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Nonstationary filters, pseudodifferential operators, and their
inverses
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ABSTRACT

An inversion scheme for nonstationary filters is presented and explored.
Nonstationary filters can be inverted provided that the nonstationary transfer function
is known and invertable. The two fundamental nonstationary filter types,
convolutional and combinational, play a complementary role in the inversion process
in that the inverse of nonstationary convolution is nonstationary combination with the
inverted transfer function, and vice-versa. These concepts lead to simple expressions
for forward and inverse Q filters, forward and inverse wavefield extrapolators, and for
any other circumstance where the nonstationary filter form is known.

Inverse Q filtering with nonstationary combination is very precise and provides a
simple analytic formalism for such filters. When done with nonstationary
convolution, the result is much less acceptable. This assumes the forward Q filter was
convolutional.

Numerical experiments with two different wavefield extrapolators, NSPS and
PSPI, are shown for a variety of velocity models. NSPS is a convolutional
nonstationary extrapolator while PSPI uses the combination form. For constant or
weak velocity gradients either extrapolator can invert the other. When velocity
becomes chaotic (random), NSPS is required to invert PSPI and vice-versa. Inversion
results also improve, even for chaotic velocities, when the extrapolation step size is
decreased. A series of small extrapolation steps can be inverted much more
successfully with another series of small inverse steps than with a single step. As step
size decreases, so does the distinction between NSPS and PSPI and either one
becomes able to invert the other.

INTRODUCTION

Nonstationary filter theory is mathematically similar to the theory of
pseudodifferential operators. The latter have been developed over the last 70 years in
the applied mathematics community to extend Fourier domain techniques to the
solution of partial differential equations with variable coefficients. Though
mathematically rich and sophisticated, the theory of pseudodifferential operators has
seen only limited use in the applied sciences due, in part, to its complexity.
Nonstationary filters offer a simple conceptual model for pseudodifferential operators
which suggests their application in many new ways such as time-variant
deconvolution and depth migration.

Nonstationary filters come in two distinct forms called convolution and
combination (Margrave, 1998). These give identical results in the stationary limit
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(corresponding to partial differential equations with constant coefficients) but can
differ dramatically when the filter is highly nonstationary (e.g. variable coefficients).
The two filter forms can be expressed by a variety of different mathematical
formulae; but a simple windowing analog (Margrave et al., 1998) provides a
fundamental insight. If the nonstationary filter consists of piecewise-constant
stationary filter segments, then the convolution form is achieved by: (1) windowing
the input data to isolate the portion corresponding to each filter segment, (2) applying
the corresponding stationary filter to the windowed data, (3) superimposing the
results from all stationary filter segments. This process achieves a true linear
superposition of impulse responses. The combination form proceeds in a similar,
though complementary, fashion: (1) apply each stationary filter to the input data, (2)
window the filtered results to isolate the portion corresponding to each filter segment,
(3) superimpose the windowed results. Thus, nonstationary convolution can be
visualized as the superposition of windowed-then-filtered data segments while
nonstationary combination is the superposition of filtered-then-windowed data
segments.

Many interesting geophysics problems can be formulated with these techniques.
Examples include wavefield propagation (Fishman and McCoy, 1984, de Hoop, 1995,
Margrave and Ferguson, 1997), deconvolution methods (Schoepp and Margrave,
1998), and time-variant  filtering (Margrave, 1998). Often the problem formulation is
more clear in the case of the forward filter than for the inverse. This is especially true
for variable coefficient partial differential equations where the forward problem is
easily stated as a pseudodifferential operator. The solution then requires the inverse
operator.

This paper begins with a mathematical discussion of an inversion method for
nonstationary filters. It is shown that nonstationary combination inverts nonstationary
convolution and vice-versa. Since these methods become identical in the stationary
limit, it is expected that quasi-stationary problems will be invertible with combination
or convolution regardless of the forward filter.

Then an example of a forward and inverse constant-Q filter is shown. The forward
Q filter is applied with nonstationary convolution and nonstationary combination is
required for the inverse. This result provides simple analytic forms for both forward
and inverse Q filters.

Next an extensive example is presented using forward and inverse wavefield
extrapolators with a variety of velocity models. Phase-shift extrapolators based on
nonstationary convolution (NSPS) or nonstationary combination (PSPI) are used. It is
shown that for constant velocity or mild complexity, either NSPS or PSPI
accomplishes a good inversion of a forward filter with NSPS. However, for very
complex settings, a forward extrapolation with NSPS requires PSPI for inversion and
vice-versa.
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THEORY

Nonstationary convolution can be written as a simple “mixed domain” form
(Margrave, 1998) by

. (1)

In this expression, h is an input time series, α is the nonstationary transfer function
prescribing a filter, and G is the Fourier transform (spectrum) of the filtered time
series. The nonstationary transfer function describes the filter by giving the Fourier
spectrum of its impulse response as a function of the arrival time of the impulse. An
ordinary inverse Fourier transform of G completes the nonstationary convolution
filter. The same filter α may be applied as a combination filter through

(2)

where H is the Fourier transform of h and  is the combination filtered time series.
Only in the stationary limit (where the time dependence of α vanishes) is the result of
equation (2) equal to the inverse Fourier transform of equation (1). The fact that (1) is
expressed as a forward Fourier integral and (2) as an inverse, together with the
complementary nature of the windowing analogs for both, suggests that a possible
inverse to equation (1) might be found through

(3)

(assuming that α(f,t) ≠ 0 so that α -1(f,t) is finite everywhere). Thus, the inversion of
nonstationary convolution is postulated to be nonstationary combination with the
inverted transfer function. Substitution of equation (1) into (3) and interchanging the
order of integration leads to

(4)

where

(5)

is the resolution kernel of the inversion. The ideal resolution kernel is a delta function

(6)

which is infinite when τ=t and zero otherwise. ∆(t,τ) is also infinite when τ=t (since
α(f,t)α(f,τ)-1 becomes unity in that case), which suggests a very good inversion, but
not necessarily zero otherwise.
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Q FILTER EXAMPLE

As an example, consider the application of forward and inverse Q filters. For this
case, an approximate expression for α(f,t) is (Kjartansson 1980)

(7)

where w(f) is the spectrum of a source waveform, the phase velocity is
v(f)=v[1+ln{|f/f o|}/{ πQ}],  and fo refers to the frequency at which the reference
velocity v is measured. Given the above form for the nonstationary transfer function,
let h(t) be a reflectivity series in time and G(f) from equation (1) gives the spectrum
of the forward Q filtered result. Equation (3) then prescribes the application of an
inverse Q filter.

Figure 1 shows the results of a simulation for a minimum phase source waveform
(dominant frequency of 15 Hz) and a Q of 25. The reflectivity is shown in (a), the
forward Q filter is applied in (b) and inverse filters have been applied in (c) and (d).
In (c), the forward Q filter was applied as a nonstationary convolution using equation
(1) while the inverse was a nonstationary combination using equation (3). Trace (d)
was created with an inverse using nonstationary convolution via the equation

(8)

where g(τ) is the inverse Fourier transform of G(f). The inverse in (c) is nearly exact
while that in (d) is very poor. Aside from a slight ripple, (c) is very close to the
original reflectivity (a). The Fourier amplitude spectra of the various traces shown in
Figure 1 are in Figure 2. The fidelity of the nonstationary combination inverse of the
nonstationary convolution filter is remarkable. The spectra of the original reflectivity
(a) and the inversion (c) track identically until just below Nyquist (125 Hz.).

This inversion formalism, though not quite exact leads to a simple analytic form
for an inverse Q filter. Such simple analytic approximations are very useful as the
basis for robust data processing algorithms.

WAVEFIELD EXTRAPOLATION EXAMPLES

The extrapolation of scalar wavefields through complex media provides an
excellent demonstration of the inversion of nonstationary filters. Margrave and
Ferguson (1997) give two explicit forms for nonstationary wavefield extrapolators.
These operators extrapolate a monochromatic scalar wavefield, ψ(x), a single step in
the z direction given a velocity function which varies arbitrarily with x. (Fishman and
McCoy, 1984 and 1985, address this problem in a more general context.) These
extrapolators are nonstationary filters in kx, and can thought of as Fourier phase-shift
operators which allow the phase- shift to vary rapidly with x. The x variation of the
phase shift operators is limited only by the extent to which the resulting expression
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approximately solves the scalar wave equation. There is no mathematical limit to how
rapidly the phase can vary with x.

PSPI defined

Phase-shift-plus-interpolation  (PSPI) method of Gazdag and Squazerro (1984).
PSPI accomplishes an approximate extrapolation through v(x) using a suitable set of
reference velocities {vj}. For each reference velocity, a constant-velocity phase-shift
extrapolation is computed and, by interpolating these into a single result, the
extrapolation through v(x) is simulated. Logically, this process can be taken to the
limiting case of an “exhaustive set” of references velocities which means {vj}
contains an entry for each distinct value of v(x). In this limit, the details of the
interpolation process become irrelevant and the PSPI method converges to (Margrave
and Ferguson, 1997)

(9)

where ϕ(kx,0) is the forward Fourier transform of the input wavefield, ψ(x,0),
α(kx,x,z) is the nonstationary phase-shift operator, and ψ(x,z) is the output
(extrapolated) wavefield. Specifically

, (10)

and α(kx,x,z) is the nonstationary wavefield extrapolator given by

. (11)

ψPSPI is computed as a nonstationary combination filter of ψ(x,0) (α (kx,x,z) is the
filter), which equation (9) gives in the mixed form as a generalized inverse Fourier
integral. For the remainder of this paper, when the term PSPI is used it will refer to
these generalized equations.

NSPS defined

The second wavefield extrapolation operator is the nonstationary convolution
complement to PSPI as given above. Called nonstationary phase-shift (NSPS) it is
given by (Margrave and Ferguson, 1997)

(12)

where α(kx,x,z) is again given by equation (11) and
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. (13)

Notice that NSPS applies α(kx,x,z) simultaneously with the forward Fourier transform
(from x to kx). In contrast, PSPI applies the same nonstationary filter with the inverse
Fourier transform (from kx to x).

The windowing analog for PSPI and NSPS

The windowing analog results in very simple expressions for the PSPI and NSPS
extrapolators. The derivation is found in Margrave and Ferguson (1997) and begins
by assuming that v(x) is piecewise constant with a countable number of segments. If
vj denotes the jth constant velocity, then define the window set {Ωj} such that Ωj(x)=1
if v(x)=v j and is zero otherwise. Then, it results that ψPSPI may be expressed
symbolically as

(14)

where α j is the wavefield extrapolator for constant velocity vj. Similarly, NSPS
becomes

. (15)

The only difference between expressions (14) and (15) is the point in the process at
which the windows are applied. In PSPI the windows are applied after extrapolation
while in NSPS they are applied before. Figures 3 and 4 illustrate these processes for
the case of upward wavefield extrapolation (i.e. wavefield modeling).

Inverse propagator and models defined

The inverse theory presented here suggests that ψPSPI can be inverted, to recover
ψ(x,0), using the NSPS algorithm and an extrapolator of α -1. Similarly, it also leads to
the expectation that ψNSPS can be inverted using the PSPI algorithm. However, there
are other possibilities as well. In the limit of constant velocity, both extrapolation
methods approach ordinary phase-shift (Gazdag, 1978) which is easily shown to be
its own inverse. This leads to the expectation that PSPI or NSPS will also invert
themselves when lateral velocity gradients are weak.

The wavefield extrapolator of equation (11) has a well-known bipolar behavior.
When |ω/kx|>v, α is a complex sinusoid representing propagating body waves. On the
other hand, when |ω/kx|<v it becomes a decaying real exponential that is called an
evanescent wave. In this context, an evanescent wave propagates in the lateral
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direction but decays exponentially with depth. The evanescent portion of the
spectrum can theoretically be recovered in an inversion. However, this is numerically
unstable so we will restrict our discussion to non-evanescent energy. Thus, α -1 will
mean

. (16)

A consequence of this definition is that the only meaningful distinction between α
and α -1  is the sign of “z” in the exponent of the complex exponential.

A sequence of examples will serve to illustrate these concepts. Figure 5a shows an
input wavefield, representing ψ(x,0), which is simply a horizontal set of eight
impulses. Figure 5b shows three different velocity models that will be examined: a
constant velocity of 2000 m/s, a 3000 m/s lens embedded in a 1500 m/s background,
and uniformly distributed random velocities lying between 1500m/s and 2500 m/s.
The input dataset was sampled at 10 m in x and .004 seconds in t.

Constant velocity inversion

Figure 6 shows a 50 m upward extrapolation of ψ(x,0) using ordinary phase-shift
for the constant velocity case. The result, ψ(x,z),  in the time domain is given in
figure 6a while figure 6b shows the f-kx amplitude spectrum of the same. It is
apparent in Figure 6a that each impulse in ψ(x,0) has been replaced by a diffraction
hyperbola. In the Fourier domain this is a set of well-separated lines which have been
truncated by the evanescent boundaries of |f/kx|=v. (The f/kx spectrum of ψ(x,0) is
simply the same set of lines without the evanescent cutoff.)

Figure 7 shows the inversion results calculated with ordinary phase-shift using α-1.
The time domain result (figure 7a) shows that the inversion reconstructs small x’s (or
“butterflies”) at the position of each impulse. The failure to reconstruct a perfect
impulse is a direct consequence of the non-inversion of evanescent energy. The
Fourier domain result appears identical to figure 6b because the forward and inverse
operations in this example are pure phase-shifts and do not affect the amplitude
spectrum. This result is the best possible inversion to be shown here and identical
results are expected from PSPI and NSPS (assuming constant velocity) used in any
combination of forward and inverse extrapolators.

High velocity lens inversion

Figure 8 shows a 50 m upward extrapolation using NSPS for the case of the high
velocity lens of figure 5b. NSPS was chosen as the forward extrapolator because it
constructs a superposition of impulse responses (figure 8a) while PSPI does not. (The
PSPI result for this case has discontinuities in the wavefield which correspond to the
velocity discontinuities.) The Fourier domain picture shows that the spectral lines
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defining the impulses have begun to blur. This is because the wavefield extrapolation
operation is no longer a simple phase shift when velocity varies laterally. Instead, the
nonstationary phase shift actually alters the output amplitude spectrum because it
mixes input wavenumbers.

Figure 9 shows the inversion of the wavefield in figure 8 using NSPS, while figure
10 shows a similar inversion but with PSPI. Away from the velocity discontinuities,
both inversions have done quite well, while near the discontinuities there are slight
artifacts on both inversions. Inspection of the f-kx spectra of the inversions gives a
slight edge to the PSPI result. Inversion of NSPS by PSPI shows a slight
improvement in the resolution of the discrete spectral lines over inversion of NSPS by
NSPS. However, even in this rather severe setting, the differences are subtle.

Random velocity variation inversion

A most extreme inversion test is the case of the random velocity model of figure
5b. In figure 11, the result of using NSPS as the forward extrapolator, again for a 50
m step, is shown. The time domain display (figure 11a) is deceptively simple which
illustrates a point about NSPS. Nonstationary convolution, which is the basis for
NSPS, simply replaces each point of the input by an impulse response whose form is
determined by the local conditions at the point of replacement. The eight impulses of
the input wavefield (figure 5a) simply sample eight of the many random velocities
(figure 5b) and the result is the superposition of eight different diffraction hyperbolae.
The Fourier domain expression of this superposition (figure 11b) shows a complete
loss of resolution of the spectral lines. Note that the spectrum still shows clearly
defined evanescent boundaries.

The two inversions of the wavefield of figure 11 are shown in figure 12 (NSPS-1)
and figure 13 (PSPI-1). The NSPS inversion has not been very successful at all. The
output has an energy concentration at the right time (figure 12a) but there is no
resolution of individual impulses. The Fourier amplitude spectrum (figure 12b) shows
little evidence of the individual spectral lines. In contrast, the PSPI inversion is very
good though its character reveals something fundamental about the PSPI algorithm.
The eight impulses have been “resolved” into clusters of small points (figure 13a)
instead of the expected “x” patterns. The Fourier domain (figure 13b) shows some
definition of the spectral lines but there is no evanescent boundary. All of this
evanescent energy is an algorithmic artifact. How this can occur when the inverse
operator explicitly does not invert the evanescent energy is a property of
nonstationary combination filtering. The windowing analog (figure 4) shows that
windowing is the final step prior to superimposing the different constant velocity
extrapolations. Rapid lateral velocity variation unavoidably results in strong
discontinuities in the superimposed wavefields that move energy into the evanescent
region. Reference to figure 3 shows that NSPS will always produce a smooth
wavefield superposition and no evanescent artifacts.

A further variation on this example is instructive. Figure 14 shows an upward
extrapolation through the random velocity model using the PSPI algorithm.
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Comparison with figure 11 shows that the PSPI result has produced evanescent
artifacts. Interestingly, NSPS-1 is an excellent inverse for this result as shown in figure
15 while the PSPI inverse (figure 16) is poor. Comparison of figures 15 and 13 shows
that the actual inversions are similar and leads to the reasonable expectation that an f-
k evanescent filter applied to 13 will lead to a similar result to figure 15.

Multiple depth steps

When used in a recursive wave-stepping scheme, the differences between NSPS
and PSPI become lessened, especially with respect to the suppression of evanescent
energy. Though the output of a particular PSPI step can be troubled with evanescent
artifacts, if it is input into a subsequent step, it is immediately filtered to reject
evanescent energy, as the windowing analog of Figure 3 reveals. Furthermore, though
the constant velocity phase shift results are accurate for any size of extrapolation step,
the same cannot be said for variable velocity extrapolators. Both NSPS and PSPI use
and assumption of locally constant velocity. This means that the cone of scattered
energy emitted from a point (NSPS) or pulled into a point (PSPI) is modeled with
straight rays depending on a local velocity. Therefore, a series of small steps should
be more accurate than one large one.

Consider the random velocity model and taking five 10 m steps instead of one 50
m step. Also, let each 10 m step have a different random velocity field with the same
mean and scatter shown in Figure 5b. Figure 17 shows the result of such an upward
extrapolation using PSPI. Comparison of this with Figure 14 shows a much improved
result with smoother wavefronts and better (though incomplete) suppression of
evanescent energy.

The inversions of the result in Figure 17 were also done with five 10 m steps using
the identical velocities to the forward extrapolation. Figure 18 shows the NSPS
inversion while Figure 19 shows the PSPI result. Both inversions are quite good and
are comparable in quality. Figure 19 is an especially dramatic improvement over the
single step result shown in Figure 16. NSPS seems to have done a slightly better job,
especially in suppression of evanescent energy.

A similar study to that in Figures 17-20 was also conducted using NSPS for the
upward extrapolation; but is not shown for space limitations. The results were quite
comparable to the PSPI study and definitely better than the single step results in
Figures 11-13. It resulted that a multi-step NSPS can be inverted with either a multi-
step NSPS or a multi-step PSPI with only slight differences.

DISCUSSION AND CONCLUSIONS

Nonstationary filters are mathematically similar to pseudodifferential operators.
The inversion of these mathematical forms is of interest in the solution of many
geophysical problems including deconvolution and migration.
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Nonstationary convolution can be inverted almost exactly by a nonstationary
combination with the inverse of the mixed-domain transfer function. In the
terminology of pseudodifferential operators, an approximate inverse to a given
operator is found by applying the algebraic inverse of the symbol of the operator with
the mathematical form of the adjoint operator. Nonstationary combination is similarly
inverted with a nonstationary convolution.

This is a deterministic process that assumes the nonstationary transfer function is
known and that it has no zeros. These conditions are at least approximately met in the
cases of constant Q filtering and scalar wave extrapolation through laterally variable
media. The result is simple expressions for forward and inverse Q filters and forward
and inverse wavefield extrapolation filters.

Numerical simulations show that inverse Q filtering by nonstationary combination
achieves very high fidelity. The reflectivity spectrum estimate tracked the initial
reflectivity spectrum until nearly Nyquist frequency. A convolutional inverse Q filter
did not perform well.

Numerical wavefield extrapolations show that NSPS inverts PSPI and vice-versa.
Where velocity complexity is low, both processes are good inverses of themselves. In
the case of random media, the self-inverses did not perform well over single-step
simulations. However; when the simulation is extended to a recursion over several
steps, either process becomes an acceptable inverse for either process in the forward
mode.

The multistep results suggest that PSPI and NSPS become more and more similar
as the extrapolation step size decreases. Indeed, as the step size becomes infinitesimal
the two algorithms become equivalent.
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Figure 1. The results of forward and inverse Q filtering are shown in the time domain. The
initial reflectivity (a) was filtered with a forward Q filter using nonstationary convolution (b).
When nonstationary convolution is used as the inverse process the results are unsatisfactory
(c) but when nonstationary combination is used (d) a very good result is obtained.
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Figure 2. The Fourier amplitude spectra of the traces in Figure 1 are shown. The spectra of
the initial reflectivity (a) and the nonstationary combination inverse Q filter (d) are nearly an
exact match. The nonstationary convolution inverse Q filter (c) shows a blow-up of the high
frequencies. The forward Q filtered spectrum (b) shows very little feature match with (d)
which shows that far more that a spectral multiplication was required in the inversion.
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Figure 3. Wavefield extrapolation by nonstationary combination is depicted. The input
wavefield  (a) consists of 3 impulses in three distinct velocity regions. The first computation
step is a complete wavefield extrapolation of the input for each distinct velocity  (b), (c), and
(d). Next, a boxcar window is applied to each extrapolation which zeros all locations where a
particular velocity was not the correct one (e), (f), (g). In the final step, the extrapolated-
windowed wavefields are superimposed (h). Note the wavefield discontinuities produced at
the velocity boundaries.
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Figure 4. Wavefield extrapolation by nonstationary convolution is depicted. The computation
reverses the operations of windowing and extrapolation as described nor nonstationary
combination (Figure 3). The first computation step windows the input wavefield into three
distinct regions which isolated each impulse (b), (c), (d). Next, each windowed wavefield is
extrapolated with the appropriate constant velocity(e), (f), (g). In the final step, the
extrapolated-windowed wavefields are superimposed (h). The result is a superposition of
impulse responses.
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Figure 5. The input wavefield (a) for a series of numerical examples. The spatial sample rate
is 10 m and the temporal sample rate is .004 s. Three velocity models are shown in (b):
constant, a high velocity lens, and random variation.
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Figure 6. A 50 m upward extrapolation of the dataset of Figure 5a for constant velocity is
shown in the space-time domain (a) and the f-kx amplitude spectrum (b). Note that each
impulse has been replaced by a diffraction hyperbola. The f-kx spectrum is characterized by a
series of well-separated vertical lines. This is a stationary problem and is presented for
comparison with the nonstationary examples.
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Figure 7. The inverse extrapolation of the wavefield in Figure 6 is shown. The result is the
best that can be achieved and images each impulse in an “x” pattern. The f-kx spectrum is
limited by the evanescent boundaries as evanescent energy was not inverted.
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Figure 8. A 50 m upward extrapolation using NSPS of the dataset of Figure 5a is shown in
the space-time domain (a) and the Fourier domain (b). The velocity model was the high
velocity lens whose position is marked in (a). Note the blurring of the spectral lines in (b).
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Figure 9. An inverse wavefield extrapolation using NSPS of the dataset of Figure 8 is shown.
Good focussing is seen in (a) and the spectral lines (b) have been sharpened. Compare with
Figure 10.
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Figure 10. An inverse wavefield extrapolation using PSPI of the dataset of Figure 8 is shown.
Good focussing is seen in (a) and the spectral lines (b) have been sharpened.
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Figure 11. A 50 m upward extrapolation using NSPS of the dataset of Figure 5a is shown in
the space-time domain (a) and the Fourier domain (b). The random velocity model was used.
Note the complete blurring of the spectral lines in (b).
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Figure 12. An inverse extrapolation using NSPS of the wavefield of Figure 11. The inversion
has failed to resolve the impulses or to define the spectral lines.
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Figure 13. An inverse extrapolation using PSPI of the dataset of Figure 11. The impulses
have been resolved as clusters of small points. Though there is some resolution of the
spectral lines, there is also a great deal of evanescent energy even though the inversion did
not attempt to recover this exponentially damped portion of the wavefield. This was a more
successful inversion that that of Figure 12.
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Figure 14. A 50 m upward extrapolation using PSPI of the dataset of Figure 5a and the
random velocity model of 5b. Note the chaotic nature of the extrapolation and the creation of
evanescent energy even though the extrapolator had a proper exponential decay. Compare
with Figure 11.
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Figure 15. An inverse extrapolation using NSPS of the dataset of Figure 14. The impulses
have been resolved into “x” patterns similar to the lens example and the constant velocity
example. Note the good separation of the spectral lines and the lack of evanescent artifacts.
Compare with Figures 13 and 16.
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Figure 16. An inverse extrapolation using PSPI of the dataset of Figure 14. The impulses
have not been resolved. Compare with Figures 12 and 15.
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Figure 17. A 50 m upward extrapolation done in five 10 m steps with PSPI. The input dataset
is shown in Figure 5a and the velocity field for each 10 m step was a random field with the
same mean and variance as that in Figure 5b but with different values for each step.
Compare with Figure 14 and note the improvement in the appearance of the wavefield and
the better suppression of evanescent energy.
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Figure 18. An inverse extrapolation using NSPS of the dataset of Figure 17. The inverse
extrapolation was also done in five 10 m steps using the same random velocities as the
forward step. In comparison with Figure 15, the inversion is of similar quality.
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Figure 19. An inverse extrapolation using PSPI of the dataset of Figure 17. The inverse
extrapolation was also done in five 10 m steps using the same random velocities as the
forward step. This result is much better than that of Figure 16 and is nearly as good as that of
Figure 18. Note the improved suppression of evanescent energy relative to Figure 16.
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