly suitable for converted waves and robust in the
presence of noise.

The rotation algorithm presented hereis smilar to Alford’s rotation agorithm, but it
involves two parameters, the natura polarization direction angle and thetime lag
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between the fast and slow shear-waves, which can be determined by scanning, rather
than only one parameter, the former, in Alford’ s rotation.

It can deal with the situation, where sources have different amplitudes and different
wavelets. Synthetic data test and field data example showed that the agorithm is
successful and robust.

PRINCIPLES

Shownin Figure 1, is a plan view of a multi-source, multi-receiver surface line for
the situation where vertica S-wave splitting is assumed to occur. Each shear-wave
source that does not coincide with the natural coordinate axes will split into afast and a
dow waves (Crampin, 1981; Thomsen, 1988). The $ direction indicates the
polarization direction along which shear-wavestravel at the fastest velocity3,, while S,
taken to be perpendicular to S, is the polarization direction along which S-waves travel
at the slowest velocity [3,.
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Figure 1. lllustration of multi-source, multi-receiver acquisition and shear-wave splitting.

sy(t) and s,(t) are the radial and transverse source along acquisition coordinate axes,
respectively, and can be expressed as matrix:

s 0 ()

S (t)
both shear wave sources will split into shear-waves polarized in the S, and S,
directions, which can beillustrated by Figure 2.

The relationship of splitting illustrated in Figure 2 can be expressed as matrix
multiplication:

[jcos@ snBrsr O[] [skcosf srSNO[]

E—sin@ 0059%0 STE: E—sRsinB STCOSGE (2)

or
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Figure 2. lllustration of the splitting of acquisition sources into fast- and slow-sources

R(6)* S:(t) = S(t) (3)
where R(0) = qeosd sinfg is the vector rotation matrix and
H-sing cosol]
[cos@ -—-sné[]
R(-8) =R* 4
(~0) = R*(6) Esme cosf E (4)
= 00, o I .
Si(t) = EO E IS the source matrix in the acquisition coordinate system, and
Sr

SrCOSO  srsSIn@
qt) = %_R <n@ Tcos 9% is the source matrix in the natura coordinate system. Each
SR St

row represents the components of the same direction.

|j,lll

00
Similarly, if U(t) = E Els a data matrix in the natura coordinate system,

U22
where u,, and u,, are the reflected signalsalong S, and S, directions, respectively, then
the data that would be recorded along acquisition coordinate system can be written as:

[U11C0S8  —u»SN6
12.SiN8  uxCcosO

V(t) = R*(6)- U(t) = (5)

Based on the above assumptions, we can write in frequency domain that:

R*(6)* D(w)* R6)* Si(w) = V(w) (6)

Dfl(a)) e 190, 0 0 . .
_ represents the trave timedday function
0 f(@)eesd ™ i

of both fast and slow waves and 1 and 2 are the two way travel time of fast and slow
wave respectively, f1 and f2 are the filter functionfor the fast and slow wave

where, D(w) =
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propagation, respectively, which may account for the geometric spreading, attenuation
and reflection coefficient, etc.

By rotation, we would like to have a data matrix that is generated by applying both

sources and recelvers aong the natural coordinate system, i.e., the output data matrix
of the rotation should be:

W(w) = D(w)* Si(w) = D(w)+ R*(6)* D™(w)* RO)* V(w) (7)

If f,(w)=f,(w), equation (7) can be written as:

W
W(w):DNll 12D:
21 W22
0 cos+sin?0etie® sin@cosf —sin@cosPer' ] [Vrr Vrrl]

Esin@cos@e‘im—sinecose sin?0e '“® + cos?6 EH/TR V'I'I'E (8)

where, in w; and v;;, i represents the receiver direction and j represents the source

0 0 . .
direction, and A = ZzEﬁi —ia Multiplication of €“* and e in frequency domain
2 ﬁl
is equivaent to time shift in time domain.

According to equation (8), if we can determine the angle between the direction of
the polarization of fast shear wave and the acquisition line, 8, and the time lag between
fast and dow waves, A, we can rotate the acquisition data matrix V(t) into W(t) to
separate the fast and slow shear wave. These two parameters can be determined by
scanning.

We rotate the input data matrix by a range of angles, 8, and time, A, and compute
the norm on off-diagonal elements of rotated data matrix.

ON pD%
fei(@a0)], =03 wi(6rat] (9)

where N is the number of samplesin the scanning window. Then we sum the norm on
off-diagonal elements. If the © and A are correct, the sum of the norms will be the
minimum.

In the process described above, we do not need to assume that the wavelets and
amplitudes of radial and transverse sources be the same.

SYNTHETIC DATA TEST

Figure 3 shows a synthetic data rotation example. Figure 3.aisthe input datamatrix
generated by two sources withthe samewavelet, both in man frequency and
amplitudes. Figure 3.b is the result by our rotation algorithm, while Figure 3.c is the
result by Alford s agorithm. Both methods work well when the two sources are the
same. For synthetic data rotation test, we just create one CDP and we repeat this CDP
20 times for the purpose of display.
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Figure 4 shows another synthetic data rotation test. Figure 4.a displays the input
data matrix generated by sources with wavelets of the same type but different main
frequencies and amplitudes. Figure 4.b and Figure4.c are theresults by our rotation
algorithm and Alford’s rotation, respectively. Our algorithm completely zeros the off-
diagonal elements, but Alford's rotation leaves significant energy on the off-diagonal
elements, because it requires that the sources have the same signature.

Figure 5 shows rotation with band-limited random noise added to the input data
matrix. The mean amplitude of noiseis 0.05 times that of signal. Figure 5.aisthe input
data matrix, while Figure 5.b is the rotation result of our agorithm, wherethe off-
diagonal signal energy has been removed. This shows that the algorithm is robust in the
presence of relatively strong noise.

Figure 6 shows the parameters (fast-wave polarization direction and time lag)
scanning on the synthetic data without noise. The scanning is performed at regular time
steps and the sum of norm of off-diagonal elements of the rotated data matrix is
displayed in the form of contour, that can be used to pick up the desired parameters.
Figure 6.a and 6.c demonstrate norm minimum of good resolution, because there are
reflecting layers at the scanning times. And the parameters picked are exactly the same
as those used to generate the data. Aswe move the scanning time away from thetime a
which there are reflectors, the norm minimum disappears and no parameters can be
picked as illustrated by Figure 6.b and 6.d. This is the ideal casefor parameter
scanning. We aways expect al kinds of noisein field data processing.

Figure 7.b shows the scanning result with noise added, where the mean amplitude
of noiseis 0.02 times that of signal, the norm minimum is still clear enough. But with
increased noise, present scanning criterion does not give good resolution. Figure 7.a
shows the scanning result without noise.

FIELD DATA EXAMPLE

Figure 8 shows two examples of scanning on field data. Because of the noise and
the deviation of real situation from theoretical assumptions, such as that stack does not
exactly represents zero offset data, we have good resolution and poor resolution
scanning cases shown by Figure 8.a and 8.b, respectively. In the red rotation, other
information about the natural polarization direction is needed.

Figure 9.ais afield data matrix before rotation from the area, Olds, Alberta, Canada.
The mis-matched data elements demonstrated strong signal energy, which indicatesthat
there should be azimutha anisotropy. Figure 9.b is the rotated result, where the off-
diagona signal energy is greatly reduced and diagonal signal energy has been enhanced
and the fast and slow waves have been separated. Only the data between 2400 ms and
2800 ms has been rotated and the other part of dataisjust for the purpose of display.

Figure 10.b displayed the fast and slow waves side by side to show the time lag
between them. Figure 10.ais the input matched data elementsshown in the same way
as rotated data. Rotation separates the fast and slow waves and will improve the
interpretation and also gives the information about the fractures or other anisotropic
cause.

CONCLUSIONS

A new agorithm is presented based on a derivation that better describe the azimuthal
anisotropy problem. By rotation scanning, two parameters, natura polarization
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direction of fast wave and time lag between fast and slow waves, can be determined.
The new agorithm can better deal with the data generated by the sources with different
wavelet signatures and is robust in the presence of relatively strong noise. Synthetic
datatest and field data example are successful and reasonable.

Thereisaso the potential to use it on single shear-source data (2-components) and
for layer stripping.
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Figure 3. Synthetic data rotation showing (a) data matrix before rotation generated by the sources
with the same wavelet signature; (b) data matrixr rotated by our algorithm; (c) data matrix rotated
by Alford's algorithm
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Figure 4. Synthetic data rotation showing (a) data matrix before rotation generated by
sources with different wavelet frequency and amplitude; (b) data matrix rotated by our algorithm;
(c) data matrix rotated by Alford's algorithm.
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Figure 5. Rotation with noise added; (a) data matrix before rotation; (b) data matrix rotated by our algorithm.
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Figure 6. Synthetic data scanning at (a) 252 ms; (b) 298 ms; (c) 400 ms; (d) 480 ms.
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Figure 8. Scanning on field data; (a) good; (b) poor minimum concentration.
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Figure 9. Field data rotation; (a) data matrix before rotation and (b) data matrix after rotation;
only the part from 2.4 S to 2.8 S has been rotated.
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Figure 10. Field data rotation; (a) matched components (v-v and h-h) before rotation and
(b) separated fast and slow waves after rotation.
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