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ABSTRACT

The phase shift method of wavefield extrapolation applies a phase shift in the
Fourier domain to deduce a scalar wavefield at one depth level given its value at
another. The phase shift operator varies with frequency and wavenumber and assumes
constant velocity across the extrapolation step. We use nonstationary filter theory to
generalize this method to nonstationary phase shift (NSPS) which allows the phase
shift to vary laterally depending upon the local propagation velocity. For comparison,
we derive the popular PSPI (phase shift plus interpolation) method in the limit of an
exhaustive set of reference velocities. NSPS and this limiting form of PSPI can be
written as generalized Fourier integrals which reduce to ordinary phase shift in the
constant velocity limit. However, only NSPS has the physical interpretation of a
laterally varying phase shift which forms the scaled, linear superposition of impulse
responses (i.e. Huygen’s wavelets).

The difference between NSPS and PSPI is clear when they are compared in the case
of a piecewise constant velocity variation. Define a set of windows such that the jth

window is unity when the propagation velocity is the jth distinct velocity and is zero
otherwise. NSPS can be computed by applying the window set to the input data to
create a set of windowed wavefields, each of which is phase shift extrapolated with the
corresponding constant velocity, and the extrapolated set is superimposed. PSPI
proceeds by phase shift extrapolating the input data for each distinct velocity, applying
the jth window to the jth extrapolation, and superimposing. PSPI has the unphysical
limit that discontinuities in the lateral velocity variation cause discontinuities in the
wavefield while NSPS shows the expected wavefront “healing”.

We then formulate a finite aperture compensation for NSPS which has the practical
result of absorbing lateral boundaries for all incidence angles. Wavefield extrapolation
can be regarded as the crosscorrelation of the wavefield with the expected response of a
point diffractor at the new depth level. Aperture compensation simply applies a laterally
varying window to the infinite, theoretical diffraction response. The crosscorrelation
becomes spatially variant, even for constant velocity, and hence is a nonstationary
filter. The nonstationary effects of aperture compensation can be simultaneously applied
with the NSPS extrapolation through a laterally variable velocity field.

INTRODUCTION

In a general context, wavefield extrapolation refers to the mathematical technique of
advancing a wavefield through space or time. Such techniques can be used in both
seismic migration and seismic modeling. In this paper, we will restrict the scope of
wavefield extrapolation to the problem of deducing a scalar wavefield at one depth level
in the earth given knowledge of its properties at another level. We also assume that the
wave propagation velocity, v, depends only on the lateral spatial coordinates, (x,y),
and not on the depth, z. Consequently, our technique is intended for use in a recursive
scheme in which vertical velocity variations are handled, in the usual manner, through
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an appropriate choice of depth levels and only lateral velocity variations are directly
addressed by our theory.

Wavefield extrapolation by phase shift (Gazdag, 1978) has many desirable
properties and one overriding difficulty. On the positive side, the phase shift operator is
theoretically exact for constant velocity, unconditionally stable, shows no grid
dispersion, and is accurate for all scattering angles. (We prefer the term scattering angle
to the more commonly used dip because the latter is often confused with the geologic
dip of reflectors.) The major difficulty is that it is not immediately apparent how lateral
velocity variations can be incorporated into a phase shift method because the space
coordinate has been Fourier transformed. As a result, extrapolation techniques for v(x)
(we use v(x) as synonymous with the phrase “a laterally variable velocity field”) are
usually formulated in the space-frequency domain (Gazdag 1980, Berkhout 1984,
Holberg 1988, Hale 1991, and others) as a dip-limited approximation to the inverse
Fourier transform of the phase shift operator. The velocity dependence of such a local
space domain extrapolator is then varied with the local velocity of the computation grid.
However, since the multidimensional Fourier transform is a complete description of a
wavefield, it follows that it must be possible to extrapolate a wavefield through lateral
velocity variations with a Fourier domain technique. We present such a technique here
and illustrate its relation to established methods. Black et al. (1984) and Wapenaar
(1992) have presented similar Fourier methods (see also Wapenaar and Dessing, 1995,
and Grimbergen et al. ,1995).

We present our work in the context of nonstationary filter theory (Margrave, 1997)
and show its direct link to the popular PSPI (phase shift plus interpolation) method of
Gazdag and Squazzero (1984). NSPS (nonstationary phase shift) is presented as an
explicit closed-form expression for one-way wavefield extrapolation through v(x)
which has the physical interpretation of a laterally varying, or nonstationary, phase
shift. Next, we give a detailed comparison between NSPS and PSPI for the case of a
step velocity model. Both analytic and numerical results show that NSPS gives more
physically plausible results. As a further demonstration of the utility of our approach
we conclude with a modification of NSPS which has perfectly absorbing (that is,
reflections are surpressed at all dips) lateral boundaries. This is achieved through the
compensation of the NSPS operator for finite recording aperture.

THEORETICAL DEVELOPMENT

We begin with a summary of PSPI and show how to formulate the most accurate,
limiting form of PSPI as a generalized Fourier integral. Then, using results from the
theory of nonstationary linear filters, we show that the PSPI limiting form is a type of
nonstationary filter called a combination filter. Such filters are linear and have definable
properties; however, they do not form the linear superposition of impulse responses
which Huygen’s principle suggests is desirable in wave propagation. This motivates
the use of a nonstationary convolution filter which does form the desired linear
superposition and is the basis for our NSPS algorithm. We give expressions for NSPS
and PSPI in the dual (space-wavenumber) domain and in the full Fourier domain.
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The PSPI method

PSPI (phase shift plus interpolation, Gazdag and Squazzero, 1984) is a rational
attempt to build an approximate extrapolation through v(x) from a set of constant
velocity phase shift extrapolations using a suitable set of reference velocities, {vj}. For
simplicity, we present the theory in 2D as the extrapolation of a wavefield from z=0 to
z=∆z. (A summary of our mathematical notation appears in Appendix A.) After an
initial Fourier transform over time, we denote the wavefield at z=0 as Ψ(x,0,ω), (ω is
temporal frequency)  and the desired extrapolated wavefield at z=∆z as Ψv(x)(x,∆z,ω),
where the subscript provides information about the velocity field. Phase shift
extrapolation with each vj produces a reference wavefield, Ψvj(x,∆z,ω), given by

  
Ψvj x,∆z,ω = ϕ k x,0,ω αvj k x,ω eik xxdk x

– ∞

∞

(1)

where

  
ϕ kx,0,ω =

1
2π Ψ x,0,ω e–ikxxdx

– ∞

∞

(2)

is the forward spatial Fourier transform of the input data, the phase shift operator, α vj

,is given by

  

αvj kx,ω =
ei∆zkz j, kx ≤

ω
vj

e– ∆zkz j , kx >
ω
vj

, kz j =
ω2

vj

2 – kx

2

 , (3)

and kx and kz are horizontal and vertical wavenumbers respectively. This definition of
αvj ensures that evanescent energy suffers exponential decay. Note that each reference
wavefield, Ψvj, is a complete phase shift extrapolation defined at all x and ω though we
do not expect it to contribute to Ψv(x) where v(x) differs significantly from vj. It is a
fundamental assumption of PSPI that the desired extrapolation is equivalent to a
reference wavefield wherever the actual velocity equals the reference velocity. That is

  Ψv(x) xj,∆z,ω = Ψvj xj,∆z,ω , if v(xj) = vj (4)

PSPI proceeds by choosing a small set of reference velocities that bracket the
extremes of v(x) and sample its fluctuations. Once the set {Ψvj} is computed, an
approximation to Ψv(x) is formed by some sort of linear (in velocity) interpolation (LI)

  Ψv(x) x,∆z,ω ≈ LI Ψvj x,∆z,ω ,Ψvj + 1 x,∆z,ω , vj ≤ v(x) ≤ vj + 1  . (5)

The choice of the reference velocities and the details of the interpolation process
symbolized by equation (5) are major technical design questions because they control
the accuracy of the final result. However, we are not concerned with them here because
we wish to proceed to the most accurate limiting case of PSPI, when a reference
wavefield is computed for every distinct velocity. In this case, the PSPI algorithm
converges to
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Ψv(x) x,∆z,ω ≈ ΨPSPI x,∆z,ω = ϕ kx,0,ω αv(x) kx,x,ω eikxxdkx

– ∞

∞

(6)

where

  

αv(x) kx,x,ω =
ei∆zkz(x), kx ≤

ω
v(x)

e– ∆zkz(x) , kx >
ω

v(x)

, kz(x) =
ω2

v(x)2 – kx

2

 . (7)

Note that we reserve the symbol ΨPSPI
 to refer specifically to the most accurate limiting

form of PSPI as expressed by equation (6). Equation (6) is essentially similar to
equation (1) except that the constant velocity, v, in the latter has become v(x) in the
former. This means that equation (6) is no longer an inverse Fourier transform but is a
more general Fourier integral. It can be interpreted as a prescription which applies the
nonstationary filter of equation (7) simultaneously with the transformation from kx to x.
In order to appreciate the validity of this result, it is useful to explicitly verify that
equation (4) is satisfied

  ΨPSPI xj,∆z,ω = Ψvj xj,∆z,ω , xj ⇒ v(xj) = vj  . (8)

Thus the limiting PSPI wavefield, as given by equation (6), is equivalent to producing
a complete, continuous set of reference velocities and wavefields and slicing through
them such that each is used only where its velocity equals v(x). This is illustrated in
Figure 1. An alternative to this slicing process, is the direct numerical integration of
equation (6). In this limiting case, the problems of reference velocity selection and
choice of interpolation algorithm vanish.

FIG. 1. The limiting form of PSPI produces a continuous set of extrapolated wavefields Ψvj(x),
one for each vj. The final extrapolated wavefield ΨPSPI(x) is the set of traces found along a slice
at x = xj through the data volume.
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The NSPS method

The theory of nonstationary linear filters, as presented in Margrave (1997), shows
that two distinct forms of nonstationary filters are possible. Termed combination and
convolution filters, both filter forms are equivalent in the stationary limit (in this
context, stationary means constant velocity) but otherwise they can differ dramatically.
The theory gives explicit prescriptions for filter application in the space, Fourier, or
dual domains as well as formulae to move the filter prescription between domains. (A
dual domain filter expression is one which changes the data domain from space to
Fourier, or the reverse, in the process of applying the filter.)

As described above, ΨPSPI is computed by an ordinary forward Fourier transform,
equation (2), and then the generalized inverse Fourier integral, equation (6), and is an
example of a nonstationary, dual domain, combination filter. The nonstationarity of the
filter is evidenced by the fact that the filter description, αv(x)(kx,x,ω), is dependent upon
both wavenumber and spatial location. (The x dependence vanishes for a stationary
filter.)

The distinction between combination and convolution filter forms is most apparent in
the dual domain form. Given equation (6) and following the nonstationary filter theory,
it is now a simple matter to write the equations describing the related nonstationary
convolution filter. The first step applies the nonstationary wavefield extrapolator, α v(x),
given by equation (7), simultaneously with the forward Fourier transform

  
ϕNSPS kx,∆z,ω =

1
2π Ψ x,0,ω αv(x) kx,x,ω e–ikxxdx

– ∞

∞

 . (9)

The final step is an ordinary inverse Fourier transform

  
ΨNSPS x,∆z,ω = ϕNSPS kx,∆z,ω eikxxdkx

– ∞

∞

 . (10)

Equations (9) and (10) form the basis of our method of wavefield extrapolation by
nonstationary phase shift. In comparison with the limiting form of PSPI, both methods
apply the same nonstationary filter, αv(x) as given by equation (7), but NSPS applies it
simultaneously with the forward Fourier transform from x to kx, while in PSPI it is
applied simultaneously with the inverse Fourier transform from kx to x. In the
stationary limit, when αv(x) becomes constant in x, it is a simple matter to verify that
both expressions reduce to the constant velocity phase shift extrapolation.

Fourier domain formulation

At this point, both the PSPI limiting process and NSPS have been presented as dual
domain algorithms which have the characteristic that the nonstationary extrapolation
filter is applied simultaneously with a data transformation from wavenumber to space or
the reverse. Nonstationary filter theory provides the mathematical formulae to move
either process fully into the Fourier domain or into the space domain; however, we
present only the Fourier domain expressions here.

PSPI can be moved into the Fourier domain by performing the forward Fourier
transform of equation (6) (Appendix B). This results in
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ϕPSPI kx,∆z,ω = ϕ kx

' ,0,ω A kx
' ,kx – kx

' ,ω dkx
'

– ∞

∞

(11)

where

  
A p,q,ω =

1
2π αv(x) p,u,ω e–iqudu

– ∞

∞

 . (12)

In equation (12), p and q are wavenumber variables and u is a space coordinate. The
wavenumber connection function, A, is seen to be the ordinary forward Fourier
transform over the spatial coordinate of αv(x) .

The Fourier expression for NSPS (Appendix C) is derived from equation (9) by
substituting for Ψ its expression as an inverse Fourier transform of its spectrum, ϕ .
The result is

  
ϕNSPS kx,∆z,ω = ϕ kx

' ,0,ω A kx,kx – kx
' ,ω dkx

'

– ∞

∞

(13)

where A is given by equation (12).

Equations (11) and (13) are very similar, differing only in how the p dependence of
A(p,q) is mapped into (kx,kx´) space. For discretely sampled data, both of the
integrations in these equations can be represented as matrix operations in which a
matrix populated from A(p,q) is multiplied into a column vector containing samples of
ϕ. In the stationary limit (i.e. v(x) = constant), both of the A matrices become diagonal
with the phase shift extrapolator appearing on the diagonal. As v(x) is allowed to vary,
off-diagonal terms appear in the matrices and, when multiplied into the data vector,
cause a “mixing” of the wavenumbers of ϕ to produce each wavenumber of ϕv(x). An
alternative perspective is that αv(x) represents a phase shift model based on the velocity
model v(x). These formulae (equations 11 and 13) prescribe how the wavenumbers of
the phase shift model, and hence indirectly the velocity model, mix with the
wavenumbers of the data during wavefield extrapolation.

We emphasize that these Fourier domain expressions will give theoretically identical
results to the dual domain formulae or to space domain results. However, the formulae
are distinct from a numerical perspective as each domain has its potential strengths and
weaknesses in a particular computational setting. A potential advantage of this Fourier
approach is the possibility of gaining efficiency, for smooth velocity models, by
computing only a limited number of off-diagonal terms.

COMPARISON OF NSPS AND PSPI

The formal demonstration that  nonstationary convolution forms the linear
superposition of the nonstationary filter impulse response, while nonstationary
combination does not, is given in Margrave (1997). Here, we will take a more
conceptual approach. Consider the computation of both ΨNSPS and ΨPSPI

 in the case
when the nonstationary phase shift operator is given by
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αv(x) kx,x,ω =

αv1 kx,ω , x < 0

αv2 kx,ω , x ≥ 0
(14)

where α v1 and α v2 are two different constant velocity phase shift operators
corresponding to velocities v1 and v2 as given by equation (3). We will give an analytic
analysis and show numerical examples. (All of our numerical examples were computed
using the  full Fourier method just discussed.)

Figure 2 shows the numerical test case which we will use to illustrate  the conceptual
results. The seismic section shown contains a horizontal line of impulses which will
capture the laterally varying impulse responses. A zero pad has been attached to both
sides to avoid operator wraparound as is customary for Fourier methods. The velocity
model is 5000 m/s on the left and changes discontinuously in the middle of the section
to 2000 m/s. The wavefield extrapolations to be shown will all use a 50 m downward
extrapolation step. For comparison with NSPS and PSPI, Figure 3a shows an ordinary
phase shift extrapolation using the intermediate velocity of 3500 m/s. Figure 3b shows
the amplitude spectrum of a Fourier extrapolation matrix  for a particular frequency, ω.
As discussed previously, it is a purely diagonal matrix whose non zero elements
contain the phase shift extrapolator, α vj (equation 3). Multiplication of the input
wavefield, represented as a column vector of wavenumber components for a single
frequency, results in a column vector of the output wavefield with no wavenumber
mixing.

FIG. 2. Numerical test case showing impulses to be extrapolated through a discontinuous
velocity model.  Live data on the Figure refers to the input wavefield, zero pad refers to the
zero pad in x required by the Fourier domain extrapolation.
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FIG. 3. (a) Phase shift extrapolation for the numerical test case of Figure 2 using constant
velocity (v = 3500 m/s). (b) Amplitude spectrum of Fourier extrapolation matrix for a particular ω
in the constant velocity case.

First, we compute ΨPSPI
 by substituting (14) into (6). After some elementary

manipulations, we obtain

  
ΨPSPI x,∆z,ω =

Ψv1 x,∆z,ω , x < 0

Ψv2 x,∆z,ω , x ≥ 0 (15)

where Ψv1
 and Ψv2

 are reference wavefields for α v1 and α v2 computed from equation
(1). Equation (15) shows that ΨPSPI

 is the discontinuous juxtaposition of two reference
wavefields. Margrave (1997) shows that nonstationary combination filters generally
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have this property that lateral discontinuities in the filter specifications will cause similar
discontinuities in the filtered result. This is a nonphysical behavior since a
superposition of Huygen’s wavelets should always smooth over discontinuities.

Figure 4a shows ΨPSPI for our numerical test case. The central discontinuity is
clearly obvious as is the dramatic difference in traveltime delay between the left and
right sides. Clearly, if this result were input into a subsequent extrapolation step, the
discontinuity would cause wavefronting and lead to the kinds of instabilities reported
by Etgen (1994). Note also that the hyperbolic impulse response show two different
curvatures. Figure 4b is the amplitude spectrum of the Fourier extrapolation matrix for
the same frequency as in Figure 3b. The non zero off-diagonal terms are clearly evident
though it is interesting to note that, even for this discontinuous velocity model, they
quickly decrease away from the diagonal. Next, consider ΨNSPS

 by substituting (14)
into (9) and breaking the integral into two parts to get

  
ϕNSPS kx,∆z,ω =

1
2π αv1 kx,ω Ψ x,0,ω e–ikxxdx

– ∞

0 –

+αv2 kx,ω Ψ x,0,ω e–ikxxdx
0

∞

. (16)

Now define two differently windowed versions of the input wavefield:

  
Ψ|v1 x,0,ω =

Ψ x,0,ω , x < 0

0, x ≥ 0
 and 

  
Ψ|v2 x,0,ω =

0, x < 0

Ψ x,0,ω , x ≥ 0
. (17)

Then, equation (16) can be written

  ϕNSPS kx,∆z,ω = αv1 kx,ω ϕ|v1 kx,0,ω + αv1 kx,ω ϕ|v2 kx,0,ω (18)

where ϕ|v1 and ϕ|v2 are the ordinary Fourier transforms of Ψ|v1 and Ψ|v2 respectively.
ΨNSPS

 is simply the inverse Fourier transform of ϕNSPS as in equation (10). Since the
inverse Fourier transform is linear, it can be distributed over the sum in equation (18).
This analysis shows that ΨNSPS

 may be computed by “windowing” the input wavefield
as in equation (17) to isolate those portions spatially coincident with each distinct
velocity, extrapolating the windowed wavefields with phase shifts, and superimposing
the results.
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FIG. 4. (a) ΨPSPI for the numerical test case of Figure 2. The Figure shows a discontinuity in the
output wavefield. This discontinuity corresponds to the discontinuity in the velocity field. (b)
Amplitude spectrum of the PSPI extrapolation matrix. Laterally varying velocities generate off
diagonal terms.

Figure 5a shows ΨNSPS
 for the numerical test case. Unlike Figure 4a, there is no

central discontinuity and each input impulse has been replaced by the time-reversed
diffraction response characteristic of the local velocity. This is a much more physically
plausible result than that of Figure 4a and can be seen to be in qualitative agreement
with Huygen’s principle. Figure 5b is the Fourier matrix which achieves NSPS
extrapolation. The NSPS matrix can be formed by transposing the PSPI matrix and
then flipping each row about the diagonal (compare equations 11 and 13).
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FIG. 5. (a) ΨNSPS for numerical test case of Figure 2. The discontinuity in the velocity field is not
imposed on the output wavefield. Instead, the response is a smooth superposition of
wavefields. (b) Amplitude spectrum of the NSPS extrapolation matrix. Laterally varying
velocities generate off diagonal terms. Note the similarity of the spectrum to that of the PSPI
extrapolator, in fact they differ only by a matrix transpose and reversal of each resulting row
about the center diagonal.

To accentuate the comparison, ΨPSPI (equation 15) can be rewritten to incorporate an
explicit windowing step as well by defining
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Ψv1|v1 x,∆z,ω =

Ψv1 x,∆z,ω , x < 0

0, x ≥ 0
 and 

  
Ψv2|v2 x,∆z,ω =

0, x < 0

Ψv2 x,∆z,ω , x ≥0 (19)

then

  ΨPSPI x,∆z,ω = Ψv1|v1 x,∆z,ω + Ψv2|v2 x,∆z,ω . (20)

So, PSPI and NSPS can be contrasted by where, in the process, the windowing step
occurs. In NSPS, the input dataset is windowed to create the set { Ψ|vj}, each member
of the set is phase shift extrapolated with the corresponding member of {vj}, and the
results are superimposed. In PSPI, the set {Ψvj} is created by phase shift extrapolating
Ψ with each member of {vj}, each member of { Ψvj} is then windowed giving the set
{ Ψvj|vj}, and the results superimposed. The windowing functions are the same in both
algorithms. This computation procedure is exact for both ΨPSPI and ΨNSPS whenever the
velocity variation is piecewise constant and illustrates that the computational effort
required for NSPS is very similar to that required for PSPI.

This analysis can be generalized to nearly arbitrarily complex velocity variations, as
long as the number of distinct velocities is countable, by defining the windowing
function

  
Ωj x =

1, v(x) = vj

0, otherwise
. (21)

Then, ΨNSPS can be written

  
ΨNSPS x,∆z,ω = αvj kx,ω Ωj x Ψ x,0,ωFT

x ⇒ kx

Σ
j

IFT
kx ⇒ x

(22)

while ΨPSPI is

  
ΨPSPI x,∆z,ω = Ωj x αvj kx,ω Ψ x,0,ωFT

x ⇒ kx

IFT
kx ⇒ x

Σ
j

. (23)

In these expressions, FT and IFT are forward and inverse Fourier transforms and the
sum is over the complete set of distinct velocities. In the constant velocity case, the
equivalence of both methods with ordinary phase shift can be easily appreciated since
Ωj becomes unity and the sums collapse to a single term.

Figure 6 shows ΨNSPS and ΨPSPI for the complex velocity function shown in Figure
6c. The NSPS result is clearly more coherent than that from PSPI. (In fairness, we
note that a practical implementation PSPI would never be run with such rapid lateral
velocity variations. Instead, a few reference wavefields would be computed and a
smoothed interpolated result would be obtained from equation (5). Thus the result
would be less chaotic than that shown in Figure 6b but also less accurate than that
shown in Figure 6a.)
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FIG. 6. (a) ΨNSPS for complex velocity variation. The wavefield of Figure 2 was used as input to
NSPS extrapolation through the complex (though arbitrary) velocity of Figure 6(c). The
resulting NSPS wavefield is a continuous superposition of diffraction responses. (b) ΨPSPI for
complex velocity variation. The wavefield of Figure 2 was used as input to PSPI extrapolation
through the complex velocity of Figure 6(c). The chaotic response of the extrapolation is
conceptually the result of windowing a set of constant velocity extrapolations and combining
them into an output section. (c) Complex velocity function used to compare NSPS and PSPI.

APERTURE COMPENSATION

Intuitively, the reason that nonstationary theory is required for vertical wavefield
extrapolation through v(x) is that the wavefield extrapolation operator changes spatially
as v(x) varies. It follows that any other space and wavenumber variant processes may
be incorporated into the extrapolation operator in similar fashion. One such process is
the implementation of absorbing lateral boundaries. Absorbing boundaries have been
developed quite successfully for finite difference and other space domain methods
(Clayton and Engquist 1977, Keys 1985) and we extend them to Fourier methods here.
The usual concept is to alter the dispersion relation of waves near the boundary such
that only outward traveling wavefronts are allowed; however, this is usually not
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possible for all propagation angles (Claerbout, 1985). We achieve absorbing
boundaries for all propagation angles from the viewpoint of developing an extrapolation
operator which is compenstated for finite recording aperture.

Aperture compensation follows from an understanding of the downward
extrapolation of upward traveling waves as a process of crosscorrelation with an
appropriate diffraction response. The inverse Fourier transform of the phase shift
operator is essentially the diffraction response of the scalar wave equation (Robinson
and Silvia 1981, page 370). From here, it is not difficult to show that the space-time
equivalent of phase shift downward continuation is a convolution with a time-reversed
diffraction response (hyperbola) as shown in Figure 7a. Equivalently, this can be
regarded as a crosscorrelation with the time-normal diffraction response. Thus a very
appealing picture emerges: The downward continuation of upward traveling waves
from depth z1 to depth z2 can be done by crosscorrelation of the wavefield recorded at
z1 with the expected response of a point scatterer at z2 .

We can regard any seismic line as a spatial window that allows only a portion of the
response of a point scatterer at z2  to be recorded at z1 . We deduce that a better
crosscorrelation operator than the normal infinite, symmetric operator would be that
operator with an appropriate spatial window applied. It follows immediately that
aperture compensated downward continuation must be a nonstationary process even in
the constant velocity case since the expected windowed diffraction response must vary
laterally.

Consider a seismic line, recorded at z1, where the only reflecting element is a point
scatterer at z2 near the left edge of the line (Figure 7b). The expected zero-offset
response is the right hand limb of a diffraction hyperbola. Downward continuation by
crosscorrelation with a symmetric hyperbola, simulating perhaps a limited scattering
angle operator, is shown in Figure 7c (the temporal delay of the operator is not shown
so that the focusing effects can be more clearly appreciated). The use of an aperture
compensated operator is shown in Figure 7d where the crosscorrelation is done with
the expected windowed diffraction response. The crosscorrelation is shown as a
convolution-by-replacement  with the time and space reversed diffraction response.

An extrapolation operator which has been aperture compensated varies from
completely left-sided on the left end of a seismic line, to symmetric in the middle, and
then to completely right-sided on the right end. This means that the operator has a scalar
wave dispersion relation which varies smoothly from a left or right quarter circle on
either end to symmetric in the middle. This is exactly the “Engquist boundary
condition” for absorbing lateral boundaries discussed by Claerbout (1985). Thus
absorbing boundaries arise as a natural consequence of aperture compensation and,
additionally, a smooth lateral variation of the dispersion relation is obtained.
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FIG. 7. (a) Application of the downward continuation operator considered as a convolution of
the recorded wavefield at on depth with the time and space reversed response of a point
scatterer at another depth. (The extrapolation time shift has been ignored to simplify
comparison.) (b) Diffraction response near the edge of the recording aperture. (c)Downward
continuation of a diffraction response at the edge of the recording aperture using a symmetric
operator.  Residual wavefronts will be generated by this process and will appear as boundary
reflections. (d) Downward continuation using an aperture compensated operator resulting in a
perfectly absorbing boundary.

A one-sided diffraction response has a one-sided ω-kx spectrum. Viewing
crosscorrelation as a multiplication of ω-kx spectra, it is easy to appreciate that the
crosscorrelation of a one-sided diffraction with a two-sided diffraction will produce the
same result as the crosscorrelation of the one-sided diffraction with itself. The problem
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with the symmetric operator stems from the fact that seismic data generally contains
energy at all kx values even near the aperture boundaries due primarily to noise. Thus
the symmetric operator can produce “false correlations” near the boundaries which
appear as wavefronts “reflecting” from the boundary. Such events are unphysical as
they represent reflector dips which could not possibly have been recorded by the finite
aperture seismic line. The one-sided operator cannot produce such events.

We formulate an aperture compensated extrapolation operator by directly limiting its
spectral content as a function of position. As shown in Figure 8, the finite aperture can
be regarded as a space-variant scattering angle filter where the left and right scattering
angle limits correspond to raypaths from a scatterpoint to either end of the line.
Approximating these raypaths as straight rays, this filter can be expressed as:

  
β kx,x,ω =

1, – ωsin θL ≤ v(x)kx ≤ ωsin θR

0, otherwise (24)

where θL and θR are left and right scattering angles as defined in Figure 8. Then the
aperture compensated operator can be written:

  αv(x)

aper kx,x,ω = β kx,x,ω αv(x) kx,x,ω (25)

Using αaper
v(x) in place of αv(x) equation (9) or equation (12) implements aperture

compensation in either the dual or Fourier domains.

FIG. 8. An aperture compensating (absorbing boundary) filter is a laterally varying
(nonstationary) ω-kx fan filter defined by the maximum  scattering angles allowed by the given
aperture. Straight raypaths are assumed.

Figure 9a shows ΨNSPS computed with aperture compensation where the aperture is
defined as the live data zone of Figure 2. Careful inspection shows that the impulse
responses on both edges are completely one-sided having only an outgoing wavefront.
The second impulse response in from each edge is also slightly modified. Figure 9b
shows amplitude spectrum of the Fourier extrapolation matrix and it is obvious that
aperture compensation has been purchased at the expense of a considerable increase in
off-diagonal power.



Wavefield extrapolation by nonstationary phase shift

CREWES Research Report — Volume 9 (1997) 30-17

FIG. 9. (a) ΨNSPS computed including compensation for finite aperture. Impulse responses at
the edges are one sided grading to symmetric at the center of the section. (b) Amplitude
spectrum of NSPS extrapolation matrix (Fourier domain). Comparison of this figure to Figure
5(b) shows the additional off diagonal terms require for aperture compensation.

Finally, we note that a Fourier method actually has two mechanisms which can lead
to similar wavefronting near the boundary. In addition to the effect discussed above,
there is the possibility of “operator wraparound” resulting from an insufficient lateral
zero pad. As formulated here, our method of aperture compensation still requires an
adequate zero pad though we are investigating its suppression with a further
nonstationary operator.
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CONCLUSIONS

The vertical extrapolation of a scalar wavefield through a laterally variable velocity
can be accomplished with high fidelity using a Fourier technique called nonstationary
phase shift  (NSPS). We assume that the wave propagation velocity, v, depends only
on the lateral spatial coordinates and not on the depth. Vertical velocity variations can be
addressed by using our method in a recursive progression through a series of depth
levels.

The phase shift method applies a frequency and wavenumber dependent phase shift
in the Fourier domain to accomplish wavefield extrapolation though a constant velocity
layer. Our NSPS (nonstationary phase shift) method applies a similar phase shift but
allows the shift to vary spatially depending upon the local propagation velocity. Both
NSPS and the limiting form of PSPI (phase shift plus interpolation) can be written as
generalized Fourier integrals which are examples of nonstationary linear filters and
which reduce to ordinary phase shift in the constant velocity limit. However, only
NSPS can be considered as a scaled, linear superposition of impulse responses (i.e.
Huygen’s wavelets). In the presence of strong velocity gradients, differences between
the methods are dramatic though the computational effort required is similar.

When considered for the case of a piecewise constant velocity variation, NSPS can
be formulated as a 3 step process: i) window the input data to isolate those portions
coincident with each distinct velocity, ii) phase shift extrapolate each windowed dataset,
and iii) superimpose the results. PSPI follows a similar pattern except that the
windowing is performed after each phase shift extrapolation.  The resulting PSPI
wavefield has discontinuities wherever the velocity is laterally discontinuous.

The nonstationary extrapolation formalism can be easily extended to include
compensation for finite recording aperture. When wavefield extrapolation is viewed as
the crosscorrelation of the input wavefield with the expected diffraction response at the
new depth level, it becomes clear that the recording aperture applies a spatially variant
window to the expected diffraction response. Aperture compensation can be
implemented by to applying a spatially variant scattering angle filter (ω-kx filter) to the
infinite aperture operator. This can be done simultaneously with the NSPS
extrapolation through a laterally variable velocity field. The result is an operator whose
dispersion relation is completely one-sided on the boundaries (equivalent to completely
absorbing lateral boundaries) and which grades smoothly to a symmetric response in
the center of the acquisition aperture.
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APPENDIX A

Short Full Description
Ψ Ψ(x,0,ω) Space domain wavefield at z = 0.
ϕ ϕ (kx,0,ω) Wavenumber domain wavefield at z = 0.

Ψvj Ψvj(x,∆z,ω) Space domain wavefield at z = ∆z, 
extrapolated with vj.

ϕvj ϕvj(kx,∆z,ω) Wavenumber domain wavefield at z = ∆z, 
extrapolated with vj.

Ψv(x) Ψv(x)(x,∆z,ω) Space domain wavefield at z = ∆z, 
extrapolated with v(x) using an unspecified 
algorithm.

ϕv(x) ϕv(x)(kx,∆z,ω) Wavenumber domain wavefield at z = ∆z, 
extrapolated with v(x) using an unspecified 
algorithm.

ΨPSPI ΨPSPI(x,∆z,ω) Space domain wavefield at z = ∆z, 
extrapolated with v(x) using the PSPI 
algorithm.

ϕPSPI ϕPSPI(kx,∆z,ω) Wavenumber domain wavefield at z = ∆z, 
extrapolated with v(x) using the PSPI 
algorithm.

ΨNSPS ΨNSPS(x,∆z,ω) Space domain wavefield at z = ∆z, 
extrapolated with v(x) using the NSPS 
algorithm.

ϕNSPS ϕNSPS(kx,∆z,ω) Wavenumber domain wavefield at z = ∆z, 
extrapolated with v(x) using the NSPS 
algorithm.

α vj αvj(kx,ω) Phase shift extrapolator for constant velocity 
vj.

αv(x) αv(x)(kx,x,ω) Phase shift extrapolator for variable velocity 
v(x).
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Α Α (kx,kx′,ω) Full Fourier domain phase shift extrapolator 
for variable velocity v(x).

β β(kx,x,ω) Aperture compensation filter.
αaper

v(x) αaper
v(x)(kx,x,ω) Aperture compensated phase shift 

extrapolator for variable velocity v(x).
kzj kzj(kx,ω) Vertical wavenumber for constant velocity vj.

kz(x) kz(kx,x,ω) Vertical wavenumber for variable velocity 
v(x).

Ψ|vj Ψ|vj(x,0,ω) Space domain wavefield at z = 0, windowed 
to be non zero only where v(x) = vj.

ϕ|vj ϕ|vj(kx,0,ω) Wavenumber domain wavefield at z = 0, 
windowed to be non zero only where 
v(x) = vj.

Ψvj|vj Ψvj|vj (x,∆z,ω) Space domain wavefield at z = ∆z, 
extrapolated with vj, windowed to be non 
zero only where v(x) = vj.

Ωj Ωj(x) Windowing function which is unity where 
v(x) = vj and zero otherwise.

APPENDIX B

The Fourier domain formulation for PSPI

Equation (6) is repeated here as

  
ΨPSPI x,∆z,ω = ϕ kx,0,ω α kx,x,ω eikxx

– ∞

∞

dkx . (B-1)

The Fourier transform of equation (B-1) along the x axis is

  

ϕPSPI kx

' ,∆z,ω =
1

2π ϕ kx,0,ω α kx,x,ω eikxx

– ∞

∞

dkx

– ∞

∞

e– ikx
' xdx

. (B-2)

The variable kx
’ is used to distinguish the wavenumbers of the Fourier Transform step

from those of the extrapolation process.  Next, switch the order of integration (see
Margrave, 1997, for a discussion)

  

ϕPSPI kx

' ,∆z,ω = ϕ kx,0,ω 1
2π α kx,x,ω eikxxe– ikx

' x

– ∞

∞

dx

– ∞

∞

dkx . (B-3)

Then define

  
A kx,kx

' – kx,ω =
1

2π α kx,x,ω e– ix kx
' – kx dx

– ∞

∞

, (B-4)

and substitute into equation (B-3)
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ϕPSPI kx

' ,∆z,ω = ϕ kx,0,ω A kx,kx

' – kx,ω
– ∞

∞

dkx . (B-5)

Rename the wavenumber variables such that Equation (B-5) is of the same form as
Equation (11)

  
ϕPSPI kx,∆z,ω = ϕ kx

' ,0,ω A kx

' ,kx – kx

' ,ω
– ∞

∞

dkx

'

. (B-6)

APPENDIX C

The Fourier domain formulation for NSPS

Equation (9) is repeated here as

  
ϕNSPS kx,∆z,ω =

1
2π Ψ x,0,ω α kx,x,ω

– ∞

∞

e– ikxxdx . (C-1)

Replace Ψ(x,0,ω) with its Fourier Transform along the x axis:

  

ϕNSPS kx,∆z,ω =
1

2π ϕ kx

' ,0,ω eikx
' xdkx

'

– ∞

∞

α kx,x,ω
– ∞

∞

e– ikxxdx . (C-2)

The variable kx
’ is used to distinguish the wavenumbers of the Fourier Transform of the

input wavefield from those of the extrapolation process.  The next step is to reverse the
order of integration (see Margrave, 1997)

  

ϕNSPS kx,∆z,ω =
1

2π ϕ kx

' ,0,ω α kx,x,ω eikx
' xe– ikxx

– ∞

∞

dx

– ∞

∞

dkx

'

. (C-3)

Then define

  
A kx,kx – kx

' ,ω =
1

2π α kx,x,ω e– ix kx – kx
'

dx
– ∞

∞

, (C-4)

and substitute into equation (C-3)

  
ϕNSPS kx,∆z,ω = ϕ kx

' ,0,ω A kx,kx – kx

' ,ω
– ∞

∞

dkx

'

. (C-5)


