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An efficient and accurate algorithm for constructing
common scatter point gathers

Xinxiang Li and John C. Bancroft

ABSTRACT

The equivalent offset migration (EOM) technique has been successfully used for
field data from different areas. As an efficient alternate approach of pre-stack Kirchhoff
time migration, it involves a procedure of constructing common scatter point (CSP)
gathers. An efficient and accurate algorithm for constructing CSP gathers is presented.
This method will improve the accuracy, quality and the speed in forming the accurate
CSP gathers as well as benefits the poststack image section.

INTRODUCTION

Bancroft and Geiger(1994) and Bancroft et al. (1995) introduced a new approach of
pre-stack time migration, which is called equivalent offset migration (EOM). As an
alternative method to fulfill Kirchhoff migration, EOM is also based on the subsurface
scatter point model. With the new concept of equivalent offset, pre-stack seismic
dataset is sorted into a new dataset named common scatter point (CSP) gathers. The
whole procedure of EOM is then completed by NMO correction and stacking applied on
CSP gathers.

Kirchhoff migration principle

For a subsurface scatter point with RMS velocity Vrms  located at depth z0  and
surface location x0 , as shown in Figure 1, two experiments can be done.

The first, theoretically put a source and a receiver at the same surface location x  as
in Figure 1a, the recorded travel time T1  will be
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=  is the one-way travel time vertically from surface to the scatter

point or reverse. When the source-receiver location x  moves along a surface line, it is
easy to see that T1  changes along a hyperbola in T x−  coordinates.

The second, the sources and the receivers are separated on the earth surface. Assume
that a source locate at xs  and a receiver locate at xr  as shown in Figure 1b, the
recorded travel time T2  will be
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Figure 1. Surface scatter point model. (a) the left, co-located source and receiver assumption,
it is the basic model for poststack Kirchhoff time migration. (b) the right, separated source and
receiver, prestack Kirchhoff time migration methods starts with this model. EOM technique
goes further with a new concept of equivalent offset.

Equation (2) is called double square root (DSR) equation, which is the basic
property of the scatter point model in arbitrary offset case. It is the fundament equation
for pre-stack Kirchhoff migration.

Equations (1) and (2) can be written in CMP location ( )x x xcmp s r= + 2  and half

source-receiver offset ( )h x xs r= − 2  coordinates as
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where x x xoff cmp= − 0  is the distance between CMP location and the scatter point

surface location.

Equivalent offset and CSP gather

An essential characteristic of EOM method is that it connects equation (1) and (2)
with the concept of equivalent offset. Any source location xs  and receiver location xr ,
or equivalently any CMP location xcmp  and half source-receiver offset h , there is a

surface point (circle for 3-D line) xe  such that T x T x he cmp1 2( ) = ( ), , i.e.,
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The distance from xe  to x0  on surface is defined as the equivalent offset he  associated
with the given scatter point (its position and velocity), and the sample time T T T= =1 2 .
The value of he  can be expressed as (from Bancroft et al, 1995)



Computing Equivalent Offset

CREWES Research Report — Volume 8 (1996) 25-3

( )h x h
x h

V T Te off
off

rms

2 2 2

0

2
2

= + −
⋅ ⋅







 .                                (4)

Writing Vrms  as ( )V Trms 0  is for emphasizing the value of velocity field is given at the
scatter point location instead of the recorded travel time T .

The surface position of a vertical array of scatter points is referred to the common
scatter point (CSP) location. CSP gathers are formed by summing input traces into
offset bins of the gather. The energy of a sample on an input trace (a trace sorted into
conventional coordinates such as CMP gathers) may come from scatter points under all
different CSP locations, and different samples on a trace may be associated with
different equivalent offsets even for a same CSP location.

Suppose the CSP gather at location x0  is constructed traces with equivalent offsets

  h l l h l Ne e h( ) = ⋅ ={ }∆ : , , ,0 1 L . Each input trace with CMP location xcmp  and half

source-receiver offset h  contributes its energy to this CSP gather according to equation
(4). Specifically, if a sample with travel time T  has a he by equation (4) falls
between h le −( )1 2/  and h le +( )1 2/ , it will be distributed to the trace with equivalent
offset h le( ).

Discussions in the following sections will make sure that, for each equivalent offset
bin boundary h le −( )1 2/ , there is a determined value of T  (denoted by T l( )) satisfying
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All samples with travel time between T l( )  and T l +( )1  have equivalent offset by
equation (4) falling between h le −( )1 2/  and h le +( )1 2/ . That means these samples will
all be distributed to the trace with equivalent offset h le( ).

As being emphasized above, V Trms 0( )  usually changes with travel time T l( ) , so T l( )
can not be directly computed by equation (5). The algorithm may be expressed as:

1. Estimate T0  from preliminary knowledge;

2. Get velocity V Trms 0( )  by known velocity function at present CSP location;

3. Calculate T l( )  by equation (5), or by
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Step 2 and 3 are easy to understand, the main concern is the step 1 . First, if we can
get accurate T0 , the result T l( )  will be accurate (based on accurate velocity). The main
difference between our new algorithm and old algorithm is that we try to cancel the
direct influence of T l( )  on T0  according to the connection between equations (5) and
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(6), then get an accurate solution of T0  by using a special property of RMS velocity.
While, the old method try to get an approximate solution of T0  by a loop over the above
three steps.

THE ALGORITHMS

The old algorithm first gets an approximate of T0  by equation (6) using the
preliminary knowledge about the first useful energy in the input trace for given CSP
location at initial time(Bancroft et al. 1995)
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or previous T l( )  and Vrms  at previous T0  (step 1), then by equation (5) get an new
approximate of T l( )  (step 3). Figure 2 may be helpful for understanding the iterative
mechanism of the method.

Input Trace CSP Trace

Preliminary
      T(l)

Approximate
     T(l)'s

Approximate
     T0's

step 1 step 3

Figure 2. Iterative approach to get T l( )  by loop over the three steps.

Now, let’s see our new algorithm. From equation (4), we can get
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where V Trms 0( )  is simplified as V . Revising equation (6), we have
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Combine (7) and (8),
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This is the basic equation our new method uses. It is more convenient because the
both sides of the equation can be accurately computed by known quantities. The right
hand side is a real number while the left hand side is a function of T0 , this function is a
known continuous function because Vrms  is always continuous with T0  no matter what
the interval velocity is. However, for getting T0  from (9), it is required that the

function VT0

2[ ]  has a inverse function. We fortunately found that for RMS velocity,
this function is always invertable, the proof is in next section.

VALIDITY AND EFFICIENCY

There are still two questions to answer in our algorithm: when we construct the trace
at a CSP gather equivalent offset bin location h le( ), the boundaries of this bin are
h le −( )1 2/  and h le +( )1 2/ . Using the algorithm above we can get T l( )  and T l +( )1 .
The first question is: If all the samples with travel time between T l( )  and T l +( )1  really
have the equivalent offsets between h le −( )1 2/  and h le +( )1 2/ ? The second question

is: If VT0

2[ ]  is invertable as a function of T0 ?

In this section, we will give positive answers to these two questions, thus the
validity of our algorithm is provided.

VT0

2[ ]  is an absolutely increasing function of T0

Assume T0  is sampled by arbitrary time interval δt , i.e. ( )T n t 0 = ⋅δ n = 0,1,2,. .. .

For a given CSP location, the RMS velocity field is a function of n  and δt
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where Vk  is the interval velocity (positive real number) in ( )[ ]k t t− ⋅ ⋅1 δ δ,  k . Then
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Validity of calculating T  only at the equivalent offset bin boundary

By the physical property of scatter point model, when the scatter point depth z0  or

T0  changes at a CSP location, the travel time T  on any recorded trace should be a

continuous function of T0 . In addition, because VT0

2[ ]  is a continuos function of he
and is invertable as  function of T0 , so T0  is also a continuous function of he . Finally,
T  is a continuous function of he . Assume this function is f , i.e. T f he= ( ) , we have

T l f h l T l f h le e( ) = −( )( ) +( ) = −( )( )1 2 1 1 2/ /,  ,

then because of the continuity of f , for any T*  between T l( )  and T l +( )1 , there must

be a h h l h le e e
* / , /∈ −( ) +( )[ ]1 2 1 2   such that ( )f h Te

* *= .This is to say, any sample

with travel time between Tk l, −  and Tk l, +  can be assigned an equivalent offset in the bin

h le( ) (i.e. between h le( ) and h l +( )1 .

By now, we have answered the two questions opened above.

Efficiency of the new algorithm

Comparing the two methods mentioned above, it is easy to see that the main
differences from the old algorithm is :

1. Calculate the right hand side of equation (9): usually, h le −( )1 2/  can be considered
as constant because it is independent of both CSP location and input trace; xoff  and h
are independent of l , they just need to be computed once for fixed CSP gather and
input trace.

2.  Construct a vector VT0

2[ ]  for time samples: there is such a vector for every CSP
gather, so we can construct these vectors as a matrix just when we get the velocity
function for all CSP locations. It dose not increase much computation cost.

3.  Get T0  from equation (9): for this process, no more summation or multiplication
operations are in need, we can get very accurate (the error less than one sample interval)

T0  only by comparing the value of right-hand-side term with a series of VT0

2[ ] .

The main advantage of our new method is its very high accuracy, especially when
high quality imaging is required.
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