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ABSTRACT

The phase shift method of wavefield extrapolation applies a phase shift in the
Fourier domain to deduce a scalar wavefield at one dep#t given its value at
another. The phase shift operator varies with frequency and wavenumber and assumes
constant velocityacrossthe extrapolatiorstep. We useionstationary filter theory to
generalizethis method tononstationary phasshift (NSPS)which allowsthe phase
shift to varylaterally depending upothe localpropagation velocityFor comparison,
we derive the populd?SPI (phasehift plusinterpolation) method in thémit of an
exhaustive set of reference velociti®&SPS and thislimiting form of PSPIcan be
written as generalizeBourier integrals which reduce to ordinary phase shift in the
constant velocity limit.However, only NSPS hasthe physical interpretation of a
laterally varying phase shift which formthe scaled,linear superposition of impulse
responses (i.e. Huygen’s wavelets).

The difference between NSPS and PSPI is clear when they are compidwedase
of a piecewise constant velocisariation. Define aset of windows suchthat the
window is unity whenthe propagation velocity is th& plistinct velocity and is zero
otherwise. NSP®an be computed by applying thendow set to the inputlata to
create a set of windowed wavefields, each of which is phaseegtidpolated with the
corresponding constant velocity, arlkde extrapolated set isuperimposedPSPI
proceeds by phase shift extrapolating the irqasafor each distincwvelocity, applying
the " window tothe " extrapolation, and superimposingSPI hasthe unphysical
limit that discontinuities in thdateral velocity variationcause discontinuities in the
wavefield while NSPS shows the expected wavefront “healing”.

We then formulate a finite aperture compensattiwrNSPSwhich hasthe practical
result of absorbingateralboundaries foall incidenceangles.Wavefield extrapolation
can be regarded as the crosscorrelation of the wavefield with the expected response of a
point diffractor at the new depth level. Aperture compensation simply appaesraly
varying window tothe infinite, theoretical diffractionresponseThe crosscorrelation
becomes spatiallyariant, evenfor constant velocity, andhence is a nonstationary
filter. The nonstationary effects of aperture compensation can be simultaneously applied
with the NSPS extrapolation through a laterally variable velocity field.

INTRODUCTION

In a general context, wavefield extrapolatrefers tothe mathematical technique of
advancing a wavefield through space or tirfachtechniques can besed in both
seismic migration and seismmodeling. In this paper, weill restrict the scope of
wavefield extrapolation to the problem of deducing a scalar wavefield at onelelegbth
in the earth given knowledge of its properties at another level. We also absiiritne
wave propagation velocity, v, depends onlytha lateral spatiatoordinates(x,y),
and not on the depth, z. Consequently, our techniqumeisdedfor use in a recursive
scheme in which vertical velocity variations &@ndled, inthe usual manner, through
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an appropriate choice of depth levels amdly lateral velocityvariations are directly
addressed by our theory.

Wavefield extrapolation byphase shift (Gazdag, 1978) hasany desirable
properties and one overriding difficulty. On the positive side, the phase shift operator is
theoretically exactfor constant velocity,unconditionally stable, shows nogrid
dispersion, and is accurate for all scattering angles. (We prefer thedattering angle
to the more commonlyseddip because th&atter isoften confused witlthe geologic
dip of reflectors.) The major difficulty is that it is natmediately appareritow lateral
velocity variations can be incorporated intplaase shift method becautee space
coordinate has been Fourier transformed. As a resdtapolation techniqudsr v(x)
(we use v(x) as synonymous witte phrase “alaterally variable velocity field”) are
usually formulated in the space-frequency domain (GaZd@80, Berkhout 1984,
Holberg 1988 Hale 1991, and others) as dip-limited approximation to the inverse
Fourier transform of the phase shift operaidre velocity dependence stich alocal
space domain extrapolator is then varied with the local velocity of the compgetion
However,since the multidimension&ourier transform is aompletedescription of a
wavefield, it followsthat it must be possible textrapolate a wavefielthroughlateral
velocity variations with a Fourier domain technique. We presecit atechnique here
and illustrate its relation to establishetethods.Black etal. (1984) and Wapenaar
(1992) have presented similar Fourier methods (see also Wapendaessiag,1995,
and Grimbergen et al. ,1995).

We present our work ithe context of nonstationary filter thedfylargrave, 1997)
and show its direct link tthe populaiPSPI (phasshift plusinterpolation) method of
Gazdag and Squazzef®84). NSPS(nonstationary phase shift) is presented as an
explicit closed-form expression for one-wayavefield extrapolationthrough v(x)
which hasthe physical interpretation of laterally varying, or nonstationary, phase
shift. Next, wegive a detailecomparison betweeNSPSandPSPI forthe case of a
step velocitymodel. Bothanalyticand numericafesults showthat NSPS gives more
physically plausibleesults. As durther demonstration of thetility of our approach
we conclude with a modification dISPS which hasperfectly absorbing(that is,
reflections aresurpressed all dips) lateralboundaries. This ischievedthrough the
compensation of the NSPS operator for finite recording aperture.

THEORETICAL DEVELOPMENT

We begin with a summary &#SPlandshow how toformulate themost accurate,
limiting form of PSPI as @eneralized~ourier integral. Then, using results from the
theory of nonstationary linear filters, we shtvat thePSPIlimiting form is a type of
nonstationary filter called @mbinatiorfilter. Such filters are linear and have definable
propertieshowever,they do not formthe linearsuperposition of impulseesponses
which Huygen’sprinciple suggests iglesirable in wave propagation. Thisotivates
the use of a nonstationargonvolution filter which does formthe desiredlinear
superposition and is the basis for our NSPS algorithm. We give expressiodiSR&
and PSPI in the dual (space-wavenumber) domain and in the full Fourier domain.
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The PSPl method

PSPI phaseshift plusinterpolation Gazdag and Squazzero, 1984) isatonal
attempt tobuild an approximate extrapolatidhrough v(x) from a set o€onstant
velocity phase shift extrapolations using a suitable set of reference velocifies;div
simplicity, we present the theory in 2D as the extrapolation of a wavéitetd z=0 to
z=Az. (A summary of oumathematicahotation appears in Appendi.) After an
initial Fourier transform over time, we denote the wavefield=& asW(x,0,w), (w is
temporal frequency) and the desired extrapolated wavefieldAat as\W¥,.,(X,Az,w),
where the subscript provides information abotie velocity field. Phase shift
extrapolation with each produces aeference wavefieldV,;(x,Az,w), given by

W, XAz, = f ¢/ K000 Vj[’kx,w\jeikxxdkx 1)
where

k Ow 5 f xOooe “dx (2)

is the forward spatial Fourier transformtb€ inputdata,the phase shift operatog,,
IS given by

W
IAZKy
G(k(;)):fe ’ X_Vj k.. = ﬁz_kz
vi X1 \Le—AZk . w! zj ij X ’ (3)
] X \/J

and k and k are horizontal angertical wavenumbers respectively. This definition of
a,, ensures thagvanescent energuffersexponentialdecay. Notethat each reference
wavefield, W, is a complete phase shift extrapolation defined at all xuatitbugh we
do not expect it to contribute t8,,, where v(x) differssignificantly from y. It is a
fundamental assumption ¢1SPI tﬁat thedesired extrapolation is equivalent to a
reference wavefieldrhereverthe actual velocity equals the reference velocity. That is

)

V(X)(xj,Az,w) = l-lij(XJ- ,Az,oo), if v(x) =V, 4)

PSPI proceeds by choosing small set of reference velocitigbat bracket the
extremes ofv(x) and sample its fluctuationsOnce theset {¥, } IS computed, an
approximation to¥, ,, is formed by some sort of linear (in veIOC|ty) interpolation (LI)

V)

V(X) vj + 1

(X,Az,u))zLI(WVj(x,Az,w),qJ. (X,Az,w)), VEV(X) SV, . (5)

The choice of the reference velocities and the details of the interpojaibmess
symbolized by equatio(b) are major technicalesign questions becauteey control

the accuracy of the final result. However, we are not concerned with them here because
we wish toproceed to themost accurate limiting case dPSPI, when areference
wavefield is computedor every distinct velocity. In thicase,the PSPI algorithm
converges to
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Volx20) =itz = [ okoula ko R
where
f eiAsz(x), k| < & :
_ 17 v(X) : w
B T AR
T v(X)

Note that we reserve the symi¥)l. . to refer specifically to thenostaccurate limiting

form of PSPl as expressed kaquation(6). Equation (6) is essentially similar to
equation(1l) except that theonstant velocity, v, irthe latterhas becomev(x) in the
former. This means that equation (6) is no longer an inverse Fourier transform but is a
more general Fourier integral.dan be interpreted as a prescriptwinich applies the
nonstationary filter of equation (7) simultaneously with the transformation fyoonx

In order toappreciate the validity athis result, it is useful t@xplicitly verify that
equation (4) is satisfied

)

=

xj,Az,oo) = ij(xj,Az,w), x, O v(x)=v, . (8)

Thus the limiting PSPI wavefield, as given by equaf®), is equivalent to producing
a complete, continuous set of referemetcities and wavefields and slicitigrough
themsuchthat each isised only where itgelocity equalsv(x). This is illustrated in
Figure 1. Analternative tathis slicing process, ighe direct numerical integration of
equation(6). In this limiting case,the problems of reference velocity selection and
choice of interpolation algorithm vanish.

X

>

N

N

FIG. 1. The limiting form of PSPI produces a continuous set of extrapolated wavefields W,,(x),
one for each vj. The final extrapolated wavefield W5, (X) is the set of traces found along a slice
at x = x; through the data volume.
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The NSPS method

The theory of nonstationary linefiters, as presented kargrave(1997), shows
that two distinctforms of nonstationarfilters are possible. Termedcombinationand
convolution filters, bothfilter forms are equivalent in the stationalynit (in this
context, stationary means constant velocity) but otherwisectreyliffer dramatically.
The theorygivesexplicit prescriptions foffilter application in thespace, Fourier, or
dual domains as well as formulae to mahe filter prescription betweetiomains. (A
dual domain filterexpression is one which changtee data domairfrom space to
Fourier, or the reverse, in the process of applying the filter.)

As describedabove, W, is computed by an ordinafgrward Fourier transform,
equation (2), anthen the generalized inverBeurier integral, equatio(6), and is an
example of a nonstationary, dual domain, combination filtee. nonstationarity of the
filter is evidenced by the fact that the filter descriptmp,(k,,x,0), is dependentipon
both wavenumber and spatial location. (The x dependmlmshes for astationary
filter.)

The distinction between combination and convolution filter forms is most apparent in
the dual domain form. Given equation (6) and following the nonstatidittarytheory,
it is now asimple matter tovrite the equations describing thelated nonstationary
convolution filter. The first step applies the nonstationary wave@igtchpolatora
given by equation (7), simultaneously with the forward Fourier transform

v(x)?

O KuAZ,00) = 21n f ) W(X,0,0)0t KX o)™ dX (9)

The final step is an ordinary inverse Fourier transform

W x,Az,w):f O kx,Az,w)eikxxdkx (10)

Equations (9) and (10) forrthe basis of ourmethod of wavefield extrapolation by
nonstationary phase shift. In comparison with the limiting forr@8P1, both methods
apply the same nonstationary fI|tG(/x as given by equatiof¥), but NSPSapplles it
simultaneously withthe forward Fourler transform from x to, kwhile in PSPI it is
applied simultaneously withhe inverseFourier transform from Kto x. In the
stationary limitwhena,,, becomes constant in x, it is a simptetter toverify that
both expressions reduce to the constant velocity phase shift extrapolation.

Fourier domain formulation

At this point, both the PSPI limiting process and NSPS have been presedted as
domain algorithms which havwhe characteristic that theonstationary extrapolation
filter is applied simultaneously with a data transformation from wavenumber to space or
the reverse. Nonstationarfjiter theory providesthe mathematicalormulae to move
eitherprocesdully into the Fourier domain or intdhe space domairhowever, we
present only the Fourier domain expressions here.

PSPI can be moved into thEBourier domain by performinthe forward Fourier
transform of equation (6) (Appendix B). This results in
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0

Brer( K, D2,00) = f 3(K.0.wJA K.k, ~ K, 0)dk, (11)

where

o

1 —iqu
A(p.a.0) = ZTJ_m o,(PUw)E “du . (12)
In equation(12), pand q are wavenumber variables and u is a spaaelinate. The
wavenumber connectiofunction, A, is seen to beéhe ordinary forward Fourier
transform over the spatial coordinatenqy, .

The Fourier expression foNSPS (Appendix C) is derived from equatid®) by
substituting forP its expression as an inverse Fourier transform of its spectrum,
The result is

Ol Kh2,00) = f [k 0wJA K.k, ~ K JdK, (13)
where A is given by equation (12).

Equations (11) and (13) are very similar, differing only in hHbe/ p dependence of
A(p,q) is mapped into (kk ) space. Fordiscretely sampleddata, both of the
integrations in these equations can be represented as matrix operatwwhghna
matrix populated from A(p,q) isultiplied into a column vector containirsgmples of
¢. In the stationary limit (i.e. v(x) = constant), bothtloé A matrices become diagonal
with the phase shift extrapolator appearing on the diagonal. As \@ipvged tovary,
off-diagonal terms appear in the matriGesd, whenmultiplied into the datavector,
cause a “mixing” of thevavenumbers o to producesachwavenumber ob, .. An
alternative perspective is thaf,, represents phaseshift modelbased orthe velocity
model v(x). These formulae (equations 11 and 13) preskeabethe wavenumbers of
the phase shift model, andhence indirectly the velocitymodel, mix with the
wavenumbers of the data during wavefield extrapolation.

We emphasize that these Fourier domain expressions will give theoratiealigal
results to the dual domain formulae or to space donesinlts. Howeverthe formulae
are distinct from a numerical perspective as each dohasritspotentialstrengths and
weaknesses in particular computationadetting. Apotential advantage ahis Fourier
approach is the possibility of gainingfficiency, for smoothvelocity models, by
computing only a limited number of off-diagonal terms.

COMPARISON OF NSPS AND PSPI

The formal demonstration that nonstationary convolution formshe linear
superposition ofthe nonstationary filter impulseesponse, while nonstationary
combinationdoes not, isgiven in Margrave(1997). Here, wewill take a more
conceptualapproach. Considdghe computation oboth W, and W, in the case
when the nonstationary phase shift operator is given by
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favl(kx,w) ,X<0

Ot K, ,00) = \sz(kx,w) 20

(14)

where a,, and a,, are two different constant velocityphase shift operators
corresponding to velocities ®nd \y as given by equation (3). We will give analytic
analysis and show numerical examples. (All of our numerical examples were computed
using the full Fourier method just discussed.)

Figure 2 shows the numerical test case which we will use to illustrate the conceptual
results.The seismic sectioshowncontains a horizontdine of impulses whichwill
capture the laterallyarying impulseresponses. Zero padchasbeen attached tboth
sides to avoid operator wraparound as is customary for Fone#rods.The velocity
model is 5000 m/s on the left and changes discontinuousheimiddle of the section
to 2000 m/s. The wavefield extrapolations tosbewnwill all use a 50 m downward
extrapolation step. For comparison with NSPS and PSPI, Figure 3a shows an ordinary
phase shift extrapolation using the intermediate velocitys00 m/s. Figure 3bhows
the amplitude spectrum of a Fourier extrapolation mdtrixa particularfrequency,w.
As discussed previously, it is a purelyagonal matrixwhose nonzero elements
contain thephase shift extrapolatory,, (equation3). Multiplication of the input
wavefield, represented ascalumn vector of wavenumber componefus a single
frequency, results in aolumn vector of the output wavefieldith no wavenumber
mixing.

zero pad Live data ,_zero pad

02- _
006" : ; .
© ! 1
[ I 1
O - 1 1 )
O il 1
3 L} 1

.10- : : .

14, |

0 1000 | 2000
meters

50 m I 5000 m/s 2000 m/s

—~—1280m —=

FIG. 2. Numerical test case showing impulses to be extrapolated through a discontinuous
velocity model. Live data on the Figure refers to the input wavefield, zero pad refers to the
zero pad in x required by the Fourier domain extrapolation.
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FIG. 3. (a) Phase shift extrapolation for the numerical test case of Figure 2 using constant
velocity (v = 3500 m/s). (b) Amplitude spectrum of Fourier extrapolation matrix for a particular w

in the constant velocity case.

First, we computeW,, by substituting (14)into (6). After some elementary
manipulations, we obtain

‘Pvl(x,Az,w), x <0

Vesn( X020 = W4 X,A2,0), X 2 0

(15)

whereW , andW¥,, are reference wavefielder o, anda,, computed from equation
(1). Equation (15) shows thdt,.,is thediscontinuous juxtaposition a@évo reference
wavefields.Margrave (1997) showsthat nonstationary combination filters generally
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have this property that lateral discontinuities in the filter specifications will cause similar
discontinuities in the filteredresult. This is a nonphysicabehavior since a
superposition of Huygen’s wavelets should always smooth over discontinuities.

Figure 4a showsV,.., for our numerical testcase.The central discontinuity is
clearly obvious as ishe dramatic difference in traveltime delay between the left and
right sides. Clearly, ithis result were input into subsequenéextrapolationstep, the
discontinuitywould cause wavefronting anidad to thekinds of instabilities reported
by Etgen(1994). Note alsothat the hyperbolic impulseesponse show twdifferent
curvatures. Figure 4b is the amplitude spectrurthefourierextrapolation matrix for
the same frequency as in Figure 3b. The non zero off-diagonal tercisate evident
though it is interesting to notlat, evenfor this discontinuouselocity model, they
quickly decrease away frothe diagonal. Next,considerW,q.¢by substituting (14)
into (9) and breaking the integral into two parts to get

[

o

[ kX,Az,m):Z1 0l K, 00) f W(x,0,00)e™dx | (16)

—

W(x,0,00)e ™ dx+a1, K,,00) f

0

Now define two differently windowed versions of the input wavefield:

LIJ 0, 0 0,x<0
Lplvl(X,O,(D) {O ))((> g)) X< and LP|VZ(X’O w {L]J X O 00) x>0" (17)
Then, equation (16) can be written
Drsl K DZ,W) = 01, K, )01, (K., 0.00) + 01, (K] [, O, 0) (18)

where¢|,,and¢|,, are the ordinary Fourier transforms'gff, and¥|,, respectively.
WysesiS simply the inversé&ourier transform of,s.s as in equatior{10). Since the
inverse Fourier transform is linear, it can be distributed theesum inequation(18).
This analysis shows th#t, ;,smay be computed bfwindowing” the input wavefield
as in equatior(17) to isolate those portionsspatially coincident witheach distinct
velocity, extrapolating the windowed wavefields with phsisets, and superimposing
the results.
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FIG. 4. (a) Wesp, for the numerical test case of Figure 2. The Figure shows a discontinuity in the
output wavefield. This discontinuity corresponds to the discontinuity in the velocity field. (b)
Amplitude spectrum of the PSPI extrapolation matrix. Laterally varying velocities generate off

diagonal terms.

-.04

Figure 5a show$’, . for the numerical testase.Unlike Figure4a, there is no
central discontinuity an@éach input impulsdéasbeen replaced by the time-reversed
diffraction response characteristic of the local velocity. This is a much more physically
plausible result thathat of Figure 4a andan beseen to be imgualitative agreement
with Huygen’s principle. Figure 5b ithe Fourier matrix which achievesNSPS
extrapolation. TheNSPSmatrix can be formed byransposinghe PSPI matrix and
then flipping each row about the diagonal (compare equations 11 and 13).
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FIG. 5. (a) W\sps for numerical test case of Figure 2. The discontinuity in the velocity field is not
imposed on the output wavefield. Instead, the response is a smooth superposition of
wavefields. (b) Amplitude spectrum of the NSPS extrapolation matrix. Laterally varying
velocities generate off diagonal terms. Note the similarity of the spectrum to that of the PSPI
extrapolator, in fact they differ only by a matrix transpose and reversal of each resulting row

about the center diagonal.

To accentuate the comparis@it,g,, (equation 15) can be rewritten to incorporate an
explicit windowing step as well by defining
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W (x,Az,0), 0 _10,x<0
Wl(xAz,00) = {0 V)EXZ OZ @) x < andWahd{ 02,6 = {quz(x,Az,oo), xz0 (19
then
WPSP,(X,Az,w) = l4JV1|V1(X Az (u) +¥ 2|V2(x Az oo) (20)

So, PSPlandNSPScan be contrasted lwhere, inthe processthe windowing step
occurs. In NSPS, the input dataset is windowed to ctbatset {¥|,}, each member
of the set ipphase shifextrapolated wittthe correspondingnember of {y}, and the
results are superimposed. In PSPI, the &4 {s created by phase shi«trapolating
W with each member of {}; eachmember of {W¥,} is thenwindowed givingthe set
{Ww,l, } and the results superlmpose'ﬂqewmdowmg functionsare the same in both
algorlthms This computation procedure is exact for Both, andW,s.s whenever the
velocity variation is piecewise constant and illustratest the computational effort
required for NSPS is very similar to that required for PSPI.

This analysis can be generalized to nearly arbitrarily complex velaaitgtions, as
long asthe number of distinct velocities isountable, by defininghe windowing
function

_[ Ly =y
Qfx)= |0, otherwise ' ©h)

Then,W,-sCan be written

NSPS(X Az oo) =|FT

ky O x

Z uvj(kx,oo)l—_l_ (Qj(x)w(x,o,w))

x O ky

(22)

while W, is

W, (xAz,0) = Z ox)|FT (23)

ky O x

avj(kx,w)FT(qJ(x,O,w)) _

x O ky

In theseexpressions, F&nd IFTareforward and inverse Fourier transforms and the
sum is ovetthe completeset of distinct velocities. Ithe constant velocitgase, the
equivalence of both methods with ordingtyase shiftan be easily appreciated since
Q,becomes unity and the sums collapse to a single term.

Figure 6 showsV, .;and W, for the complex velocity functioshown in Figure
6¢c. The NSPSresult is clearly more coherent thdvat from PSPI. (In fairness, we
note that a practical implementati®sP|1 wouldnever berun with suchrapid lateral
velocity variations. Instead, a feweference wavefieldsvould be computed and a
smoothed interpolated reswitould beobtained from equatiorf5). Thusthe result
would be lesschaotic than thashown in Figure 6lbut also lessaccurate tharthat
shown in Figure 6a.)
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FIG. 6. (a) W\sps for complex velocity variation. The wavefield of Figure 2 was used as input to
NSPS extrapolation through the complex (though arbitrary) velocity of Figure 6(c). The
resulting NSPS wavefield is a continuous superposition of diffraction responses. (b) Wesp, for
complex velocity variation. The wavefield of Figure 2 was used as input to PSPI extrapolation
through the complex velocity of Figure 6(c). The chaotic response of the extrapolation is
conceptually the result of windowing a set of constant velocity extrapolations and combining
them into an output section. (c) Complex velocity function used to compare NSPS and PSPI.

APERTURE COMPENSATION

Intuitively, the reasonthat nonstationary theory is required feertical wavefield
extrapolation through v(x) is that the wavefield extrapolation operator changes spatially
as v(x) varies. It followshatany other space and wavenumber var@otesses may
be incorporated into the extrapolation operator in sinfi@ahion.Onesuch process is
the implementation odbsorbinglateral boundaries. Absorbing boundaribave been
developed quitesuccessfully forfinite difference and other space domain methods
(Clayton and Engquist 1977, Keys 1985) and we extend them to Fourier meéreds
The usualconcept is to alter thdispersionrelation ofwavesnear theboundary such
that only outwardtraveling wavefrontsare allowed;however, this isusually not
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possible for all propagation angles (Claerboul,985). We achieve absorbing
boundaries for all propagation angles from the viewpoint of developing an extrapolation
operator which is compenstated for finite recording aperture.

Aperture compensatiorfollows from an understanding othe downward
extrapolation ofupward traveling waves as a process of crosscorrelation with an
appropriate diffractiorresponse.The inverseFourier transform ofthe phase shift
operator is essentially the diffractioesponse othe scalawave equatior(Robinson
and Silvial981, page370). From here, it isot difficult to showthat the space-time
equivalent of phase shift downward continuation is a convolution with a time-reversed
diffraction response (hyperbola) ahown in Figure 7aEquivalently, thiscan be
regarded as a crosscorrelation viltle time-normal diffractiomesponse. Thus aery
appealing picture emerges: Thewnward continuation ofupward traveling waves
from depth zto depth z can bedone by crosscorrelation tfe wavefield recorded at
z, with the expected response of a point scatterer. at z

We can regard any seismic line as a spatial window that allows only a portion of the
response of g@oint scatterer at,zto be recorded at,z We deduce that a better
crosscorrelation operator than the nornmdinite, symmetric operatowould bethat
operator with an appropriate spataindow applied. It followsimmediately that
aperture compensated downward continuation must be a nonstationary preress
the constant velocity case since the expeatedloweddiffraction response must vary
laterally.

Consider a seismic line, recorded gtwherethe only reflectingelement is a point
scatterer at znear the left edge of the lingigure 7b).The expected zero-offset
response is the right hatichb of a diffractionhyperbola. Downwardontinuation by
crosscorrelation with a symmetrig/perbola,simulating perhaps Bmited scattering
angle operator, is shown in Figure 7c (temporal delay of the operator is rsbtown
so that thefocusing effectsan be more clearlgppreciated). Theise of anaperture
compensated operatorshown in Figure 7d wherie crosscorrelation idone with
the expectedvindowed diffraction response.The crosscorrelation ishown as a
convolution-by-replacement with the time and space reversed diffraction response.

An extrapolation operator whiclhas been aperture compensated varies from

completely left-sided on the left end of a seishme, to symmetric in themiddle, and

then to completely right-sided on the right end. This means that the operator has a scalar
wave dispersiomelationwhich varies smoothly from keft or right quartercircle on

either end to symmetric in theiddle. This isexactly the “Engquist boundary
condition” for absorbinglateral boundaries discussed b@laerbout(1985). Thus
absorbing boundaries arise agatural consequence of aperture compensatiuah,
additionally, a smooth lateral variation of the dispersion relation is obtained.
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a)
' Diffraction response
' Extrapolation operator
b) ' Section edge - - - - -

FIG. 7. (a) Application of the downward continuation operator considered as a convolution of
the recorded wavefield at on depth with the time and space reversed response of a point
scatterer at another depth. (The extrapolation time shift has been ignored to simplify
comparison.) (b) Diffraction response near the edge of the recording aperture. (c)Downward
continuation of a diffraction response at the edge of the recording aperture using a symmetric
operator. Residual wavefronts will be generated by this process and will appear as boundary
reflections. (d) Downward continuation using an aperture compensated operator resulting in a
perfectly absorbing boundary.

A one-sided diffractionresponse has a one-sided-k, spectrum. Viewing
crosscorrelation as @ultiplication of w-k, spectra, it is easy tappreciate that the
crosscorrelation of a one-sided diffraction with a two-sided diffraction will produce the
same result as the crosscorrelation of the one-sided diffractiontsath The problem
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with the symmetric operatstems fromthe fact that seismic data generally contains
energy atll k, values even near the apertbi@ndaries due primarily teoise. Thus
the symmetric operator can produce “false correlations” neabdhbedaries which
appear asvavefronts‘reflecting” from the boundary. Suclevents are unphysical as
they represent reflector dips which could not posditalye been recorded by theite
aperture seismic line. The one-sided operator cannot produce such events.

We formulate an aperture compensated extrapolation operator by direttihg its
spectral content as a function of position. As shown in FigutbeBfinite aperture can
be regarded as a space-variant scattering anglewitterethe leftand right scattering
angle limits correspond to raypaths from szatterpoint to either end of tHae.
Approximating these raypaths as straight rays, this filter can be expressed as:

1,—wsin(8,) < v(X)k, < wsin (6,

B(kx,x,oo) - 0, otherwise

(24)

where@, and8; are leftand right scattering angles as defined in Figure 8. Then the
aperture compensated operator can be written:

AKX, 00) = B{K,oX,00)0 0 KX, 00) (25)

Using o<, in place ofa,,, equation(9) or equation(12) implements aperture

) 7 VIx) . X
compensation in either the cjual or Fourier domains.

f

X : L-x

FIG. 8. An aperture compensating (absorbing boundary) filter is a laterally varying
(nonstationary) w-k, fan filter defined by the maximum scattering angles allowed by the given
aperture. Straight raypaths are assumed.

Figure 9a show¥, .. computed with aperture compensation whaeeaperture is
defined as the live data zone Bigure 2. Careful inspectioshowsthat the impulse
responses on both edges are completely one-sided having only an outgeefgpont.
The second impulseesponse in froneach edge islso slightly modified. Figure 9b
showsamplitude spectrum of thEourier extrapolation matrix and it isbvious that
aperture compensation has been purchased at the expense of a considerable increase in
off-diagonal power.

30-16 CREWES Research Report — Volume 9 (1997)



Wavefield extrapolation by nonstationary phase shift

.02

.06
©
C
o
(]
3
10
14 -
0 71000 2000
meters
-.04
=02
o
2
2 0.0
~
3.02
04

.04

-02 0.0 .02
kx"' (1/meters)

FIG. 9. (a) Wysps cOomputed including compensation for finite aperture. Impulse responses at
the edges are one sided grading to symmetric at the center of the section. (b) Amplitude
spectrum of NSPS extrapolation matrix (Fourier domain). Comparison of this figure to Figure
5(b) shows the additional off diagonal terms require for aperture compensation.

-.04

Finally, we note that a Fourier method actually has twezhanisms whiclkan lead
to similar wavefronting neahe boundary. Inaddition to the effectliscussed above,
there is the possibility of “operatavraparound” resulting from an insufficietateral
zeropad. Asformulatedhere, ourmethod of aperture compensation still requires an
adequate zero pathough we are investigating itssuppression with a further

nonstationary operator.
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CONCLUSIONS

The vertical extrapolation of a scalar wavefithdough alaterally variable velocity
can be accomplishedith high fidelity using a Fourietechnique callechonstationary
phase shift(NSPS). Weassumehat thewave propagation velocity, v, depends only
on the lateral spatial coordinates and not on the depth. Vertical velocity variations can be
addressed by using omrethod in a recursiverogression through a series dépth
levels.

The phase shift method applies a frequency and wavenumber dependent phase shift
in the Fourier domain to accomplish wavefield extrapolation though a couwstacity
layer. Our NSPS (nonstationary phase shift) method appliesnailar phase shift but
allows the shift to vary spatially dependingponthe localpropagation velocity. Both
NSPS and thémiting form of PSPI (phasshift plusinterpolation) can be written as
generalizedrFourier integrals whictare examples of nonstationary linear filters and
which reduce to ordinary phase shiftthe constant velocity limitHowever, only
NSPScan be considered assealed,linear superposition of impulseesponsegi.e.
Huygen’s wavelets). Ithe presence aftrongvelocity gradients, differencelsetween
the methods are dramatic though the computational effort required is similar.

When considered for the case of a piecewise constant velacigtion, NSPS can
be formulated as a 3 st@pocess: i) windowthe input data to isolathose portions
coincident with each distinct velocity, ii) phase shift extrapolate each windowed dataset,
and iii) superimposethe results. PSPI follows a&imilar pattern except that the
windowing is performedafter eachphase shift extrapolation.The resultingPSPI
wavefield has discontinuities wherever the velocity is laterally discontinuous.

The nonstationary extrapolation formalism can be easily extended to include
compensation for finite recording apertuvéhen wavefield extrapolation is viewed as
the crosscorrelation of the input wavefield with the expected diffractigponse at the
new depth level, it becometear that theecording aperture applies a spatially variant
window to the expected diffractionresponse. Aperture compensation can be
implemented by to applying a spatially variant scattering angle filide, (filter) to the
infinite aperture operator. Thiscan be done simultaneously withthe NSPS
extrapolation through a laterally variable velocity field. The result is an opevhtise
dispersion relation is completely one-sided onlibendaries (equivalent wompletely
absorbinglateralboundaries) and which grades smoothly teyenmetricresponse in
the center of the acquisition aperture.
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APPENDIX A
Short Full Description

P W(x,0,0) Space domain wavefield at z = 0.

¢ ¢ (k,,0,w) Wavenumber domain wavefield at z = 0.

W, W, (x,Az,w) Space domain wavefield at Az,
extrapolated with v

b, b,(k,,Az,0) Wavenumber domain wavefield at 2Az,
extrapolated with v

W W, (X,Az,w)  Space domain wavefield at zZAz,
extrapolated with v(x) using an unspecified
algorithm.

by b,k Az,w)  Wavenumber domain wavefield at 2Az,
extrapolated with v(x) using an unspecified
algorithm.

Wosp W.op(X,Az,0)  Space domain wavefield at z\z,
extrapolated with v(x) using the PSPI
algorithm.

Ppspr Ppsp(kAz,w)  Wavenumber domain wavefield at 2\z,
extrapolated with v(x) using the PSPI
algorithm.

W, sps W pdX,Az,w0)  Space domain wavefield at zz,
extrapolated with v(x) using the NSPS
algorithm.

Dnsps drnspdK,AZ,0)  Wavenumber domain wavefield at 2\z,
extrapolated with v(x) using the NSPS

algorithm.
a, a,;(k,,w) Phase shift extrapolator for constant velocity
V.
J . . .
(o 00 (Ko X, 00) Phase shift extrapolator for variable velocity
V(X).
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A Ak, .k, w) Full Fourier domain phase shift extrapolator
for variable velocity v(x).
B B(k,,X,w) Aperture compensation filter.
a®, 0% (KeX,w)  Aperture compensated phase shift
extrapolator for variable velocity v(x).
K, Vertical wavenumber for constant velocity v
k,(x) k (Jk X oo) Vertical wavenumber for variable velocity
V(X).
Wi, W|,(x,0,0) Space domain wavefield at z = 0, windowed
to be non zero only where v(x) = vj.
ol l,;(k,,0,0) Wavenumber domain wavefield at z = 0,
windowed to be non zero only where
V(X) = V.
Wil Wl XAz,w)  Space domain wavefield at y/A=4

extrapolated with ,ywindowed to be non
zero only where v(x) =v
Q Q,(x) Windowing function which is unity where
Vv(X) = v, and zero otherwise.

APPENDIX B

The Fourier domain formulation for PSPI
Equation (6) is repeated here as

quspl(X,AZ,(k)) = f ) ¢(kx,0,w)0((kx,x,w)eikxxdkx _ (B-1)

The Fourier transform of equation (B-1) along the x axis is

O K020 = f (k. 0.0fafk X wjedk, 6™ dx

(B-2)

The variable kis used to distinguisthe wavenumbers ofhe Fourier Transform step
from those ofthe extrapolatiorprocess. Next, switcthe order of integration (see
Margrave, 1997, for a discussion)

2111 f ok, x)ee ax|dk,

(B-3)

O e K2, 00) = [ ¢(k,,00)

o

Then define

A(kx,k'x - kx,w) = Zlnfw a(kx,x,oo) &5 , (B-4)

and substitute into equation (B-3)
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e K:220)= | 0(k,0.0) Ak, K, ~ K]k, (B-5)

Rename the wavenumber variabghthat Equation(B-5) is of the samdorm as
Equation (11)

(K026 = | 6(K.,00) AK, K, ~K, 0] . (B-6)

APPENDIX C

The Fourier domain formulation for NSPS

Equation (9) is repeated here as

O KoAZ,00) = 211wa W(x,0,w)ol( KX, 0)e " dx . (C-1)

Replacev(x,0,w)with its Fourier Transform along the x axis:

~oo

¢N5P4kX’AZ°° 21 f ¢ kx,Ooo 'kxxdk (kx,x,oo)e"ikxxdx-

oJ

(C-2)

The variable kis used to distinguish the wavenumbers of the Fourier Transform of the
input wavefield from those of the extrapolation process. The next step is to reverse the
order of integration (see Margrave, 1997)

¢NSPS(kX,AZ,w)=21T[ i ¢(k;,o,w) f ak, xco) Mg gy ldk | (©-3)
Then define _
Alk,k, —K, ) = 2111 f ok,x.0) & o (C-4)
and substitute into equation (C-3)
b K D20) = f 3(k,0.0) Alk K, — K, oldk, (C-5)
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