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Direct Fourier migration for vertical velocity variations
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ABSTRACT

The Stoltf-k migration algorithm is a directi.e. non-recursive) Fourier-domain
technique based on a change of variables (or equivalently, a math@ing)nverts the
input spectrum to the output spectrum. The algorithm is simpleffinent butlimited
to constant velocity. A v(zl-k migration method,capable ofvery high accuracy for
vertical velocity variations, can be formulated as a nonstationary combination filter that
avoidsthe change of¥ariables.The result is a diredtourier-domain process that, for
eachwavenumberapplies a filter matrix to a vector of input frequerggmples to
create a vector of output frequency samples. The filter materalytically specified in
the mixed domain of input frequency and migrdiete. It is moved tdhe domain of
input frequency and output frequency by a fast Foumansform. Forconstant
velocity, the v(z) f-k algorithm recreates the Stolt method but wittreutisual artifacts
related to complex-valued frequency domain interpolation. Though considslaivigr
than the Stolt method, vertical velocity variations, through an rms velocity (straight ray)
assumptionare handledvith no additionalcost. Greater accuracy at slight additional
expense is obtained by extending the method tk8Wphase shift integral. This has
the same accuracy as recursive phase shiftande made to handlerning waves in
the same way.

Nonstationaryfilter theory allows the algorithm to be easily reformulated in other
domains.The full Fourier domain methodoffers interesting conceptual parallels to
Stolt’s algorithm.However, unless a one efficient method of calculating theurier
filter matrix can be found, the mixed-domain method willfdster. The mixed-domain
nonstationary filter movethe input datdrom the Fourierdomain to the migratetine
domain as itmigrates. It is faster becauee migration filter isknown analytically in
the mixed domain.

INTRODUCTION

There aretwo major forms of migration based orFourier transforms andnany
derivatives ofthese.Stolt (1978) presented migration method, called f-k migration,
that is“exact” for constant velocity. Stolt's method éslleddirect in that itconstructs
the migrated image directlfom the unmigratedvithout intermediateproducts. Stolt
also suggested approximate extension to variable velocity Ihis has not proven
popular because it is of low accuracy. Gazdag (1978) prestetedherform, called
phase-shift, anthat isrecursive rather than diredhe recursion is inthe form of a
loop over sampledlepth. Ateachstepthe wavefieldfrom the depthjust above is
downwardextrapolated byphase shift. Forconstant velocity, phase shift easily
shown to be mathematically identical to f-k migration, thougHatter is much quicker
to compute. For v(z), phase shift is superior to f-k migration and is knowonieerge
to a famousapproximate wave equation soluticalled the VWKBJ solution (Aki and
Richards, 1980).
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For lateral velocity variations, Gazdag and Squaz¢E984)gave thePSPI (phase-
shift plus interpolation) extension of thphase shift method. Later, dvyrave and
Ferguson (1997) showetthat PSPI can be written as ronstationary filter and
suggested aalternate generalization phase shiftalled NSPS(nonstationary phase
shift).

It is reasonable task whytry to extend thd~ourier methods twariable velocity
when the Kirchhoff andinite differencemethods handle this so naturallhere is an
advantage of simplicityor the Fourier methods because they do not regexglicit
amplitude correctionsfor geometrical spreading orfocussing. Insteadthis is
accomplished implicitlythrough the mechanics of th&rward and inverse Fourier
transforms. Conceptually, a Fourier transform perfornmdaae-wave decomposition
and, since plane-waves propagate witheptreadingthey are easily extrapolated or
mapped to new positions without amplitude adjustments. Essentially, thisxsaple
of a physical effecthat is more easily treated after a plane-wdgeomposition that
before. There are other such effects, for example anisotropic wave propagation.

So, while the spatial variation of velocity isomewhat difficult to handle with
Fourier methods, there are other physical effectsatgamore easiljhandled. This has
been a driving force behirttie development ofew mathematics that is able to deal
simultaneously with spatial anBourier domain effects. Examples are the wavelet
transform (e.g. Ogder997), thetheory of pseudodifferential operators (e.g. St.
Raymond, 1991), and the theory of nonstationary filters (e.g. Margrave, 1998).

This work shows how Stolt’'sheory can be generalized #(z) usingthe language
of nonstationary filters. (Thiscould equally well have been dongrough
pseudodifferential operator theory wittenticalresults.)The result is a diredtourier
migration, that is a true generalization of Stolt's method, and that iKBJWheory for
v(z). The theory is closely related (but distinct) to that used by Hale et al. (1992) for the
migration of turning waves. Recently, Etgen (1998) has presentalteamativev(z) f-
k migration that is quite different from the theory presented here.

This paper begins with eathematicalreview of Stolt's methodhat serves to
establish notation anekfreshthe reader on the algorithmd@etails. Then it isshown
that the spectral mapping &k migration can be replaced by a nonstationitgr
operation. Forconstant velocity, this nonstationaffifter accomplishes the Stolt
mapping without the usual interpolation artifacts. Thea different generalizations of
the constant velocity nonstationary filter are exploredrmas assumption and a first-
order WKBJ method. The v(z) f-k method is formulated as an operation on a vector of
frequencies for fixed wavenumber. Such a frequency vectoigisated by multiplying
it by a matrix called the migration filter. The v(z) f-k methogli®wn togeneralize f-k
migration and also to unify it with v(z) phase-shift.

A series of example impulse responsessti@vn forthe v(z) algorithm, Stolt’s f-k
migration, Gazdag's phase shifind a Kirchhoff methodMigration filters are also
shown for severalcases. Finallycomputationalcost considerationsre presented.
Stolt's method is by fathe fastest,but restricted to constant velocitfhe mixed-
domain form of v(z)f-k is shown tohave the same computation effort as recursive
phase shift. Finallythe full-Fourier v(z) f-k method isshown to bethe slowest but
could become much faster if further research is successful.
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V(z) f-k migration

REVIEW OF CONSTANT VELOCITY FOURIER MIGRATION

This theory is presented f@D zero-offset geometrfor simplicity of exposition.
Let W(x,t) represent a zero-offset seismic wavefigdording.The exploding reflector
model allows¥(x,t) to be considered dbke boundaryvalue of awavefield, W(x,z,t),
measured at the z=0 recording plane. TH@st) is more properly written a#(x,0,t)
whereW(x,z,t) is a solution to the 2-D scalar wave equation

92 92 1 92

W W= W

0x 8Z2 \% 2 8‘[2 (1)

The migration problenproposesthat W(x,z,0) be foundgiven W is a solution to
equation (1) andhat W(x,0,t) prescribegdhe wavefield at z=0. Since equatil) is a
second order hyperbolleDE (partial differentiakequation), its unambiguous solution

requires both andoW/0z be prescribed on the boundary. Thhes migration problem

is posed with inadequate boundary conditions and requires additional assumptions for a
solution. Stolt (1978) first showed how such a solutioan be obtainedinder the
assumptions tha¥(x,z,t) contain only upwartravelingwaves.Since Stolt developed

his solution using Fourier techniques, he also made the assumption that v is a constant.

The development of 8lt’s solution requireshe Fourier transform of equatiofi).
For thispurpose,W(x,z,t) can be represented as theerse Fourier transform of its
(k) spectrum as

s \ 1 ’ s A [ ( \\\
‘P(\X,Z,t/] = 4752[[ ) cp(\k X,z,oo/)exp( 1‘\ ot —k (x J/)dk dw )

\

where

‘ 3 ’ I \ { N \\\
cp(\k X,z,oo/) = f fw ‘P[\x,z,t/]exp[\\—n\ ot —k (x J/ﬁ]dxdt . (3)

Substitution of equation (2) into equation (1) leads to

d 2 ‘ \ J"/(Dz 2\\\ ‘ \ {.r V)
gcp(\k X,z,oo/) - ( 2 k. ‘cp(\k X,z,oo/) exp i ot —k (x ) /\dk do=0 | (4)

—

The satisfaction of equation (4) for ajl&ndw can only be done the term in brackets
vanishes identically. That is
62

‘ \ 2 7 \
i) =Ko ®)

where
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k,=—5-k, . (6)
The general solution to equation (5) can be verified by direct substitution to be

cp(/k X,z,u):) = A(:k X,oo:)exp(:ik ZZ:) + B(:k X,oo:)exp(:—ik ZZ:) (7)

\

where A and Bare the (kw) spectra ofupward anddownward traveling waves
respectively (z is assumed to increa@vnward). Asmentioned previously, the

determination of both A and B requires knowledge of BBtandoW¥/0z at z=0. In the

present context, B is assumeero and A(kw) is set equal tap(k,,0,w). Thus the
spectrum of thexploding reflector wavefieldan be constructed as

cp(:k X,Z,oo:) = cp(:k X,O,oo:)exp(:ik ZZ:) (8)
while the time domain result is the inverse Fourier transform of equation (8) and is

s \ 1 ’ / A /. A //./ \\\
Wixzt) = 4752[[00 cp(\k X,O,UL)/)exp(\lk ZZ/)exp\\\n\ ot —k X /\//\dk do (9)

In the exploding reflectoformalism, the migrated section i¥(x,z,0) which is
obtained from equation (9) as

Wix,z,0|= %f cp(/k X,O,oo\)exp(/ik Zz\)exp(/—ik XX\)dk do (10)
h / A5 PSRN J N J \ J

Equation(10) gives amigrated deptlsection. A mgratedtime section is obtained by
letting z=vt and defining=vk,. This results in

(X‘EO/ f cpk Ooo)exp(mrlexp(—lk X)dk do (11)
Though equation (11) is complete as it standsutserical implementation is hindered

by the fact that thev integration is not &ourier transformStolt addressed this by a
change of integration variable

w(n,kx) = m or T]((D,kx) =/ - Vzki (12)

wherethe positivesquare root is chosen gither equivalenexpression. Théormal
change of variables in equation (11) yields

X T, O ff Ky n exp[ mt]exp( ik <X )dk dn (13)

where
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\

o / 2
6(\kx,n/) \/7@[}( ,0, n +v k ] (14)
n-+v %k

Equations (13) and (14) exprebe complete-k (i.e. w-k,) algorithm developed by
Stolt for constant velocity, zero-offset, migration. In summary, the input data (usually a

cmp stack) isFourier transformed over x and t tbtain ¢(k,,0,w), 6(k,n) is
constructed from equatiofi4), and the result isnverse Fourier transformed as in

equation (13). The construction 6fk,,n) is commonly called anappingprocess and

is the creation of the spectrumWx,z,0) directly from the spectrum & (x,0,t). This
process idllustrated inFigures 1 and 2. (In Figure 2, asaihsimilar figures in this
paper, solid black represents the largest absehitee number in thdatamatrix, pure
white is the negative of the number which is solid black, and neutral gray is zero.)

REFORMULATION AS A NONSTATIONARY FILTER

An alternative to the Stolt mapping isdonsider equatiorfll) as a nonstationary
filter. This can be done quite simply as

(X‘EO/ ff cpk Ooo)exp(lt(n oo))exp\ (wt-k X) \dk dw (15)

or

‘P(X,T,O) = 41fo . cp(kX,O,(D)a(m,r,kx)exp(i(mt - kxx))dkxdoo (16)
Tl

where

oc(oo,r,kx) = exp(ir(n - oo)) = exp(ir( w?-vik: - oo)) = exp(i(m(\/l—ipzv2 - 1)) a7

is the nonstationary filter transfer function The related function
m(w, Tk )=a(w,TK )exp(+wt)=exp(t[w’-vk ’]*?) (see equation 31) will be callede
migration filter. Equation(17) presentseveral equivalenexpressions foo(w,tk,)

[or, implicitly, m(w,tk,)] and the lastisesthe ray parameter p =/k. Equation(16)
achieves a constant velocity migration by applying the migration filter simultaneously
with the inverse Fourier transform framto t. Note that the filter is nonstationary only

in w and remains stationary in,.k (A theory that encompassedateral velocity
variations would cause further nonstationarity if k

Though equation (16) gives a complete migratiodp@és sowhile transforming the
data from frequency to time. A more direct parallel with Stolt's method requires moving
the method entirely into the Fourier domain. Since thmtegral in equatiorf16) is an
ordinary inverse Fourier transform,aan bedropped for now taconcentrate on the

nonstationaryw integral. Thus, consider
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‘P(kX,I,O) = %f: cp(kX,O,u))(x(m,t,kX)exp(ioot)doo . (18)

According nonstationary filter theoryMargrave, 1998), equation (18) is a
nonstationary combination filteexpressed irthe mixeddomain. Itcan be moved

entirely into the Fourier domain by tiierward Fourier transform ahe 1 dependence

of a(w,1,k,). The result is an operation on the spectrurthefunmigrated data to yield
the spectrum of the migrated data, and is written

©

G(kx,n) = f ] cp(kX,O,oo)A(u),n - oo,kx)doo (29)

where

©

A((Dp(”z’kx): f,w a(ml,r,kx)exp(—iu)zr)dr _ (20)

In equation(20) w, andw, are nominal frequencies are to &@bstituted withw and
n—w respectively in equation (19). Performing that substitution leads to

M(oo;r],kx) = A(oo;r] - ou,kx> = f“ exp(ioou/ 1- V2ki(1)_2 —-inT )dr (21)

—

where M,n) is the integratiorkernel, or migration filter in the Fourierdomain,
required in equation(19). M is the Fourier transform ofthe migration filter

m(w, Tk, )=exp(it[w’-v’k 7*?) defined previously. Thus
6k )= f ¢k 0,0 M @n k do (22)

According to nonstationary filtetheory, 8(k,,n) as given by equatio22), or
equivalently equatiorf19), must beidentical to thatgiven by equation(14). Once
equation (22) is evaluated, the migrated section is obtained by eg{if#)oas before.

The discrete equivalent of equation 22 is a matrix-vector multiplicaticshawn in
Figure 4. The advantage of the nonstationary formulation over the Stolt mapping is that
the former can be easily extended to vertically variable velocity as wshoen in the

next section.

The remainder of this section will show precisely how equd@) is equivalent to

equation(14) for constant velocityFirst, note that M(,n,k,), as given by equation
(21), is a Dirac delta function

M(ioo,n,k X:) = 6[ w2 - Vzki -1 ] (23)

Insertion of equation (23) into (22) gives
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6k )= f 9k 00/ 02 =v3k] -1 do | (24)

The integral in equatiof24) can be evaluatedsing the property ofthe Dirac delta
function that (Riley et al. 1997, p351)

dg))= X ———

allm‘g(w )‘ - ) g, )=0

(25)

In equation (25) ¢w) is the derivative of @f), w,, denotes a zero of @f and thedelta

function requires a sum over all such zeros. In this cae®,hgs two zeros which are
determined as follows

g =1/ 02 —vA —1=0 (26)
from which it results
W, == 1’]2+V2k§ (27)
and furthermore
PN (0NN x n2 +v2k
& (O )= o oA = " (28)

For the consideration ofipward traveling waves only, we choosée + sign in
equation(28) whichmeans that theum in equation(25) has only one term. This is
then substituted into equation (24) to give:

o

Okn)= cp(/kX,O,oo\) ﬁ —/m +V2k ]doo_ (29)
’ ’ : n°+vk

—

The delta function collapses this integral immediately to

\

1 \ 2
Ok n|= \/7@[3 SO/ mZ+v k ] (30)
n-+v %k

which is equatior{14). This demonstratethat equatior(22) doesexactly recreate the
Stolt mapping and is therefore @mplete reformulation oftonstant velocity f-k
migration.

EXTENSION TO V(2)

Two different extensions ahe nonstationary filter formulation teertical velocity
variations will be explored. Though the term v(z) appears in section and paper titles, the

actual implementation here is ty( Of course, inthe absence ofateral velocity
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variations, the distinction is purely one of convenience since any migrated time section
can be converted to a migrated depth secfaord vice-versa) by simplé-D trace
“stretching”. The two extensions are conceptually analogous to either straight raytracing
with v, . or curved raytracingising Snell’'s law. Not surprisinglythe former has
computational advantages while the latter is more accurate.

That the nonstationary filter formulation can be extended Mertical velocity
variationsshould beapparent fronthe following. The impulseresponse otonstant
velocity migration is a wavefront circle (in depth) whose center is placed on the surface
at a sample’s x coordinate and whose radius is the sample’s @ap#)migration can
be visualized as process ofeplacing each input sample bycicle whose radius is
varying with z. Though not a stationary convolution sittoe replacement function
varies, this is aonstationary filteroperation. Sincehe formalism established above
already accounts for the vertical variation of the wavefront circle ddepth, it should
be possible to include vertical variation due to other effects such as velocity.

As mentionedabove, Equation (21) can be interpreted as tHerward Fourier
transform, front ton, of the migration filter m,tk,) given by

m(/oo,r,k X\) = exp‘[ oty 1 - p2V2 :‘ (31)

AN J

so that

M(/oo,n,k X\) = f ) m(/oo,r,k X\)exp(/— mt \)dr (32)

\ J \ J ~ 7’

The vy, . extension is accomplished simply by alteringam(,) to

/ N /’/. 2 \\\
mrms(\u),r,kxj) = exp) o, | l—pzv(r)rms E (33)

where vt)?  refers tothe root-mean-square velocity as a functiorverticaltime. As
this expression showthje phase othe migration filter is no longer simply linear in
but hasmuch more complicated dependence througkhe variation of y (1).

Neverthelesshe T dependence can still be simgfpurier transformed (equation 32)
and the migrated spectrum then computed through equation (22).

The second alternative extension follows from the WKBJ solution to the scalar wave
equation in a stratified medium (AkndRichards, 1980, p416}quation(8) can be
modified to be an initialownwardextrapolation step from 0 to dzsing the local
velocity at v(dz). If this process is applied recursively to spiamta intervalfrom 0 to
z, the phase shifts for each layer addthin limit of infinitesimal steps,the result is an
integral expression forthe phase.When this result is followed througthe filter
development, the result is
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mwkbj(‘”’f’kx) = exp(iw fo ' V 1-pw) du) (34)

Here the velocity used is the local wavespeed (instantaneous velocity) and the result is a
migration filter with the same accuracy as fese shift method of Gazd&P78). It

has an advantage over the phase shift methduhinit is still appliedhroughequation

(22) as a direct method.

The WKBJ solution given by equati@B4) is considerably ore accurate at higher
p values than the rms solution of equation (33). In fact, equation (83dsy derived
from equation(34) by appeal to the mean-value theoremcafculus. Thistheorem
assertshe phaseintegral in equation(34), which is the areaunderthe curve (1-

p?v¥(u))¥2 from 0 tot, can be approximated by aquivalent rectangle hoseheight is
given by (1-p’v®)*? whereyv is some sort ofiverage velocityover the macroscopic

interval O tot. Thus,v can be found from the condition

J1-pv)? =fx/ l—pzvz(u)du . (35)

When both square roots are expanded to first ordéf ingan be easily solvedr and
found to be the rms velocity. Thusguation(33) is anapproximation to equatio(84)
that is valid for small

The WKBJ solution implemented here is called a first-order solution and handles the
phase (position and@eometric spreading) coraly for all angles. Higher order
solutionsare known whichincorporate approximate amplitude terfos transmission

losses. The second order WKBJ correction multiplies equation (34) by a factovof (

’(1)-k "> which is just K2 Though this is a reasonatdenplitude correctiorfior low
vertical angles it is infinite at 9@&nd therefore unsuitabfer a migration algorithm. A
reasonable amplitude correction will have to be a higher order correction than this.

IMPLEMENTATION AND EXAMPLES

Stolt’s f-k migration algorithmthe v(z) f-k algorithm of thispaper, arecursive
Gazdag phase-shift,and a simplified Kirchhoff algorithm were all implemented
digitally in Matlab toproducethe results shown her@hese will be referred to as f-k
migration, v(z) f-k migration, phase-shift and Kirchhafigration respectively. The
v(z) f-k algorithmwas written expresslyfor this study, while other three are teaching
codes that have been uise athe University of Calgaryfor severalyears.All are 2-D
post-stack (zero offset) implementationsatldb was chosen foiits programming
simplicity, excellentgraphics,and ability to count floating poinbperations and cpu-
time.

The f-k migration is done irthe conventionalvay with a forward f-k transform, a
spectral mapping and scalirfgigures 1 and 2gquation(14)), and an inverse f-k
transform. The spectral mapping “unfolds” the triangular non-evanescent portion of the
unmigrated spectrum into the circular migrasgectrum. Aparticular output sample of

the migrated spectrum, at f), comes from the unmigrated spectrum at (® where
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w is given by equation (12). Generallywill not fall exactly on the input (k w) grid
and a complex-valued interpolation will bequired. Thisinterpolation is non-trivial
and is a major source of artifactsfik migrations (Claerbout1985). This study used
an eight-point, complex-valuedyptimized “sinc function” interpolatiorbased on
Claerbout’s suggestion$he major computatioloop is over output wavenumber and
all otheroperationsjncluding theinterpolation, have been vectorizethe result is a
very fast code with controlled, though still present, artifacts.

The phase shift migration begins with an f-k transform of the stack and then enters a
loop over output time (or depth) samples. (Both this and theigkation have options
for zero padding in space anich¢ prior to the forward f-k transform tominimize

Fourier wraparound.) Ag¢achstep inthe loop a phase shift diz(w/v¥(z) - k)™ is
applied to the spectrum (which extrapolatesoiivnward)and the result is evaluated at
t=0. This last step creates a single depth sligebutput in (kz) space. No getral
interpolation is necessary attte result isaccuratefor all dips. Asmentioned in the

previous section, ithe limit asAz approaches zero, thimethod converges to the
WKBJ solution.

The Kirchhoff implementation is a simple “NMO removahd sum” process that
omits the “details” of dip-limitation, anti-aliafitering, and time differentiation, but
does respond twertical velocity variations. The interpolation requiredor NMO
removal is simplenearest-neighboiThe major computatiotoop is over outputrace
location and a second inner loop is used to NMO remove and sum for each output trace.
The resulting code is mudiowerthanf-k migration but satisfactorfor comparison
with v(z) f-k migration.

The v(z) f-k migration was implemented with a main loop over owt@wenumber.
(Like f-k migration, a forward or inverse f-k transform begins or gletes the
algorithm.) Foreachoutput wavenumber, g&ector of input frequency samples is
filtered with a nonstationaryfilter as in equation(22) to give a vector of output
frequencysamples. This is done as a mavector multiply (Figure 4) by building a

matrix representation of Myn,k,). This matrix is computed bfirst building amatrix
representing mg,t,k,) and then applying an FFT to transforrto n (Figure 3). Either
of equationg31), (33), or (34xan beused tobuild m(w,t,k,) depending upon what

sort of velocity adaptivity islesired. Notahat since nm,1,k,) depends otthe square
of k,, unique filters need only be constructed Hiaif of the vavenumbers. Twother
simple optimizations: filtering only up to a desireghximumfrequency and zeroing
evanescent spectral components, were also done.

In the examples of the concepts and algorithms preséeterjthe migration of a
single live trace is used to clearly display the impulse response as a function of time. In
all examplesthe input dataset hasil2 traces with256 samplesachwith only trace
256 being non-zero. (The f-k and phase shift migratimesl aemporal zero pad that
doubledthe tracdength.) Spatial and temporal sampling intervalsre 12m and 8ms
respectively. In both migrations, only frequencies tess170% of Nyquist (~44 Hz)
were migrated. The single live trace was constructed as a series of regularlyusyiaced
impulses convolved with an “Ormsby” waveleh@semaximumfrequencywas about
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35 Hz. All migrations were performed on a Power Macinté300/200 using Mdtlab
5.1in a 45 mb memory partition.

In Figure 5, constant velocity migrations for a velocity of 2000 m/s from the v(z) f-k
algorithm (a) andstolt’'s method (carecompared. Figures 5b and Stiow the f-k,
transforms of these samwo results. fiough largely similar, the v(z) f-k migration
shows no evidence dfie artifactsseen near .8econds irthe f-k migration. The lack
of significant artifacts is a major benefit of thk&) f-k algorithm.However, this is
purchased at a considerable increas€RtJ time. Forthis casethe f-k algorithm ran
in about 38secondswhile v(z) f-k required520 seconds(The tme requiredfor the
v(z) algorithm is independent eflocity and, aswill be seen,any vertical velocity
variation can be accommodatedth little increase in computéme.) According to
Matlab, the f-k migration required about 50Xfl6ating point operations whilthe v(z)
f-k migration required 2300 x£0

Thereason forithe reduction in artifacts can be appreciated by examining a typical
matrix representing Mg,n,k,) as shown in Figure 6. Figure 8aowsthe amplitude

spectrum ( |M©,n,k)| ) for k = .01 m" while 4bshowsthe realand imaginary parts
of the same complematrix. (As previously mentionedll gray-level figures in this
paper use solid black to represém largest absolute value number in da¢gamatrix,
pure white as the negative of the numtiat issolid black, ancheutral gray agero.)

As discussed previously, ithe constanvelocity, continuous case, kb(n,k,) is a
Dirac deltafunction (equatior23) whosesingularity tracks along the curvg= (w?* -
vk ?)*?, and as Figure 4shows,the discrete representation of &,k ) doeshave

maximaalong thistrack. The oscillatory behavior of M§n,k,) away fromthe ideal
singularity curve is precisely the complex interpolator requioedhe Stoltmapping.

Essentially,eachrow of M(w,n,k,) contains an optimal complex-valued interpolator

that is the natural consequence of the Fourier transformwftjky). Thusthe v(z) f-k
algorithm uses afull-length interpolator optimizedor each individualfrequency. At

values ofw less than the point whetke singularity intersects thg=0 axisthe filter is
evanescent.

As a second example, v(z) f-k, usitige WKBJ migration filter and theophase-shift
method discussed above are examinedhfercase of a linear-with-depth instantaneous
velocity v(z) = y + ¢z where y=1430m/s and c=6sec". Figure 7showsthe v(z) f-k
result in (a), its f-k spectrum in (b), the phase-shift result in (c) and its fetrspein
(d). The time-domain impulseesponsesre largely similawith apparentlyidentical
trajectories up to 90as marked by the vertical li ne. Neither algoritinas explicitly
designed foranything beyond 90so theshape ofthe phase-shiftrajectoriespast this
point is an algorithm quirk. Thiek spectra ar@lso nearly identical. It is interesting to
recall that the input to this computation was the sanfierasSigure 5 which ehasizes
that thef-k spectra were computed with something more than a simple mapping
technique.The v(z) f-k algorithm had slightly great€2PU tme and operations count
than thepreviousexample (550 seconds and 2600 X10perations) whilehe phase
shift method took 980 seconds and 1800°ftb@ting point operations. The operations
counts weresimilar and itseemdikely that much of the difference irun times is a
function of how well the algorithms vectorize in Matlab.
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An example of thd-ourierdomain migratiorfilter, M(w,n,k,), for the WKBJ case
is shown in Figure 8. As with Figure the amplitude spectrum is in (a) while tieal
and imaginary parts are () and(c). It is imnediately apparent th#tis matrix is no
longer the discrete equivalent toDarac deltafunction. However, itstill has its
dominant energy restricted to a well-defined portion of the m&tiwwn on Figure 8a

are three trajectories of tiferm n = (w* - v’k »)"? where the leftmostuses the
minimum instantaneous velocityhe middleusesthe mean instantaneous velocity and
the right uses thenaximuminstantaneous velocityThe bulk of the spectrapower of
the matrix lies between the minimum and maximum velocity curves.

A third and finalexample isshown in Figure 9 wherthe v(z) f-k algorithm is
shown using the rms migration filter and compared to the Kirchhoff algorithm using the
same rms velocities. The instantaneous velocity function was the sdoreFagure 7.
Figure 9ashowsthe v(z) f-k migration while theKirchhoff migration is shown in
Figure 9c. As before, the v(z) f-k algorithm made no attempt to handle scattering angles
(i.e. dips) beyond 90 so that the impulseesponse curves end taat angle. On the
otherhand, the Kirchhoff algorithm naturally handlesuch angles sthat thecurves
extend well past 90 The rms assumption madeere means that theseirves are
inaccurate at steep angles and vidical line, which is inthe sameposition as for
Figure 7, allows an easy comparison withtfigure. The Kirchhoff algorithm is not
fully correct for the amplitudes of steeplps. The compute timéor v(z) f-k was the
same as the constant velocity case 520 seconds as before while the Kaitgdrdim
required1250 secondsThe operations counts wethe same2300 x10 for v(z) f-k
and 1500 x10for Kirchhoff. Again it seemslikely that differences in vectorizing in
Matlab accounts for the longer run time for Kirchhoff.

The f-k spectra of the two rms results are in Figure 9b and 9d. This is a good time to
re-emphasize the fundamental differences between tigeeithms. Bothare direct
algorithms, meaning that there is no recursive downward continuation involved, but the
Kirchhoff computation is direct in the space-time domain wiig f-k is direct in the
Fourier domain. Thus v(z) f-komputes the spectrum &igure 9b diectly from the
input spectrum while Kirchhoff computdéise wavefield ofFigure 9cdirectly from the
input wavefield. The lower power at stegips isevident in theKirchhoff spectrum at
higher wavenumbers.

Figure 10 shows a typical Mn,k,) matrix for the rms migrationfilter. As before,
the amplitude spectrum is in (a) while tleal and imaginary partare in(b) and(c).
Comparison witithe more accurate MBJ result in Figure 8hows broad similarity
but the rms filter loses powernear the trajectory determined by the maximum
instantaneous velocity.

Examples of the three different migration filters have k&ewn in Figures 6, 8,
and10. As afinal comparison of thesBlters, Figure 11shows profiles across the
amplitude spectrum afach an=20 Hz. The near-singularity of the constant velocity
filter is very evidentAlso, the rmsfilter approximates the WBJ result well at lower
frequencies but makes systematicors at higher frequenciesor nonevanescent
frequenciesthere is a one-one correspondence betweemnd velocitythrough the
relationw = (n* + v’k )*2. Numerical experimentation has shown that the power in the
WKBJ filter at a particular frequency ielated tohow significant thecorresponding
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velocity is. If a particular constant velocity applies over a larmgnge then theWKBJ
filter will be strongly peaked at thecorresponding frequency. In this case, the
instantaneous velocity modelas linear with depth andhat means exponential with
time.

COMPUTATIONAL COST CONSIDERATIONS

The v(z) f-k algorithm camlso be run as mixed-domain nonstationary filter. This
amounts to alirect implementation of equatiq8) and produceglentical migrations
to those in Figures 5, 7, and 9. (Thoubghy did not formulate it thigzay, Hale et al.
(1993) usedthe mixed-domainmethod). The mixed-domain filter is actually
considerably faster than the full-Fourier domain metfazdinplemented here) because
the cost of moving the migration filter into the Fourier domain is saved. This is because
the full-Fourier methodwas done with a max-vector multiply while the mixed-
domain method also requires a similar matrix-vector operation. Thus the cost of moving
the migration filter betweerdomains is an additionaburden for the full-Fourier
method. Table 1 summarizes the algorithm testing done here and includes results for the
mixed-domain filter.

Algorithm floating pt. ops. (x10) run time (seconds)
f-k migration (Stolt) 50 38
v(z) f-k (full-Fourier) 2300(rms) 2600(WKBJ) 520 (rms) 550(WKBJ)
v(z) f-k (mixed-domain) 600(rms) 1000(WKBJ) 460 (rms) 520(WKBJ)
Phase-shift 1800 980
Kirchhoff 1500 2000

Table 1. The floating-point operations count and CPU times for the algorithms discussed in
the text as reported by Matlab for a Macintosh 7300/200. The operations counts are probably
proportional to realistic estimates of run times in other computing environments. The fact that
the full-Fourier v(z) f-k has twice as many operations but takes only marginally more time is
probably due to Matlab’s efficient FFT algorithm doing most of the work.

Despiteits cost, the full-Fourier v(z) f-k method is of interestor severalreasons.
First, from atheoreticalperspective, it is interesting to seew to generalized Stolt's
algorithm tov(z). The mixed-domaimmethod,while mathematicallyequivalent, does
not meke this connectionobvious. Secondihe full-Fourier domain method could
actually become the faster method if a reasonable analytic approxifeatigiiw,n,k,)
could be found. Even without that, considerable speedup would odber application
of M(w,n,k,) were done without a full matrix-vector multiplyhatis, could thelarge,
low-amplitude areas of M§n,k,) seen in Figures 8 and 10 heglected in the filter

application? Everbetter, could a fasnumerical evaluation of M¢n,k,) avoid
calculating them in the first place? These questions pose interesting research problems.
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Operations count estimatés the four Fourier methods discussed in thipg@aare
summarized in Table 2. This table assum@sadataset of dimension'f by N2 for
a total of N floating poinhumbers.The fastest algorithm iglearly f-k migration that
requires two f-k transforms of Nloghach and the Stolt mapping imetween.
Assuming all N points must be mapped dmat an 8 point interpolator issed,this is
estimated aB8N. The largest ternfor the Stolt algorithm is2NlogN. Phase-shift
requires a forward f-k transform (NlogN)nd an inverse k->x transfor(m5NIogN)
and the phase shifting operation. The latter requires N complex multipliciioaach
of N*? extrapolatiorsteps. Thugphase shift ends up withleading term of N2 The
mixed-domain v(z) f-k has virtually the same cestimate aphase-shiftThe forward

and inverse transforms costee identicaland the application of myt,k,) is of order
N*2, Finally, the full-Fourier method requires the same forward and inverse transforms
as f-kmigration and the application Xn,k,) is the samecost asthe application of
m(w,T,k ). Thecost of computing Mg,n,k ) from mw,t,k,) is N FFT’s of length
N2 put this must be done feach of .5 N? wavenumbersThe cost of building a

table of exponentighhase-shift operators, which gemmon toall but Stilt mgration,
has been neglected.

The comparison betweefk migration and its v(zgeneralization(full-Fourier) is
interesting. Both require 2NlogN cost to go t@and fromthe Fourierdomain but the
cost of the stilt mapping is of order N while its v(z) generalization is of oré@p¢N.
This difference ientirely due to the fadhat M(w,n,k,) is known analytically in the
constant velocity case and it is a simpieac deltafunction. Thus it follows that, if an
analytic approximatiorfor M(w,n,k,) can befound for geeral v(z), then the full-
Fourier method could be made much more efficient.

Step f-k phase-shift v(z) f-k v(z) f-k
mixed-domain full-Fourier
(x,t)->(f-k) NlogN NlogN NlogN NlogN
Stolt map 8N - -
build M - - - .25N*?logN
apply M - - - N3/2
apply m - - N3/
phase shift - N32 -
(k,1)->(%,1) - .5NlogN .5NlogN
(f-k)->(x, 1) NlogN - - NlogN
Total 2N(logN+4) [ N¥2+3/2NlogN | N¥2+3/2NlogN| N¥%(logN/4+1)+
2NlogN
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Table 2. Operations count estimates for the four Fourier algorithms discussed in the text. A 2-
D dataset of dimension N*? by N*?is assumed.

Despiteits cost, the full-Fourier v(z) f-k method is of interestor severalreasons.
First, from atheoreticalperspective, it ishe direct generalization oftolt’s algorithm
to v(z). The mixed-domairmethod,while mathematicallyequivalent, does not make
this connection obvious. Second,rasntionedabove,the full-Fourier domain method
could actually become thiaster method if a reasonabdmalytic approximation for

M(w,n,k,) could be found. Even without that, considerable speedup would occur if the
application of M¢wo,n,k,) were done without a full matrix-vector multiplyrhat is,

could thelarge, low-amplitude areas of M§n,k,) seen in Figures 8 and 10 be
neglected in the filter application? Eveetter, could a fashumerical evaluation of

M(w,n,k,) avoid calculating them in thierst place?These questionposeinteresting
research problems.

DISCUSSION AND CONCLUSIONS

The theory off-k migration can be extended to vertical velocity variations as a
nonstationary filter.The result is a methodhat constructsthe migrated Fourier
spectrum directly fronthe unmigrated spectrufor arbitraryv(z). Like f-k migration,
the v(z) f-k algorithmbegins with a forward Fourier (f-k) transfortien applieshe
migration filter to the resultingspectrum, and finishes with an inverse Fourier (f-k)
transform. The migration filter applicationwhich generalizesStolt's f-k spectral
mapping, is done as a matrix-vector multiplication for constant horizeatanumber.

In the constant velocity case, eachw of the migration filter is amptimum,complex-
valued, interpolation functionthat eliminates artifacts associatesith spectral
interpolation.

The migration filter is anonstationanyfilter whose form iggiven analytically in the
mixed domain of input frequency and outpirme. Three differentforms were
presented for it corresponding ¢onstant velocity, amms approximationfor vertical
velocity, and a first order WBJ approximation. Inthe full-Fourier domain (input
frequency and output frequencthe migration filter is aDirac delta function for
constant velocitywhile, for variable velocity, it must be computed frothe mixed-
domain form with enumerical FFT.Higher ordenWKBJ forms are possible through
modifications to the migration filter.

Variable velocity migration filters have their significant energy restricted to a fairway
bounded by hyperboladetermined by the minimunand maximum nstantaneous
velocities.

Numerical tests show the v(z) frkethodperforms asvell as recursive phase shift
for v(z) and produces a vemlean output. Runtimes, fothe full-Fourier domain
method are comparable to phase-shift. Currettily, mixed-domain filter is faster than
the full-Fourier domain thoughhere are possibilities tspeed-upthe full-Fourier
method.

In Li and Margrave (1998, elsewhere in this research report) we ptheent) f-k
method implementetbr 2-D prestaclgeometries. This method handlesP and P-S
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reflections andhas produced very high-resolutiomages of the Blackfoot target
channels. This code has been implemented in Promax and is part of the CREWES 1998
software release.

This new v(z) f-k theory encompasses bothrfigration andphase-shifimigration
and suggests how moaecurateheories might beonstructedThere are a number of
interesting directions in which to move this theory. Some are listed below:

 Higher order WKBJ correctionsan easily bencompassed withitine framework
presented here. This might lead to more accurate amplitude estimates.

* This methodcan also be run in‘reverse” to create afast, acoustic WKBJ
modeling program. This might be useful ivaxiety of settings and coulgbssibly be
extended to the elastic case.

« 3D post-stack migrations are no more difficult that@Bstack. 3Dprestackmight
also be done through the use of constant-offset secktgen(1998) is pursuing this
avenue though his algorithm differs from that given here.

* Anisotropy could be included. The TIV casleould bequite feasibleand, coupled
with the P-S imaging of Li and Margrave (1998) could be very beneficial.

» Extensions tolateral velocity variations arepossible through a number of
mechanismsThe most simpleappropriatefor weak gradients, woulthvolve a pre-
migration stretch with v(z)/v(x,z) and then an imaging pass with v(z).

* The development of a v(z) extrapolator thegponds tdocal gradients seems also
possible. This might actually producéetter extension ttateral velocity wariations as
it would have a finite aperture unlike the constant velophase-shift extrapolator.
Such an exapolator could also be formulated fmage arange of depths
simultaneously.
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Figure 1. The f-k migration mapping developed by Stolt (1978) and described by equation 12.
The f-k spectrum of the unmigrated zero-offset data is contained within the triangle ABC. The
edges AC and AB of the triangle are evanescent boundaries where the migrated frequency n
transitions from real to complex. The f-k migration mapping constructs the circular region from
the triangle. A given point P2 is “mapped” at constant wavenumber from a point P1 whose
frequency wis related to n by equation 12. Since P1 generally will not fall on the input grid, a
complex-valued interpolation must be done.
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Figure 2. A numerical example of f-k migration by the Stolt algorithm of Figure 1. a) The
unmigrated zero-offset section consisting of many point scatterers arrayed on a regular grid.
b) The f-k spectrum of a). Note the restriction of energy to a triangular region. ¢) The f-k
spectrum of the migrated data. It is constructed from b) by the Stolt mapping. d) The final
migrated time section computed by an inverse f-k transform of c).
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Figure 3. The migration filter, m(w,tk,), in the mixed domain is depicted at left. In matrix form
for constant k., m(w,t,k,) has w increasing along a row and T increasing along a column. Three
simple analytic forms are discussed form this filter for constant velocity (equation 31), rms
approximation (equation 33), and first order WKBJ theory (equation 34). The migration filter
can either be applied directly in the mixed domain for moved entirely into the Fourier domain
(right) by a Fourier transform along each column from 1 to n.
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Figure 4. The application of the migration filter in the full Fourier domain is shown. The input
data is a column vector of w's at constant k, and represents a single column of the f-k
spectrum in Figure 2b. The vector of migrated frequencies, n, for the same k, is computed by
multiplying the Fourier domain migration filter from the left into the input vector. When velocity
is constant, this process accomplishes the Stolt mapping. When velocity varies with v(z), the f-
k migration process is generalized.
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Figure 5. The impulse responses of the v(z) f-k algorithm (a and b) and the Stolt algorithm(c
and d) are compared for a constant velocity of 2000 m/s. In the time domain (a and c) the
algorithms produce wavefronts with identical trajectories but the Stolt algorithm produces
extra artifacts on shallow impulses which are related to the complex-valued Fourier domain
interpolation. There is also a apparent difference in amplitude on the steeper dips. This is

currently unexplained. In the Fourier domain, the responses are very similar but, in the central
wavenumbers, subtle differences appear that are again related to complex interpolation.
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Figure 6. A numerical example of the Fourier domain migration filter, M(w,n,k,) is shown for a
constant velocity of 2000 m/s and a wavenumber of .01 m™. a) shows the absolute value of
the complex-valued filter while b) shows its real part and c) its imaginary part. The filter contains
significant amplitudes only near a hyperbolic trajectory determined by w?=n+v?k2? which is
indicated by a solid line in a). In the limit of continuous sampling and infinite aperture, the
constant velocity M(w,n,k,) becomes a Dirac delta function representing an infinitely high
spike at all points on the hyperbolic trajectory. In the discrete simulation shown here, each row
of M(w,nk,) contains an optimal complex-valued interpolation function (roughly a sinc
interpolator) which accomplishes the spectral interpolation required by the Stolt mapping
(Figure 1) without any artifacts. The application of M(w,n,k,) to migrate a vector of
wavenumbers is shown in Figure 4. The calculation of M(w,n,k,) from m(w,tk,), whose form is
known analytically, is shown in Figure 3.
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Figure 7. The impulse responses of the v(z) f-k algorithm with the WKBJ filter (a and b) and
Gazdag's phase-shift algorithm (c and d) are compared for v(z)= 1430+.6z. The algorithms
produce very similar results in both time and Fourier domains. The vertical dashed line marks
the farthest lateral extent of the deepest wavefront for comparison with Figure 9.

36-22

Contents

CREWES Research Report — Volume 10 (1998)



V(z) f-k migration

First-order WKBJ theory
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Figure 8. A numerical example of the Fourier domain migration filter, M(w,n,k,) is shown for a
WKBJ approximation (equation 34) and a wavenumber of .01 m™. As in Figure 6, a) shows the
absolute value of the complex-valued filter while b) shows its real part and c) its imaginary part.
The WKBJ approximation is for a linear increase of instantaneous velocity with depth
described by v(z)=1430 + .6z m/s. This is a superior way to accommodate vertical velocity
variations and can be shown to properly account for all ray bending. Unlike the constant
velocity case (Figure 6), M(w,n,k,) now has significant energy over much of the upper half of
the matrix. The curves drawn on a) are hyperbola determined by w’=n®+v’k? using the
minimum , mean, and maximum instantaneous velocities. The minimum and maximum velocity
curves form precise bounds for the numerically significant part of M(w,n,k,).
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Figure 9. The impulse responses of the v(z) f-k algorithm with the rms filter (a and b) and an
rms Kirchhoff algorithm (c and d) are compared for v(z)= 1430+.6z. The methods produce
similar wavefront trajectories though the Kirchhoff code is not fully correct for the amplitudes
of steeper dips. The vertical dashed line marks the farthest extent of the deepest wavefront of
Figure 7. This makes it obvious that the steepest dips are not properly handled by the rms
assumption.
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RMS approximation
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Figure 10. A numerical example of the Fourier domain migration filter, M(w,n,k,) is shown for
an rms approximation (equation 33) and a wavenumber of .01 m™. As in Figures 6 and 8, a)
shows the absolute value of the complex-valued filter while b) shows its real part and c) its
imaginary part. The rms approximation is for a linear increase of instantaneous velocity with
depth described by v(z)=1430 + .6z m/s. This is a simple way to accommodate vertical velocity
variations by invoking the Dix equation to justify using straight rays at the rms velocity. Like the
WKBJ case (Figure 8), M(w,n,k,) has significant energy over much of the upper half of the
matrix. The curves drawn on a) are hyperbola determined by w’=n?+v?k,2 using the minimum ,
mean, and maximum instantaneous velocities. The minimum and maximum velocity curves
form approximate bounds for the numerically significant part of M(w,n,k,). The rms filter differs
most from the WKBJ filter near the maximum velocity curve (see Figure 11).
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Figure 11. Profiles across Figures 6a, 8a, and 10a are shown at n=20 Hz. The constant
velocity response approximates a band-limited Dirac delta function and has been clipped. The
WKBJ response is the most accurate for variable velocity and is well approximated by the rms
filter for low frequencies. Above 30 Hz, there are significant and systematic differences
between the two. The precise form of the WKBJ and RMS filters is determined by the
velocity function. For the nonevanescent frequencies, each w can be related uniquely to a
velocity through w?=n?+v?k,2. The variable velocity filters show power at a particular w in direct
proportion to how much of the total T (or z) range is covered by that particular velocity. Here
velocity linear with depth was assumed and that can be shown to correspond to a velocity with
is exponential with 1. This leads to the sharp peak at the front of the WKBJ response and the
decaying tail. Other velocity functions will show different behavior.
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