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ABSTRACT

The Stolt f-k migration algorithm is a direct (i.e. non-recursive) Fourier-domain
technique based on a change of variables (or equivalently, a mapping) that converts the
input spectrum to the output spectrum. The algorithm is simple and efficient but limited
to constant velocity. A v(z) f-k migration method, capable of very high accuracy for
vertical velocity variations, can be formulated as a nonstationary combination filter that
avoids the change of variables. The result is a direct Fourier-domain process that, for
each wavenumber, applies a filter matrix to a vector of input frequency samples to
create a vector of output frequency samples. The filter matrix is analytically specified in
the mixed domain of input frequency and migrated time. It is moved to the domain of
input frequency and output frequency by a fast Fourier transform. For constant
velocity, the v(z) f-k algorithm recreates the Stolt method but without the usual artifacts
related to complex-valued frequency domain interpolation. Though considerably slower
than the Stolt method, vertical velocity variations, through an rms velocity (straight ray)
assumption, are handled with no additional cost. Greater accuracy at slight additional
expense is obtained by extending the method to a WKBJ phase shift integral. This has
the same accuracy as recursive phase shift and can be made to handle turning waves in
the same way.

Nonstationary filter theory allows the algorithm to be easily reformulated in other
domains. The full Fourier domain method offers interesting conceptual parallels to
Stolt’s algorithm. However, unless a more efficient method of calculating the Fourier
filter matrix can be found, the mixed-domain method will be faster. The mixed-domain
nonstationary filter moves the input data from the Fourier domain to the migrated time
domain as it migrates. It is faster because the migration filter is known analytically in
the mixed domain.

INTRODUCTION

There are two major forms of migration based on Fourier transforms and many
derivatives of these. Stolt (1978) presented a migration method, called f-k migration,
that is “exact” for constant velocity. Stolt’s method is called direct in that it constructs
the migrated image directly from the unmigrated without intermediate products. Stolt
also suggested an approximate extension to variable velocity but this has not proven
popular because it is of low accuracy.  Gazdag (1978) presented the other form, called
phase-shift, and that is recursive rather than direct. The recursion is in the form of a
loop over sampled depth. At each step the wavefield from the depth just above is
downward extrapolated by phase shift. For constant velocity, phase shift is easily
shown to be mathematically identical to f-k migration, though the latter is much quicker
to compute. For v(z), phase shift is superior to f-k migration and is known to converge
to a famous approximate wave equation solution called the WKBJ solution (Aki and
Richards, 1980).
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For lateral velocity variations, Gazdag and Squazzero (1984) gave the PSPI (phase-
shift plus interpolation) extension of the phase shift method. Later, Margrave and
Ferguson (1997) showed that PSPI can be written as a nonstationary filter and
suggested an alternate generalization of phase shift called NSPS (nonstationary phase
shift).

It is reasonable to ask why try to extend the Fourier methods to variable velocity
when the Kirchhoff and finite difference methods handle this so naturally. There is an
advantage of simplicity for the Fourier methods because they do not require explicit
amplitude corrections for geometrical spreading or focussing. Instead, this is
accomplished implicitly through the mechanics of the forward and inverse Fourier
transforms. Conceptually, a Fourier transform performs a plane-wave decomposition
and, since plane-waves propagate without spreading, they are easily extrapolated or
mapped to new positions without amplitude adjustments. Essentially, this is an example
of a physical effect that is more easily treated after a plane-wave decomposition that
before. There are other such effects, for example anisotropic wave propagation.

So, while the spatial variation of velocity is somewhat difficult to handle with
Fourier methods, there are other physical effects that are more easily handled. This has
been a driving force behind the development of new mathematics that is able to deal
simultaneously with spatial and Fourier domain effects. Examples are the wavelet
transform (e.g. Ogden, 1997), the theory of pseudodifferential operators (e.g. St.
Raymond, 1991), and the theory of nonstationary filters (e.g. Margrave, 1998).

This work shows how Stolt’s theory can be generalized to v(z) using the language
of nonstationary filters. (This could equally well have been done through
pseudodifferential operator theory with identical results.) The result is a direct Fourier
migration, that is a true generalization of Stolt’s method, and that is a WKBJ theory for
v(z). The theory is closely related (but distinct) to that used by Hale et al. (1992) for the
migration of turning waves. Recently, Etgen (1998) has presented an alternative v(z) f-
k migration that is quite different from the theory presented here.

This paper begins with a mathematical review of Stolt’s method that serves to
establish notation and refresh the reader on the algorithm’s details. Then it is shown
that the spectral mapping of f-k migration can be replaced by a nonstationary filter
operation. For constant velocity, this nonstationary filter accomplishes the Stolt
mapping without the usual interpolation artifacts. Then two different generalizations of
the constant velocity nonstationary filter are explored: an rms assumption and a first-
order WKBJ method. The v(z) f-k method is formulated as an operation on a vector of
frequencies for fixed wavenumber. Such a frequency vector is migrated by multiplying
it by a matrix called the migration filter. The v(z) f-k method is shown to generalize f-k
migration and also to unify it with v(z) phase-shift.

A series of example impulse responses are shown for the v(z) algorithm, Stolt’s f-k
migration, Gazdag’s phase shift, and a Kirchhoff method. Migration filters are also
shown for several cases. Finally, computational cost considerations are presented.
Stolt’s method is by far the fastest, but restricted to constant velocity. The mixed-
domain form of v(z) f-k is shown to have the same computation effort as recursive
phase shift. Finally, the full-Fourier v(z) f-k method is shown to be the slowest but
could become much faster if further research is successful.
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REVIEW OF CONSTANT VELOCITY FOURIER MIGRATION

This theory is presented for 2-D zero-offset geometry for simplicity of exposition.
Let Ψ(x,t) represent a zero-offset seismic wavefield recording. The exploding reflector

model allows Ψ(x,t) to be considered as the boundary value of a wavefield, Ψ(x,z,t),

measured at the z=0 recording plane. Thus Ψ(x,t) is more properly written as Ψ(x,0,t)

where Ψ(x,z,t) is a solution to the 2-D scalar wave equation

(1)

The migration problem proposes that Ψ(x,z,0) be found given Ψ is a solution to

equation (1) and that Ψ(x,0,t) prescribes the wavefield at z=0. Since equation (1) is a
second order hyperbolic PDE (partial differential equation), its unambiguous solution
requires both Ψ and ∂Ψ/∂z be prescribed on the boundary. Thus the migration problem
is posed with inadequate boundary conditions and requires additional assumptions for a
solution. Stolt (1978) first showed how such a solution can be obtained under the
assumptions that Ψ(x,z,t) contain only upward traveling waves. Since Stolt developed
his solution using Fourier techniques, he also made the assumption that v is a constant.

The development of Stolt’s solution requires the Fourier transform of equation (1).
For this purpose, Ψ(x,z,t) can be represented as the inverse Fourier transform of its

(ω,kx) spectrum as

(2)

where

 . (3)

Substitution of equation (2) into equation (1) leads to

 . (4)

The satisfaction of equation (4) for all kx and ω can only be done if the term in brackets
vanishes identically. That is

(5)

where
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 . (6)

The general solution to equation (5) can be verified by direct substitution to be

(7)

where A and B are the (kx,ω) spectra of upward and downward traveling waves
respectively (z is assumed to increase downward). As mentioned previously, the
determination of both A and B requires knowledge of both Ψ and ∂Ψ/∂z at z=0. In the

present context, B is assumed zero and A(kx,ω) is set equal to ϕ(kx,0,ω). Thus the
spectrum of the exploding reflector wavefield can be constructed as

(8)

while the time domain result is the inverse Fourier transform of equation (8) and is

(9)

In the exploding reflector formalism, the migrated section is Ψ(x,z,0) which is
obtained from equation (9) as

 . (10)

Equation (10) gives a migrated depth section. A migrated time section is obtained by
letting z=vt and defining η=vkz. This results in

 . (11)

Though equation (11) is complete as it stands, its numerical implementation is hindered
by the fact that the ω integration is not a Fourier transform. Stolt addressed this by a
change of integration variable

 or (12)

where the positive square root is chosen in either equivalent expression. The formal
change of variables in equation (11) yields

(13)

where

Contents



V(z) f-k migration

CREWES Research Report – Volume 10 (1998) 36-5

 . (14)

Equations (13) and (14) express the complete f-k (i.e. ω-kx) algorithm developed by
Stolt for constant velocity, zero-offset, migration. In summary, the input data (usually a
cmp stack) is Fourier transformed over x and t to obtain ϕ(kx,0,ω), θ(kx,η) is
constructed from equation (14), and the result is inverse Fourier transformed as in
equation (13). The construction of θ(kx,η) is commonly called a mapping process and

is the creation of the spectrum of Ψ(x,z,0) directly from the spectrum of Ψ(x,0,t). This
process is illustrated in Figures 1 and 2. (In Figure 2, as in all similar figures in this
paper, solid black represents the largest absolute value number in the data matrix, pure
white is the negative of the number which is solid black, and neutral gray is zero.)

REFORMULATION AS A NONSTATIONARY FILTER

An alternative to the Stolt mapping is to consider equation (11) as a nonstationary
filter. This can be done quite simply as

(15)

or

(16)

where

(17)

is the nonstationary filter transfer function. The related function
m(ω,τ,kx)=α(ω,τ,kx)exp(+iωτ)=exp(iτ[ω2-v2kx

2]1/2) (see equation 31) will be called the

migration filter. Equation (17) presents several equivalent expressions for α(ω,τ,kx)

[or, implicitly, m(ω,τ,kx)] and the last uses the ray parameter p = kx/ω. Equation (16)
achieves a constant velocity migration by applying the migration filter simultaneously
with the inverse Fourier transform from ω to τ. Note that the filter is nonstationary only

in ω and remains stationary in kx.  (A theory that encompassed lateral velocity
variations would cause further nonstationarity in kx.)

Though equation (16) gives a complete migration, it does so while transforming the
data from frequency to time. A more direct parallel with Stolt’s method requires moving
the method entirely into the Fourier domain. Since the kx integral in equation (16) is an
ordinary inverse Fourier transform, it can be dropped for now to concentrate on the
nonstationary ω integral. Thus, consider
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 . (18)

According nonstationary filter theory (Margrave, 1998), equation (18) is a
nonstationary combination filter expressed in the mixed domain. It can be moved
entirely into the Fourier domain by the forward Fourier transform of the τ dependence

of α(ω,τ,kx). The result is an operation on the spectrum of the unmigrated data to yield
the spectrum of the migrated data, and is written

(19)

where

 . (20)

In equation (20) ω1 and ω2 are nominal frequencies are to be substituted with ω and

η−ω respectively in equation (19). Performing that substitution leads to

(21)

where M(ω,η) is the integration kernel, or migration filter in the Fourier domain,
required in equation (19). M is the Fourier transform of the migration filter
m(ω,τ,kx)=exp(iτ[ω2-v2kx

2]1/2) defined previously. Thus

(22)

According to nonstationary filter theory, θ(kx,η) as given by equation (22), or
equivalently equation (19), must be identical to that given by equation (14). Once
equation (22) is evaluated, the migrated section is obtained by equation (13) as before.
The discrete equivalent of equation 22 is a matrix-vector multiplication as shown in
Figure 4. The advantage of the nonstationary formulation over the Stolt mapping is that
the former can be easily extended to vertically variable velocity as will be shown in the
next section.

The remainder of this section will show precisely how equation (22) is equivalent to
equation (14) for constant velocity. First, note that M(ω,η,kx), as given by equation
(21), is a Dirac delta function

(23)

Insertion of equation (23) into (22) gives
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 . (24)

The integral in equation (24) can be evaluated using the property of the Dirac delta
function that (Riley et al. 1997, p351)

(25)

In equation (25) g′(ω) is the derivative of g(ω), ωm denotes a zero of g(ω) and the delta

function requires a sum over all such zeros. In this case, g(ω) has two zeros which are
determined as follows

(26)

from which it results

(27)

and furthermore

 . (28)

For the consideration of upward traveling waves only, we choose the + sign in
equation (28) which means that the sum in equation (25) has only one term. This is
then substituted into equation (24) to give:

 . (29)

The delta function collapses this integral immediately to

(30)

which is equation (14). This demonstrates that equation (22) does exactly recreate the
Stolt mapping and is therefore a complete reformulation of constant velocity f-k
migration.

EXTENSION TO V(Z)

Two different extensions of the nonstationary filter formulation to vertical velocity
variations will be explored. Though the term v(z) appears in section and paper titles, the
actual implementation here is v(τ). Of course, in the absence of lateral velocity
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variations, the distinction is purely one of convenience since any migrated time section
can be converted to a migrated depth section (and vice-versa) by simple 1-D trace
“stretching”. The two extensions are conceptually analogous to either straight raytracing
with vrms or curved raytracing using Snell’s law. Not surprisingly, the former has
computational advantages while the latter is more accurate.

That the nonstationary filter formulation can be extended to vertical velocity
variations should be apparent from the following. The impulse response of constant
velocity migration is a wavefront circle (in depth) whose center is placed on the surface
at a sample’s x coordinate and whose radius is the sample’s depth. Thus, migration can
be visualized as a process of replacing each input sample by a circle whose radius is
varying with z. Though not a stationary convolution since the replacement function
varies, this is a nonstationary filter operation. Since the formalism established above
already accounts for the vertical variation of the wavefront circle due to depth, it should
be possible to include vertical variation due to other effects such as velocity.

As mentioned above, Equation (21) can be interpreted as the forward Fourier
transform, from τ to η, of the migration filter m(ω,τ,kx) given by

(31)

so that

(32)

 The vrms extension is accomplished simply by altering m(ω,τ,kx) to  

 . (33)

where v(τ)2
rms refers to the root-mean-square velocity as a function of vertical time. As

this expression shows, the phase of the migration filter is no longer simply linear in τ
but has much more complicated τ dependence through the variation of vrms(τ).

Nevertheless the τ dependence can still be simply Fourier transformed (equation 32)
and the migrated spectrum then computed through equation (22).

The second alternative extension follows from the WKBJ solution to the scalar wave
equation in a stratified medium (Aki and Richards, 1980, p416). Equation (8) can be
modified to be an initial downward extrapolation step from 0 to dz using the local
velocity at v(dz). If this process is applied recursively to span a finite interval from 0 to
z, the phase shifts for each layer add. In the limit of infinitesimal steps, the result is an
integral expression for the phase. When this result is followed through the filter
development, the result is
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(34)

Here the velocity used is the local wavespeed (instantaneous velocity) and the result is a
migration filter with the same accuracy as the phase shift method of Gazdag (1978). It
has an advantage over the phase shift method in that it is still applied through equation
(22) as a direct method.

The WKBJ solution given by equation (34) is considerably more accurate at higher
p values than the rms solution of equation (33). In fact, equation (33) is readily derived
from equation (34) by appeal to the mean-value theorem of calculus. This theorem
asserts the phase integral in equation (34), which is the area under the curve (1-
p2v2(u))1/2 from 0 to τ, can be approximated by an equivalent rectangle whose height is
given by (1-p2    v    2)1/2 where     v     is some sort of average velocity over the macroscopic
interval 0 to τ. Thus,     v     can be found from the condition

 . (35)

When both square roots are expanded to first order in p2,     v     can be easily solved for and
found to be the rms velocity. Thus, equation (33) is an approximation to equation (34)
that is valid for small p2.

The WKBJ solution implemented here is called a first-order solution and handles the
phase (position and geometric spreading) correctly for all angles. Higher order
solutions are known which incorporate approximate amplitude terms for transmission
losses. The second order WKBJ correction multiplies equation (34) by a factor of (ω2v-

2(τ)-kx
2)-1/2 which is just kz

-1/2. Though this is a reasonable amplitude correction for low
vertical angles it is infinite at 90° and therefore unsuitable for a migration algorithm. A
reasonable amplitude correction will have to be a higher order correction than this.

IMPLEMENTATION AND EXAMPLES

Stolt’s f-k migration algorithm, the v(z) f-k algorithm of this paper, a recursive
Gazdag phase-shift, and a simplified Kirchhoff algorithm were all implemented
digitally in Matlab to produce the results shown here. These will be referred to as f-k
migration, v(z) f-k migration, phase-shift and Kirchhoff migration respectively. The
v(z) f-k algorithm was written expressly for this study, while other three are teaching
codes that have been in use at the University of Calgary for several years. All are 2-D
post-stack (zero offset) implementations. Matlab was chosen for its programming
simplicity, excellent graphics, and ability to count floating point operations and cpu-
time.

The f-k migration is done in the conventional way with a forward f-k transform, a
spectral mapping and scaling (Figures 1 and 2, equation (14)), and an inverse f-k
transform. The spectral mapping “unfolds” the triangular non-evanescent portion of the
unmigrated spectrum into the circular migrated spectrum. A particular output sample of
the migrated spectrum, at (kx,η), comes from the unmigrated spectrum at (kx, ω) where
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ω is given by equation (12). Generally, ω will not fall exactly on the input (kx, ω) grid
and a complex-valued interpolation will be required. This interpolation is non-trivial
and is a major source of artifacts in f-k migrations (Claerbout, 1985). This study used
an eight-point, complex-valued, optimized “sinc function” interpolation based on
Claerbout’s suggestions. The major computation loop is over output wavenumber and
all other operations, including the interpolation, have been vectorized. The result is a
very fast code with controlled, though still present, artifacts.

The phase shift migration begins with an f-k transform of the stack and then enters a
loop over output time (or depth) samples. (Both this and the f-k migration have options
for zero padding in space and time prior to the forward f-k transform to minimize
Fourier wraparound.) At each step in the loop a phase shift of ∆z(ω2/v2(z) - kx

2)-1/2 is
applied to the spectrum (which extrapolates it downward) and the result is evaluated at
t=0. This last step creates a single depth slice of the output in (kx,z) space. No spectral
interpolation is necessary and the result is accurate for all dips. As mentioned in the
previous section, in the limit as ∆z approaches zero, this method converges to the
WKBJ solution.

The Kirchhoff implementation is a simple “NMO removal and sum” process that
omits the “details” of dip-limitation, anti-alias filtering, and time differentiation, but
does respond to vertical velocity variations. The interpolation required for NMO
removal is simple nearest-neighbor. The major computation loop is over output trace
location and a second inner loop is used to NMO remove and sum for each output trace.
The resulting code is much slower than f-k migration but satisfactory for comparison
with v(z) f-k migration.

The v(z) f-k migration was implemented with a main loop over output wavenumber.
(Like f-k migration, a forward or inverse f-k transform begins or completes the
algorithm.) For each output wavenumber, a vector of input frequency samples is
filtered with a nonstationary filter as in equation (22) to give a vector of output
frequency samples. This is done as a matrix-vector multiply (Figure 4) by building a
matrix representation of M(ω,η,kx). This matrix is computed by first building a matrix

representing m(ω,τ,kx) and then applying an FFT to transform τ to η (Figure 3). Either

of equations (31), (33), or (34) can be used to build m(ω,τ,kx) depending upon what

sort of velocity adaptivity is desired. Note that since m(ω,τ,kx) depends on the square
of kx, unique filters need only be constructed for half of the wavenumbers. Two other
simple optimizations: filtering only up to a desired maximum frequency and zeroing
evanescent spectral components, were also done.

In the examples of the concepts and algorithms presented here, the migration of a
single live trace is used to clearly display the impulse response as a function of time. In
all examples, the input dataset had 512 traces with 256 samples each with only trace
256 being non-zero. (The f-k and phase shift migrations used a temporal zero pad that
doubled the trace length.) Spatial and temporal sampling intervals were 12m and 8ms
respectively. In both migrations, only frequencies less than 70% of Nyquist (~44 Hz)
were migrated. The single live trace was constructed as a series of regularly spaced unit
impulses convolved with an “Ormsby” wavelet whose maximum frequency was about
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35 Hz. All migrations were performed on a Power Macintosh 7300/200 using Matlab
5.1 in a 45 mb memory partition.

In Figure 5, constant velocity migrations for a velocity of 2000 m/s from the v(z) f-k
algorithm (a) and Stolt’s method (c) are compared. Figures 5b and 5d show the f-kx

transforms of these same two results. Though largely similar, the v(z) f-k migration
shows no evidence of the artifacts seen near .2 seconds in the f-k migration. The lack
of significant artifacts is a major benefit of the v(z) f-k algorithm. However, this is
purchased at a considerable increase in CPU time. For this case, the f-k algorithm ran
in about 38 seconds while v(z) f-k required 520 seconds. (The time required for the
v(z) algorithm is independent of velocity and, as will be seen, any vertical velocity
variation can be accommodated with little increase in compute time.) According to
Matlab, the f-k migration required about 50x106 floating point operations while the v(z)
f-k migration required 2300 x106.

The reason for the reduction in artifacts can be appreciated by examining a typical
matrix representing M(ω,η,kx) as shown in Figure 6. Figure 6a shows the amplitude

spectrum ( |M(ω,η,kx)| ) for kx = .01 m-1 while 4b shows the real and imaginary parts
of the same complex matrix. (As previously mentioned, all gray-level figures in this
paper use solid black to represent the largest absolute value number in the data matrix,
pure white as the negative of the number that is solid black, and neutral gray as zero.)
As discussed previously, in the constant velocity, continuous case, M(ω,η,kx) is a

Dirac delta function (equation 23) whose singularity tracks along the curve η = (ω2 -

v2kx
2)1/2, and as Figure 4a shows, the discrete representation of M(ω,η,kx) does have

maxima along this track. The oscillatory behavior of M(ω,η,kx) away from the ideal
singularity curve is precisely the complex interpolator required for the Stolt mapping.
Essentially, each row of M(ω,η,kx) contains an optimal complex-valued interpolator

that is the natural consequence of the Fourier transform of m(ω,τ,kx). Thus the v(z) f-k
algorithm uses a full-length interpolator optimized for each individual frequency. At
values of ω less than the point where the singularity intersects the η=0 axis the filter is
evanescent.

As a second example, v(z) f-k, using the WKBJ migration filter and the phase-shift
method discussed above are examined for the case of a linear-with-depth instantaneous
velocity v(z) = vo + cz where vo=1430 m/s and c=.6sec-1. Figure 7 shows the v(z) f-k
result in (a), its f-k spectrum in (b), the phase-shift result in (c) and its f-k spectrum in
(d). The time-domain impulse responses are largely similar with apparently identical
trajectories up to 90° as marked by the vertical li ne. Neither algorithm was explicitly
designed for anything beyond 90° so the shape of the phase-shift trajectories past this
point is an algorithm quirk. The f-k spectra are also nearly identical. It is interesting to
recall that the input to this computation was the same as for Figure 5 which emphasizes
that the f-k spectra were computed with something more than a simple mapping
technique. The v(z) f-k algorithm had slightly greater CPU time and operations count
than the previous example ( 550 seconds and 2600 x106 operations) while the phase
shift method took 980 seconds and 1800 x106 floating point operations. The operations
counts were similar and it seems likely that much of the difference in run times is a
function of how well the algorithms vectorize in Matlab.
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An example of the Fourier domain migration filter, M(ω,η,kx), for the WKBJ case
is shown in Figure 8. As with Figure 6, the amplitude spectrum is in (a) while the real
and imaginary parts are in (b) and (c). It is immediately apparent that this matrix is no
longer the discrete equivalent to a Dirac delta function. However, it still has its
dominant energy restricted to a well-defined portion of the matrix. Shown on Figure 8a
are three trajectories of the form η = (ω2 - v2kx

2)1/2 where the leftmost uses the
minimum instantaneous velocity, the middle uses the mean instantaneous velocity and
the right uses the maximum instantaneous velocity.  The bulk of the spectral power of
the matrix lies between the minimum and maximum velocity curves.

A third and final example is shown in Figure 9 where the v(z) f-k algorithm is
shown using the rms migration filter and compared to the Kirchhoff algorithm using the
same rms velocities. The instantaneous velocity function was the same as for Figure 7.
Figure 9a shows the v(z) f-k migration while the Kirchhoff migration is shown in
Figure 9c. As before, the v(z) f-k algorithm made no attempt to handle scattering angles
(i.e. dips) beyond 90° so that the impulse response curves end at that angle. On the
other hand, the Kirchhoff algorithm naturally handles such angles so that the curves
extend well past 90°. The rms assumption made here means that these curves are
inaccurate at steep angles and the vertical line, which is in the same position as for
Figure 7, allows an easy comparison with that figure. The Kirchhoff algorithm is not
fully correct for the amplitudes of steeper dips. The compute time for v(z) f-k was the
same as the constant velocity case 520 seconds as before while the Kirchhoff algorithm
required 1250 seconds. The operations counts were the same 2300 x106 for v(z) f-k
and 1500 x106 for Kirchhoff. Again it seems likely that differences in vectorizing in
Matlab accounts for the longer run time for Kirchhoff.

The f-k spectra of the two rms results are in Figure 9b and 9d. This is a good time to
re-emphasize the fundamental differences between these algorithms. Both are direct
algorithms, meaning that there is no recursive downward continuation involved, but the
Kirchhoff computation is direct in the space-time domain while v(z) f-k is direct in the
Fourier domain. Thus v(z) f-k computes the spectrum of Figure 9b directly from the
input spectrum while Kirchhoff computes the wavefield of Figure 9c directly from the
input wavefield. The lower power at steep dips is evident in the Kirchhoff spectrum at
higher wavenumbers.

Figure 10 shows a typical M(ω,η,kx) matrix for the rms migration filter. As before,
the amplitude spectrum is in (a) while the real and imaginary parts are in (b) and (c).
Comparison with the more accurate WKBJ result in Figure 8 shows broad similarity
but the rms filter loses power near the trajectory determined by the maximum
instantaneous velocity.

Examples of the three different migration filters have been shown in Figures 6, 8,
and 10. As a final comparison of these filters, Figure 11 shows profiles across the
amplitude spectrum of each at η=20 Hz. The near-singularity of the constant velocity
filter is very evident. Also, the rms filter approximates the WKBJ result well at lower
frequencies but makes systematic errors at higher frequencies. For nonevanescent
frequencies, there is a one-one correspondence between ω and velocity through the

relation ω = (η2 + v2kx
2)1/2. Numerical experimentation has shown that the power in the

WKBJ filter at a particular frequency is related to how significant the corresponding
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velocity is. If a particular constant velocity applies over a large τ range, then the WKBJ
filter will be strongly peaked at the corresponding frequency. In this case, the
instantaneous velocity model was linear with depth and that means exponential with
time.

COMPUTATIONAL COST CONSIDERATIONS

The v(z) f-k algorithm can also be run as a mixed-domain nonstationary filter. This
amounts to a direct implementation of equation (18) and produces identical migrations
to those in Figures 5, 7, and 9. (Though they did not formulate it this way, Hale et al.
(1993) used the mixed-domain method). The mixed-domain filter is actually
considerably faster than the full-Fourier domain method (as implemented here) because
the cost of moving the migration filter into the Fourier domain is saved. This is because
the full-Fourier method was done with a matrix-vector multiply while the mixed-
domain method also requires a similar matrix-vector operation. Thus the cost of moving
the migration filter between domains is an additional burden for the full-Fourier
method. Table 1 summarizes the algorithm testing done here and includes results for the
mixed-domain filter.

Algorithm floating pt. ops. (x106) run time (seconds)

f-k migration (Stolt) 50 38

v(z) f-k (full-Fourier) 2300(rms) 2600(WKBJ) 520 (rms) 550(WKBJ)

v(z) f-k (mixed-domain) 600(rms) 1000(WKBJ) 460 (rms) 520(WKBJ)

Phase-shift 1800 980

Kirchhoff 1500 2000

Table 1. The floating-point operations count and CPU times for the algorithms discussed in
the text as reported by Matlab for a Macintosh 7300/200. The operations counts are probably
proportional to realistic estimates of run times in other computing environments. The fact that
the full-Fourier v(z) f-k has twice as many operations but takes only marginally more time is
probably due to Matlab’s efficient FFT algorithm doing most of the work.

Despite its cost, the full-Fourier v(z) f-k method is of interest for several reasons.
First, from a theoretical perspective, it is interesting to see how to generalized Stolt’s
algorithm to v(z). The mixed-domain method, while mathematically equivalent, does
not make this connection obvious. Second, the full-Fourier domain method could
actually become the faster method if a reasonable analytic approximation for M(ω,η,kx)
could be found. Even without that, considerable speedup would occur if the application
of M(ω,η,kx) were done without a full matrix-vector multiply. That is, could the large,

low-amplitude areas of M(ω,η,kx) seen in Figures 8 and 10 be neglected in the filter

application? Even better, could a fast numerical evaluation of M(ω,η,kx) avoid
calculating them in the first place? These questions pose interesting research problems.
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Operations count estimates for the four Fourier methods discussed in this paper are
summarized in Table 2. This table assumes a 2-D dataset of dimension N1/2 by N1/2 for
a total of N floating point numbers. The fastest algorithm is clearly f-k migration that
requires two f-k transforms of NlogN each and the Stolt mapping in between.
Assuming all N points must be mapped and that an 8 point interpolator is used, this is
estimated at 8N. The largest term for the Stolt algorithm is 2NlogN. Phase-shift
requires a forward f-k transform (NlogN) and an inverse k->x transform (.5NlogN)
and the phase shifting operation. The latter requires N complex multiplications for each
of N1/2 extrapolation steps. Thus phase shift ends up with a leading term of N3/2. The
mixed-domain v(z) f-k has virtually the same cost estimate as phase-shift. The forward
and inverse transforms costs are identical and the application of m(ω,τ,kx) is of order
N3/2. Finally, the full-Fourier method requires the same forward and inverse transforms
as f-k migration and the application M(ω,η,kx) is the same cost as the application of

m(ω,τ,kx). The cost of computing M(ω,η,kx) from m(ω,τ,kx) is N1/2 FFT’s of length
N1/2 but this must be done for each of .5 N1/2 wavenumbers. The cost of building a
table of exponential phase-shift operators, which is common to all but Stilt migration,
has been neglected.

The comparison between f-k migration and its v(z) generalization (full-Fourier) is
interesting. Both require a 2NlogN cost to go to and from the Fourier domain but the
cost of the stilt mapping is of order N while its v(z) generalization is of order N3/2logN.
This difference is entirely due to the fact that M(ω,η,kx) is known analytically in the
constant velocity case and it is a simple Dirac delta function. Thus it follows that, if an
analytic approximation for M(ω,η,kx) can be found for general v(z), then the full-
Fourier method could be made much more efficient.

Step f-k phase-shift v(z) f-k
mixed-domain

v(z) f-k
full-Fourier

(x,t)->(f-k) N logN NlogN NlogN NlogN

Stolt map 8 N - - -

build M - - - .25N3/2logN

apply M - - - N3/2

apply m - - N3/2 -

phase shift - N3/2 - -

(k,τ )->(x,τ ) - .5N logN .5NlogN -

(f-k)->(x, τ ) N logN - - NlogN

Total 2N( logN+4) N3/2+3/2NlogN N3/2+3/2NlogN N3/2( logN/4+1)+
2NlogN
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Table 2. Operations count estimates for the four Fourier algorithms discussed in the text. A 2-
D dataset of dimension N1/2 by N1/2 is assumed.

Despite its cost, the full-Fourier v(z) f-k method is of interest for several reasons.
First, from a theoretical perspective, it is the direct generalization of  Stolt’s algorithm
to v(z). The mixed-domain method, while mathematically equivalent, does not make
this connection obvious. Second, as mentioned above, the full-Fourier domain method
could actually become the faster method if a reasonable analytic approximation for
M(ω,η,kx) could be found. Even without that, considerable speedup would occur if the

application of M(ω,η,kx) were done without a full matrix-vector multiply. That is,

could the large, low-amplitude areas of M(ω,η,kx) seen in Figures 8 and 10 be
neglected in the filter application? Even better, could a fast numerical evaluation of
M(ω,η,kx) avoid calculating them in the first place? These questions pose interesting
research problems.

DISCUSSION AND CONCLUSIONS

The theory of f-k migration can be extended to vertical velocity variations as a
nonstationary filter. The result is a method that constructs the migrated Fourier
spectrum directly from the unmigrated spectrum for arbitrary v(z). Like f-k migration,
the v(z) f-k algorithm begins with a forward Fourier (f-k) transform, then applies the
migration filter to the resulting spectrum, and finishes with an inverse Fourier (f-k)
transform. The migration filter application, which generalizes Stolt’s f-k spectral
mapping, is done as a matrix-vector multiplication for constant horizontal wavenumber.
In the constant velocity case, each row of the migration filter is an optimum, complex-
valued, interpolation function that eliminates artifacts associated with spectral
interpolation.

The migration filter is a nonstationary filter whose form is given analytically in the
mixed domain of input frequency and output time. Three different forms were
presented for it corresponding to constant velocity, an rms approximation for vertical
velocity, and a first order WKBJ approximation. In the full-Fourier domain (input
frequency and output frequency) the migration filter is a Dirac delta function for
constant velocity; while, for variable velocity, it must be computed from the mixed-
domain form with a numerical FFT. Higher order WKBJ forms are possible through
modifications to the migration filter.

Variable velocity migration filters have their significant energy restricted to a fairway
bounded by hyperbolae determined by the minimum and maximum instantaneous
velocities.

Numerical tests show the v(z) f-k method performs as well as recursive phase shift
for v(z) and produces a very clean output. Runtimes, for the full-Fourier domain
method are comparable to phase-shift. Currently, the mixed-domain filter is faster than
the full-Fourier domain though there are possibilities to speed-up the full-Fourier
method.

In Li and Margrave (1998, elsewhere in this research report) we present the v(z) f-k
method implemented for 2-D prestack geometries. This method handles P-P and P-S
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reflections and has produced very high-resolution images of the Blackfoot target
channels. This code has been implemented in Promax and is part of the CREWES 1998
software release.

This new v(z) f-k theory encompasses both f-k migration and phase-shift migration
and suggests how more accurate theories might be constructed. There are a number of
interesting directions in which to move this theory. Some are listed below:

• Higher order WKBJ corrections can easily be encompassed within the framework
presented here. This might lead to more accurate amplitude estimates.

• This method can also be run in “reverse” to create a fast, acoustic, WKBJ
modeling program. This might be useful in a variety of settings and could possibly be
extended to the elastic case.

• 3D post-stack migrations are no more difficult that 2D prestack. 3D prestack might
also be done through the use of constant-offset sections. Etgen (1998) is pursuing this
avenue though his algorithm differs from that given here.

• Anisotropy could be included. The TIV case should be quite feasible and, coupled
with the P-S imaging of Li and Margrave (1998) could be very beneficial.

• Extensions to lateral velocity variations are possible through a number of
mechanisms. The most simple, appropriate for weak gradients, would involve a pre-
migration stretch with v(z)/v(x,z) and then an imaging pass with v(z).

• The development of a v(z) extrapolator that responds to local gradients seems also
possible. This might actually produce a better extension to lateral velocity variations as
it would have a finite aperture unlike the constant velocity phase-shift extrapolator.
Such an extrapolator could also be formulated to image a range of depths
simultaneously.

ACKNOWLEDGMENTS

I wish to thank the sponsors of the CREWES project for their support of this
research.

REFERENCES

Aki, K., and Richards, P.G., 1980, Quantitative Seismology, Volume 1: W.H. Freeman and Co.
Berkhout, A.J., 1985, Seismic Migration – Imaging of acoustic energy by wave field extrapolation:

Elsevier, ISBN 0-444-42547-0.
Claerbout, 1985, Imaging the Earth's Interior: Blackwell Scientific Publications.
Etgen, J.T., 1998, V(z) f-k prestack migration of common-offset common-azimuth data volumes, part

I: theory: Expanded abstracts 68th Annual SEG meeting, New Orleans, La., 1835-1838.
Gazdag, J., 1978, Wave-equation migration by phase shift: Geophysics, 43, 1342-1351.
Gazdag, J., and Sguazzero, P., 1984, Migration of Seismic Data, Proceedings of the IEEE, 72, 1302-

1315.
Hale, D., and Artley, C., 1993, Squeezing dip moveout for depth-variable velocity: Geophysics, 58,

257-264.
Margrave, G.F., 1998, Theory of nonstationary filtering in the Fourier domain with application to

time-variant filtering: Geophysics, 63, 244-259.

Contents



V(z) f-k migration

CREWES Research Report – Volume 10 (1998) 36-17

Ogden, R.T., 1997, Essential wavelets for statistical applications and data analysis: Birkhauser, ISBN
0-8176-3864-4.

Riley, K.F., Hobson, M.P., Bence, S.J., 1997, Mathematical Methods for Physics and Engineering:
Cambridge University Press, ISBN 0521 55529 9.

Stolt, R.H., 1978, Migration by Fourier Transform, Geophysics: 43, 23-48.
Schneider, W., 1978, Integral formulation for migration in two and three dimensions: Geophysics, 43,

49-76.
Yilmaz, O, 1987, Seismic Data Processing: Society of Exploration Geophysicists.

Contents



Margrave

36-18 CREWES Research Report – Volume 10 (1998)

wavenumber A

BC
P1

P2

fr
eq

ue
nc

y

Figure 1. The f-k migration mapping developed by Stolt (1978) and described by equation 12.
The f-k spectrum of the unmigrated zero-offset data is contained within the triangle ABC. The
edges AC and AB of the triangle are evanescent boundaries where the migrated frequency η
transitions from real to complex. The f-k migration mapping constructs the circular region from
the triangle. A given point P2 is “mapped” at constant wavenumber from a point P1 whose
frequency ω is related to η by equation 12. Since P1 generally will not fall on the input grid, a
complex-valued interpolation must be done.
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Figure 2. A numerical example of f-k migration by the Stolt algorithm of Figure 1. a) The
unmigrated zero-offset section consisting of many point scatterers arrayed on a regular grid.
b) The f-k spectrum of a). Note the restriction of energy to a triangular region. c) The f-k
spectrum of the migrated data. It is constructed from b) by the Stolt mapping. d) The final
migrated time section computed by an inverse f-k transform of c).
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Figure 3. The migration filter, m(ω,τ,kx), in the mixed domain is depicted at left. In matrix form
for constant kx, m(ω,τ,kx) has ω increasing along a row and τ increasing along a column. Three
simple analytic forms are discussed form this filter for constant velocity (equation 31), rms
approximation (equation 33), and first order WKBJ theory (equation 34). The migration filter
can either be applied directly in the mixed domain for moved entirely into the Fourier domain
(right) by a Fourier transform along each column from τ to η.
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Figure 4. The application of the migration filter in the full Fourier domain is shown. The input
data is a column vector of ω’s at constant kx and represents a single column of the f-k
spectrum in Figure 2b. The vector of migrated frequencies, η, for the same kx is computed by
multiplying the Fourier domain migration filter from the left into the input vector. When velocity
is constant, this process accomplishes the Stolt mapping. When velocity varies with v(z), the f-
k migration process is generalized.
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Figure 5. The impulse responses of the v(z) f-k algorithm (a and b) and the Stolt algorithm(c
and d) are compared for a constant velocity of 2000 m/s. In the time domain (a and c) the
algorithms produce wavefronts with identical trajectories but the Stolt algorithm produces
extra artifacts on shallow impulses which are related to the complex-valued Fourier domain
interpolation. There is also a apparent difference in amplitude on the steeper dips. This is
currently unexplained. In the Fourier domain, the responses are very similar but, in the central
wavenumbers, subtle differences appear that are again related to complex interpolation.
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Figure 6. A numerical example of the Fourier domain migration filter, M(ω,η,kx) is shown for a
constant velocity of 2000 m/s and a wavenumber of .01 m-1. a) shows the absolute value of
the complex-valued filter while b) shows its real part and c) its imaginary part. The filter contains
significant amplitudes only near a hyperbolic trajectory determined by ω2=η2+v2kx

2 which is
indicated by a solid line in a). In the limit of continuous sampling and infinite aperture, the
constant velocity M(ω,η,kx) becomes a Dirac delta function representing an infinitely high
spike at all points on the hyperbolic trajectory. In the discrete simulation shown here, each row
of M(ω,η,kx) contains an optimal complex-valued interpolation function (roughly a sinc
interpolator) which accomplishes the spectral interpolation required by the Stolt mapping
(Figure 1) without any artifacts. The application of M(ω,η,kx) to migrate a vector of
wavenumbers is shown in Figure 4. The calculation of M(ω,η,kx) from m(ω,τ,kx), whose form is
known analytically, is shown in Figure 3.
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Figure 7. The impulse responses of the v(z) f-k algorithm with the WKBJ filter (a and b) and
Gazdag’s phase-shift algorithm (c and d) are compared for v(z)= 1430+.6z. The algorithms
produce very similar results in both time and Fourier domains. The vertical dashed line marks
the farthest lateral extent of the deepest wavefront for comparison with Figure 9.

Contents



V(z) f-k migration

CREWES Research Report – Volume 10 (1998) 36-23

First-order WKBJ theory
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Figure 8. A numerical example of the Fourier domain migration filter, M(ω,η,kx) is shown for a
WKBJ approximation (equation 34) and a wavenumber of .01 m-1 . As in Figure 6, a) shows the
absolute value of the complex-valued filter while b) shows its real part and c) its imaginary part.
The WKBJ approximation is for a linear increase of instantaneous velocity with depth
described by v(z)=1430 + .6z m/s. This is a superior way to accommodate vertical velocity
variations and can be shown to properly account for all ray bending.  Unlike the constant
velocity case (Figure 6), M(ω,η,kx) now has significant energy over much of the upper half of
the matrix. The curves drawn on a) are hyperbola determined by ω2=η2+v2kx

2 using the
minimum , mean, and maximum instantaneous velocities. The minimum and maximum velocity
curves form precise bounds for the numerically significant part of M(ω,η,kx).
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Figure 9. The impulse responses of the v(z) f-k algorithm with the rms filter (a and b) and an
rms Kirchhoff algorithm (c and d) are compared for v(z)= 1430+.6z. The methods produce
similar wavefront trajectories though the Kirchhoff code is not fully correct for the amplitudes
of steeper dips. The vertical dashed line marks the farthest extent of the deepest wavefront of
Figure 7. This makes it obvious that the steepest dips are not properly handled by the rms
assumption.
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Figure 10. A numerical example of the Fourier domain migration filter, M(ω,η,kx) is shown for
an rms approximation (equation 33) and a wavenumber of .01 m-1 . As in Figures 6 and 8, a)
shows the absolute value of the complex-valued filter while b) shows its real part and c) its
imaginary part. The rms approximation is for a linear increase of instantaneous velocity with
depth described by v(z)=1430 + .6z m/s. This is a simple way to accommodate vertical velocity
variations by invoking the Dix equation to justify using straight rays at the rms velocity. Like the
WKBJ case (Figure 8), M(ω,η,kx) has significant energy over much of the upper half of the
matrix. The curves drawn on a) are hyperbola determined by ω2=η2+v2kx

2 using the minimum ,
mean, and maximum instantaneous velocities. The minimum and maximum velocity curves
form approximate bounds for the numerically significant part of M(ω,η,kx). The rms filter differs
most from the WKBJ filter near the maximum velocity curve (see Figure 11).
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Figure 11. Profiles across Figures 6a, 8a, and 10a are shown at η=20 Hz. The constant
velocity response approximates a band-limited Dirac delta function and has been clipped. The
WKBJ response is the most accurate for variable velocity and is well approximated by the rms
filter for low frequencies. Above 30 Hz, there are significant and systematic differences
between the two.   The precise form of the WKBJ and RMS filters is determined by the
velocity function. For the nonevanescent frequencies, each ω can be related uniquely to a
velocity through ω2=η2+v2kx

2. The variable velocity filters show power at a particular ω in direct
proportion to how much of the total τ (or z) range is covered by that particular velocity. Here
velocity linear with depth was assumed and that can be shown to correspond to a velocity with
is exponential with τ. This leads to the sharp peak at the front of the WKBJ response and the
decaying tail. Other velocity functions will show different behavior.
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