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INTRODUCTION

 Depth migration can be defined as the process of positioning reflected seismic
arrivals at their proper subsurface locations. The accurate depth migration of seismic
reflectors requires accurate velocity estimations. Inaccurate velocity estimates will
cause moveout artifacts such as “smiles” and “frowns” to appear on depth migrated
images. The elimination of these moveout features by the adjustment of seismic
velocities allows depth migration to be used as a powerful velocity analysis tool. It
can be argued on the basis of model studies (Lines et al., 1993) and with real data
examples (Whitmore and Garing, 1993) that iterative prestack depth migration
provides a very general velocity analysis method for structurally complex media.In
this paper, we examine migration moveout for both poststack and prestack depth
migration of point diffractors both mathematically and geometrically. Point
diffractors are used due to their simplicity and the fact that reflected wavefields can
be considered as a superposition of point diffractor arrivals according to Huygens’
principle. We show the effects of velocity on the depth migration of point diffraction
arrivals so that one can establish criteria for velocity analysis. We do this for both
zero offset (poststack) and non-zero offset (prestack) recording configurations.

SMILES AND FROWNS IN POSTSTACK MIGRATION

 In understanding the case of
poststack migration, consider two point
diffractors in the middle of a uniform
medium with velocity 000,4=v m/s.
The depths of the diffractors are 600 m
and 800 m respectively. We now
examine the migration of a point
diffraction seismogram from this model
recorded by coincident source-receiver
positions. The zero-offset section is
shown in Figure 1. The images
obtained by migrating the input
diffraction hyperbola in Figure 1 are
compared for the cases where the
velocity is too slow (Figure 2a), exactly
correct (Figure 2b) and the case where
the velocity is too high (Figure 2c). If

Figure 1 . Synthetic zero offset
seismograms of two point diffractors. The
diffractors are at depths of 600 m and 800
m respectively in the middle of the model.



Zhu, Lines and Gray

33-2 CREWES Research Report — Volume 9 (1997)

Figure 2 . Poststack migration of a two point diffractors model. (a) A smaller
migration velocity produces shallow "frowns", (b) The true velocity collapses
the hyperbolae to concentrated blobs and (c) a larger migration velocity results
in deep "smiles".
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the velocity is too low, the poststack
migration images are shallow
“frowns”. If the velocity is correct,
the images are concentrated blobs at
the proper depth. If the velocity is
high, the images are deep “smiles”.
These have been described by data
examples in Yilmaz (1987). The
shallow “frowns” are described as
“undermigration” while the deeper smiles are described as “overmigration”. The
phenomena of undermigrations and overmigrations for poststack data can be
described by considering the case of coincident source-receiver positions. For the
purpose of description simplicity, we consider the case of a point diffractor for a
coincident source-receiver (or zero offset) recording configuration. This recording
configuration, as shown in Figure 3 is the situation which we simulate with stacked
data.

Suppose there is a point diffractor P on the vertical axis of a Cartesian system
( )zx, . The diffractor at depth z  is vertically below the origin. Consider a coincident
source-receiver pair S/R on the surface of the earth with lateral offset x  from the
origin. Let the one-way vertical traveltime from the surface to P be 

0
t ; let the total

traveltime from S/R to P be t ; and let the medium velocity be v . The one-way
traveltime for an arrival traveling from S/R to P is given by using the Pythagorean
theorem and the distance relationship between the sides of the right angle triangle in
Figure 3. That is

222
0

22 tvtvx =+ (1)
or,

2

2
2
0 v

x
tt += (2)

If we wish to use the two-way
reflection times (2t  and  20t ) which are
the arrival times for a reflection
experiment, we can consider the same
distance relationship by using the
medium’s half velocity,  2v . Then the
model in Figure 3 is essentially the
“exploding reflector” model of
Loewenthal et al. (1976). In this model,
reflection seismograms containing
arrivals with two-way propagation are
described by one-way propagation of
“explosions” which propagate to the
surface with half the velocity of the
medium. Except for a few pathological
cases (Claerbout, 1985; Yilmaz, 1987),

Figure 3 . The zero offset (poststack)
geometry for a point diffractor at P.

Figure 4 . Geometrical expression of a zero
offset section for a point diffractor.
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this “exploding reflector” model can be considered as a suitable model for poststack
data. Figure 4 is a record of such an “explosion” experiment from the diffractor
model.

Let us consider the migration of a diffraction arrival of a trace at offset x  from the
origin. Suppose the arrival time is t . To migrate this arrival, we use the principal of
aplanatic surfaces (Sheriff, 1991). An aplanatic surface defines the locus of possible
reflection depth points that could exist for a given one-way traveltime, t , and a
migration velocity, mv . For a coincident source-receiver position and a constant

migration velocity, mv , the aplanatic surface is defined by the following equation of a
circle giving all possible locations of reflection points,

( ) 2222 tvzxx mmm =+− (3)

where ( )mm zx , defines the migrated domain. If we substitute the expression for t  from

equation (2), we obtain

( )2

2

2
2
0

22 xx
v

x
tvz mmm −−





+= (4)

Note that the observed reflection time in (2) is expressed in terms of the actual
velocity,  v , which we generally do not know but hope to determine, whereas the
estimated velocity used in migration is mv . Migration of the record in Figure 4 is
essentially the superposition of all these aplanatic surfaces one for each source-
receiver pair. We hope to find geometric criteria corresponding to cases where

vvm < , vvm =  and vvm >  which will allow us to find cases where the velocity is
correct.

In migration we are dealing with the superposition of wavefield amplitudes that
are distributed along aplanatic surfaces. For the poststack situation, this is the
"wavefront superposition method" described by Robinson and Treitel (1980). The
migrated image represents a summation of those amplitudes that are in phase such
that they will constructively interfere. Mathematically, this constructive interference
can be described by the method of stationary phase (Scales, 1995). The basic idea of
stationary phase is that highly oscillatory time sequences tend to cancel upon
migration except where the phase function has a stationary point. This stationary
point occurs where the first derivative of the phase function equals zero. In migration,
the phase function is the phase difference between the migration curve and the
diffraction signatures of the data; locations where the migration curve is tangent to
diffraction or reflection events in the data give the stationary phase contributions to
the migration. This stationary point occurs where the first derivative of the phase
function equals zero.

In migration, an alternative kinematic description of the amplitude summation
along aplanatic surfaces is given by the envelope curves for the aplanatic surfaces. Is
a set of aplanatic curves is described by ( ) 0,, =tzxF , then its envelope is defined by

curves satisfying ( ) 0,, =tzxF  and 0=dxdF . For doing this, we need to find the
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envelope of the aplanatic curves defined by (4), as shown by Maeland (1989).
Essentially the envelope is the solution of the system consisting of equation (4) and
its tangent curve (Sneddon, 1957). The tangent curve of (4) is given by differentiating
equation (4) with respect to the source-receiver position x ,

( ) 0
2

2

=−− m
m xxx

v

v
(5)

or equivalently if we define vvm=β ,

( ) mxx =− 21 β  (6)

Now let’s consider the case of vvm ≠ . For this case, we can have,

21 β−
= mx

x (7)

Substituting (7) into (4) leads to,

( ) 1
2
0

22

2

2
0

2

2

=
−

−
tvv

x

tv

z

m

m

m

m (8)

Now let’s consider three specific cases.

Migration velocity smaller than the medium velocity, i.e., vvm <

In this case, equation (8) represents a hyperbola. Its vertex is on the depth axis
with coordinate of 0tvm  below the origin. The apex is thus above the diffractor

position, as 00 vttvm < . Obviously, it opens downward because the center of the
hyperbola is just on the coordinate origin. Thus, the poststack migration of the
diffraction curve will be a shallow hyperbolic frown when the migration velocity is
too small, so that undermigration partially collapses the original hyperbola into a
second, better focused hyperbola. This observation forms the basis of residual
migration and cascaded migration.

In fact, the formation of such shallow frowns can also be well illustrated
geometrically. Figure 5 illustrates this migration case. The light grey circle is the
diffractor point. The dark grey curve is the original record we simulated for such an
“explosion”. The near black curves are the migration aplanatics which finally
superpose to form the envelope of another hyperbola (in light grey) but is laterally
much narrowed. This essentially indicates undermigration.

Migration velocity greater than the medium velocity, i.e., vvm >

In this case, equation (8) can effectively be reformulated as,
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( ) 1
2
0

22

2

2
0

2
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=
−

+
tvv

x
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m

m

m

m (9)

This is the equation of a semi-ellipse with the center at the coordinate origin. The
vertex on the depth z  axis is still ( )000 vttz > , which is now above the diffractor point
P. The mouth of the ellipse is toward the negative axis of depth as we are only
interested in the positive z values. Therefore, the migration of the diffraction curve in
Figure 4 will be deep elliptic smiles on the migrated section when the migration
velocity is too large.

Such a migration procedure is also geometrically represented in Figure 6. Most of
the curves in Figure 6 are just the same as in Figure 5. Figure 6 excellently shows that
when the migration velocity is too high, the superposition of the individual aplanatics
forms an elliptic smile (in green) in the migrated section.

Migration velocity equal to the medium velocity, i.e., vvm =

In this case, we have to start from equations (4) and (6), as equation (8) is no
longer valid. When vvm = , (6) gives 0=mx . Substituting this value of mx  into (4),

we obtain zvtzm == 0 . This implies that when the migration velocity is correct the
superposition of the migration aplanatics finally collapse the recorded diffractions to
its correct spatial position, ( ) ( )zzx mm ,0, = . Parallel to such mathematical

Figure 5 . Poststack migration of the diffractor model when a smaller (3 km/s) than the true
velocity (4 km/s) is used. The light grey circle represents the diffractor position. The dark
grey is the scaled recorded hyperbolic diffraction curve. The superposition of all the
wavefronts in near black results in a shrunken hyperbola in light grey in the final migrated
section.
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development, Figure 7 geometrically expresses the procedure of reconstructing the
true diffraction point by simple superposition of aplanatic curves.

SMILES AND FROWNS IN PRESTACK MIGRATION SECTION

In this section, we will show that the smiles and frowns discussed above are also
common to prestack migrated stacked sections. They can also be easily verified both
mathematically and geometrically. As the mathematical development is very similar
to that in the poststack migration case, we will thus focus on the geometrical aspects.

 Let’s first consider the same point diffractor P on the vertical axis of a Cartesian
system. Now assume there are a source at S and a receiver at R on the earth’s surface,
with x coordinate of sx  and rx  respectively (see Figure 8). If the medium velocity is

v , the total traveltime from the source S to the diffractor P, and back up to the
receiver R, can thus be given by the so-called double square root relationship
(Claerbout, 1985),

( )22221
zxzx

v
t rs +++= (10)

Migration of a single diffraction arrival at R due to the source at S can still be
described by the concept of aplanatic surfaces. The aplanatic surface for the source-
receiver pair as shown in Figure 8, analogous to equation (3) can be represented by,

( ) ( ) tvzxxzxx mmmrmms =+−++− 2222 (11)

Figure 6 . Poststack migration of the diffractor model when a larger (5 km/s) than the true
velocity (4 km/s) is used. The superposition of all the wavefronts in near black results in an
elliptic smile in light grey in the final migration section.
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Substituting (10) into the above, we have,

( ) [ ]
( ) ( ) 0

,;,

2222

2222

=



 +−++−−

+++=

mmsmms

rsrsmm

zxxzxx

zxzxxxzxF β
(12)

This is essentially an ellipse in the migrated space ( )mm zx ,  for this special case of
constant velocity.

The final migration of all these
arrivals recorded by different receivers
due to many sources is the envelope of
these individual ellipses. The envelope
of these ellipses is essentially the
solution of equation (12) and its
derivative equations (Sneddon, 1957),

( ) 0,;, =rsmmx xxzxF
s

(13)

( ) 0,;, =rsmmx xxzxF
r

(14)

Figure 7 . Poststack migration of the diffractor model when the true velocity (4 km/s) is
used for migration. The dark grey cross is the result of the constructive superposition of all
the wavefronts in near black. This indicates a perfect recovery of the diffractor point in the
migration.

Figure 8 . Prestack geometry for a point
diffractor at P.
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Following the same procedures as in
the last section, we can develop the
same conclusions as those in the
poststack migration, though the
mathematical derivations will be much
more complicated. Figure 9
schematically shows four shot gathers
from the diffraction model as shown in
Figure 8. Figure 10 geometrically
summarizes the migration procedure
when too small a velocity is used for
prestack migration. Just as expected,
the superposition of all individual
migration ellipses results in a shrunken
hyperbola (in light grey). Notice,
however, that not all the ellipses are
tangent to the envelope. Figure 12
illustrates that the correct velocity
allows the migration to reconstruct the point diffractor model almost perfectly as long
as the recording coverage is sufficiently wide and dense. In contrast to Figure 10,
Figure 11 demonstrates that when too large a velocity is used for prestack migration
( )vvm > , the superposition of individual elliptical aplanatics (in near black) results in
another ellipse (in light grey) in the final migrated section.

Figure 10 . Prestack migration of the diffractor model when a smaller (3.3 km/s) than the true
velocity (4 km/s) is used. The light grey circle represents the diffractor position. The
superposition of all the wavefronts in near black results in a shrunken hyperbola in light grey
in the final migration section.

Figure 9 . Some representative prestack
recording events from a diffractor point
model. Each event corresponds to a
source position. The diffractor lies at 0.8
km depth in the middle of the model.
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Figure 11 . Prestack migration of the diffractor model when the true velocity (4 km/s) is used
for migration. The dark grey cross is the result of the constructive superposition of all the
wavefronts in near black. This indicates a perfect recovery of the diffractor point in the
migration.

Figure 12 . Prestack migration of the diffractor model when a larger (5 km/s) than the true
velocity (4 km/s) is used for migration. The superposition of all the wavefronts in near black
results in an elliptic smile in light grey in the final migration section.
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Figure 13 . Prestack depth migration of a two point difractors model. A migration
velocity smaller than, equal to nd larger than the true velocity is used for the top,
middle and bottom images respectively.
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Figure 13 shows a numerical example of prestack depth migrations which
correspond to cases of velocity lower than, equal to, and higher than the true medium

velocity. A low migration velocity (mv = 3,000 m/s) results in frowning migrated-
image (top), caused by an insufficient collapse of diffractions. In contrast, using a

velocity that is too high (mv = 5000 m/s) in migration results in smiling images
(bottom). In either of the above two cases, the migrated images of the diffractors are
not properly focused. A smaller velocity results in image shallowing while a larger
velocity leads to image deepening. Only when the true velocity is used, will the
diffractions completely collapse to their true positions (center). Thus, the final
migrated section exhibits “smiles” and “frowns” patterns whether the migration is
performed on poststack or prestack seismic data whenever errors exist in the
migration velocity.

These undermigration and overmigration features can thus be generally observed
in both poststack and prestack migration sections. However, these smiles and frowns
are generally very difficult to observe on the migration sections as individual
diffractors are often just an element of the reflecting interface. It is generally the
migration moveout effects on common image gathers (CIGs) from prestack
migrations that are quite pronounced and allow for effective velocity analysis.
Interestingly enough, the moveout characteristics on common image gathers (CIGs)
are very different from those in the migrated stacked sections.

PRESTACK DEPTH MIGRATION MOVEOUT

Many recent studies demonstrate that prestack depth migration can accurately
image reflections and diffractions without dip restriction if a reasonable
approximation of the velocity field is available (Versteeg, 1991; Lines et al., 1993).
Nevertheless, the velocity model is the key component in these migrations.
Theoretically, there exist several alternative methods for velocity analysis (Versteeg,
1993; Lines et al., 1993). Here we will analyze the prestack migration moveout
features which are fundamental to the basic theories in interval velocity analysis
utilizing CIGs (Al-Yahya, 1989). Our analysis, however, will no longer depend on the
assumption of a layered earth model.

Consider the general subsurface structure and recording geometry as shown in
Figure 14. P denotes the arbitrary scattering point in the earth’s interior. S and R are a
source-receiver pair illuminating P. D is the surface image of P. Assuming that the

averaging velocity above P is v , and that the diffraction received at R due to a source
wavelet from S and then diffracted at P never travels beneath P, then its arrival time
can be expressed as:

( )RPSP
v

t += 1
(15)

When an incorrect average velocity mv  is used for migration, the diffraction signal
received from P will be migrated to an incorrect point  P’. P' generally has both
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Figure 14 . Migration depth-velocity relationship diagram in a general subsurface structure.
(a) A wrong velocity migrates the reflection to a position P' which has a lateral displacement
of x∆ in addition to a vertical displacement z∆ . (b) is an enlarged view of the lower part of
(a).

vertical and lateral displacements from the true position P. We denote these

displacements with QPx '=∆  and QPz =∆ . In this case, the traveltime will be,
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(16)

From Figure 14b, the following relationship holds in the triangle QOP'∆ ,

xQOOP
rs

∆
== θαα sinsin

'

sin
(17)

Thus, we have,

( )

( ) 2
sin

2cos

sinsin
sin

sin
sin

sin
sin

'1122

sr

sr

sr

x

x

xx

OPQOQPQP

αα
θ

αα
θ

α
θ

α
θ

−∆=

−∆=

∆−∆=

−≅−

(18)

In the derivation of the last equation above, we have used the following relationships

θαα ++ sr =180°; 
2

cos
2

sin2sin
θθθ = ; and

2
sin

2
cos2sinsin srsr

sr

αααααα −+=− . Therefore, the distance part of the last term

of (16) would be an order smaller than x∆  as long as ( ) 2sin sr αα −  < 0.10 and θ  is

not close to 180°. The latter condition generally holds, as sα  and rα  would not be

zero for most cases. The first condition is equivalent to rs αα −  < 12° , i.e., the

difference between the two illuminating angles being less than  12°. As
ααα 2=− rs  where α  is the structural dip at P, the above inequality thus only holds

for structures of gentle dip. In such cases, (16) can be properly approximated by

( ) ( )[ ]PQRPPQSP
v

t
m

21

1 −++= (19)

This equation is physically equivalent to the assumption that the lateral displacement
x∆  is negligible compared to the vertical one. Eliminating t  from equations (15) and

(19), we obtain,

( )( ) PQPQRPSP 211 +=+− β  (20)
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where 
v

vm=β . From Figure 14, the following general relations hold,

rr

ss

PQzRP

zPQzSP

αα

αα

cos;cos

;cos;cos

2

1

∆−==

∆−==

Substituting these relations into (20) leads to,

 ( )
rs

z
z

αα
β

coscos
1−=∆ (21)

In the case of zero offset source-receiver pair just at D,  rs αα = = 0 , we obtain,

( )zz 1−=∆ β (22)

This implies that the migration depthz will be shallower than the true depth z if a

smaller than the true velocity ( vvm < ) is used for migration, while deeper if a higher

velocity ( vvm > ) is used. Only when β =1, i.e., the true medium velocity is used for

migration, will the diffractor be properly located. By denoting ( )zz 10 −=∆ β , (21)
can be rewritten as,

( )
rs

rs

z
z

αα
αα

coscos
, 0∆

=∆ (23)

Now let’s consider the following three categories.

Migration velocity less than the true velocity ( vvm < )

In this case, 1<β , 00 <∆z , and ( ) 0, zz rs ∆<∆ αα . Generally the following
relation also holds,

( ) ( )rsrs zz ααεαεα ,, 21 ∆<++∆ (24)

for any rs αα ,  and any non-negative values of 21,εε . This relation indicates that the
migration image of P will form a “smile” which curves upward on a common image
gather (CIG) which is a display of migration traces versus the source-receiver offset
corresponding to a fixed surface point.

Migration velocity greater than the true velocity ( vvm > )

In this case, 1>β , 00 >∆z , and ( ) 0, zz rs ∆>∆ αα . Similar to (24) we have,

( ) ( )rsrs zz ααεαεα ,, 21 ∆>++∆ (25)
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This relation indicates that the migration image of P forms a “frown” which curves
downward on a CIG.

Migration velocity equal to the true velocity ( vvm = )

In this special case, 1=β , 00 =∆z , thus,

( ) 0, =∆ rsz αα  (26)

for any source-receiver pair. This simply means that when the true velocity is used for

migration ( vvm = ), the migration images of the diffractor point P will be at the exact
depth regardless of source-receiver offset. So, its images form a horizontal segment
on the CIG displays.

To consider prestack migration velocity analysis in terms of offset and common
midpoints, consider again Figure 8 for a point diffractor at (0,z ). The midpoint can
be denoted by ( ) 2sr xxX +=  and the offset denoted by h2  so that hXxs −=  and

hXxr += . Equation (10) gives the total traveltime for a particular point diffractor,
but it can be embedded into an equation for a “correct” migration ellipse,

( ) ( ) ( ) 


 +−+++−−== 2222
11

1
zxhXzxhX

v
Xtt (27)

In terms of migration velocity and migration coordinates, we can also write the
traveltime expression as,

( ) ( ) ( ) 


 +−+++−−== 2222
22

1
mmmm

m

zxhXzxhX
v

Xtt (28)

When  vvm = , the migration ellipse (28) is identical to the ellipse (27) for the true
velocity; so if the velocity analysis location mx  coincides with the diffractor location

0=x , we then have zzm =  for all h . That is, the migration depth equals the correct
depth of the diffractor regardless of the offset value when the velocity is correct.
When the velocity is not correct ( vvm ≠ ), we need to evaluate the envelope of

migration ellipses for all values of the midpoints X . That is, we need to set the
derivatives of )(1 Xt  equal to the derivatives of )(2 Xt  for all X . If, again, we
perform the velocity analysis at the actual diffractor location, then these derivatives
give, respectively, the slopes of the correct and the incorrect migration ellipses at

0== xxm . These slopes are different unless both ellipses are flat at the analysis

location, i.e., unless 0=X  also. So we set 0=== xxX m  into the expressions for

)(1 Xt  and )(2 Xt  to obtain,

2

22

2

22

m

m

v

zh

v

zh +=+
(29)
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or

( ) 22222 1 zxzm ββ +−= (30)

where 
v

vm=β .

In the case of  vvm < , we have 1<β . And (30) can be rewritten as,

( ) 22222 1 zxzm ββ =−+ (31)

which is just an ellipse. So this is just a special case of (24).

If vvm > , then 1>β , and (30) is essentially the following hyperbolic equation,

( ) 22222 1 zxzm ββ =−− (32)

This is an hyperbolic smile in the half plane of positive depth.

If vvm = , then 1=β , and (30) simplifies to zzm = . This represents a horizontal
line segment. Only in this special case of using the correct velocity for migration, will
the final stack of the migrated CRP gather reach its highest energy in the migration
section.

The above procedure of migrating a
CRP gather can also be geometrically
represented. Figure 15 shows a CRP
gather from the same diffractor model
of Figure 8. This gather is essentially
equivalent to that of CMP gather in this
special case of a single diffractor point
in constant velocity medium. Figure 16
shows the migrated CRP gathers for
this diffractor model corresponding to
different migration velocities. As the
migrated CRP gather is just the same as
the so-called CIG gathers, Figure 16
thus equivalently illustrates the CIGs
corresponding to different migration
velocities. It shows that the recorded
hyperbola in the CRP gather will
appear to be elliptical smiles when a
smaller velocity is used for migration,
while a hyperbolic frown when a larger velocity is used for migration. If the correct
velocity is used, then the CIG gather will show a horizontally aligned segment.

Figure 15 . Common reflection point (CRP)
gather from a diffractor point model. The
diffractor lies at 0.8 km depth in the middle
of the model.
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Figure 16 . Common image gathers when different migration velocities are
used. Migration velocity is 3 km/s (top), 4 km/s (middle) and 5 km/s
(bottom) respectively. The circle in light grey represents the diffractor
position. The dary grey curve is the scaled CRP gather.
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Figure 17 . Common image gathers for a two point diffractors model.
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Therefore, the velocity error in migration is very well expressed on common image
gathers. We can use the same point diffractors model to illustrate the above
theoretical observations. 81 shot profiles are theoretically simulated, with each record
consisting of 60 traces. Figure 17 shows the CIGs for surface position x  = 1.0 km
when different velocities are used in migration. It clearly demonstrates that only when
the true velocity is used, will the migration images of diffractors be independent of

the source-receiver offset. When the velocity is lower than the true velocity (mv =
3,000 m/s), the diffractor images form “smiles” at a depth shallower than the true
depth. This is totally in agreement with equations (24) and (31). In contrast, when the

velocity is higher than the true velocity (mv =5,000 m/s), the diffractors will be
expressed as frowns on a CIG at a depth greater than the true depth. This is just what
has been predicted by the mathematical expressions (25) and (32).

Thus, the migration velocity error is well documented on both the the final
migration sections (Figure 13) and the CIGs (Figure 17). Interestingly enough, the
CIG gathers show shallow smiles for low velocities and deep frowns for high
velocities (Lines et al., 1993), whereas the final depth migration sections show
shallow frowns for low velocities and deep smiles for high velocities (Yilmaz, 1987).

If we further take a careful look at Figure 13 and Figure 17, it is seen that the
curvatures of the shallow “smiles/frowns” are generally larger than the deep ones.
This indicates that velocity errors are more pronounced on shallow reflections and
thus are easier to be corrected. This is also in agreement with the general observation
that sufficient offset/depth ratio should be kept in order to properly analyze the
velocity errors (Lines, 1993). Luckily we often have more constraints available on the
shallow parts of the earth, such as well logging and geological exposures. We can
also more effectively use techniques such as first break tomography to constrain our
near surface velocity estimation. With respect to the deeper structure, we generally
have to accept that it is coarsely defined and more ambiguous.

Though the diffractor model is over simplified, it is of vital significance in
migration and velocity analysis theory, as any complicated structures can be
considered as a continuum of diffractors. This is especially suitable for moveout
analysis on a CIG which corresponds to a single surface point. These “smiles” and
“frowns” patterns on CIGs can be effectively used to qualitatively and quantitatively
analyze the migration velocity (Al-Yahya, 1987).

CONCLUSIONS

 Depth migration is very sensitive to errors in the velocity model. Migration
moveout features such as “smiles” and “frowns” have previously been reported (ref.
Yilmaz, 1987; Lines et al., 1993). We have shown both mathematically and
geometrically these “smiles” and “frowns” on migration sections and CIGs. Using the
simple diffractors model, we demonstrated that after migration, either using the
stacked data or the prestack shot gathers, the diffractions will be migrated to shallow
“frowns” when the migration velocity is too small, and deep “smiles” when the
velocity is too large. Only when the migration velocity is exactly the medium
velocity, will both the poststack and prestack migration produce concentrated “blobs”
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in the migration section. However, it is the common image gathers produced in the
prestack depth migration that provide an effective migration velocity analysis
domain. Our study starting from the very general subsurface structure showed that the
migration moveout in the CIGs are interestingly different from the patterns in the
migration sections. In CIGs, a lower velocity produces shallow smiles while a higher
velocity results in deeper frowns. When the migration is correct, the CIGs presents a
horizontal segments at the exact diffractor depths which indicate that the migration
image of the point diffractor is independent of source-receiver offset. These moveout
patterns of “smiles”and “frowns” can serve as both qualitative and quantitative
criteria for migration velocity analysis.
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