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Prestack V(z) f-k migration for P-P and P-S data

Xinxiang Li and Gary F. Margrave

ABSTRACT

V(z) f-k migration is a new f-k migration method based on non-stationary filter
theory, which can handle the vertical velocity variation with at least the same
accuracy as the phase-shift method. It retains the global wavefield mapping advantage
of Stolt’s method and properly accommodates the velocity variation. Instead of using
a Fourier-domain complex-valued interpolation (as in Stolt’s f-k method), V(z) f-k
migration is formulated as a nonstationary filter, where the input for the filter is the f-
k spectrum of the unmigrated seismic traces and the output is the spectrum of the
migrated traces.

In this paper, the V(z) f-k migration is formulated for both P-P wave and P-S wave
seismic data as a pre-stack migration method. In addition to some theory of the
algorithm, the implementation detail is also presented.

The current implementation performs Fourier transform in CDP and offset
dimensions. It only includes the migration up to 90 degree, and the evanescent energy
is ignored. Some application results of this new method to synthetic data and field
data are shown.

INTRODUCTION: CONVENTIONAL FOURIER DOMAIN MIGRATION
METHODS

Derivation of Fourier domain migration formula from scalar wave equation

The 2-D scalar wave equation is usually written as
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Although this equation is based on some assumptions, it has been very successfully
used for seismic data migration. Its derivation can be found in Claerbout (1985). Ψ
represents a seismic wavefield as a function of x and z, the horizontal and vertical
spatial dimensions, and time t. v(x,z) represents the wave propagation velocity at each
spatial location. The velocity usually changes in both x and z directions, but it can still
be assumed constant at any “local” area in (x, z) space. This local constant velocity
concept is fundamental to Gazdag’s phase-shift (Gazdag, 1978) and Stolt’s f-k (Stolt,
1978) migration methods.

The wave field Ψ  can be decomposed into harmonic plane waves in x and t, or
mathematically expressed as an inverse Fourier transform (unless explicitly given, all
the integration limits are from -∞  to ∞  or over all possible values),
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( ) ( ) ( ) xxx dkdxiktiexp,z,kt,z,x ωωωψ +−=Ψ ∫∫
(2)

Substituting (2) into (1), we have
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If the velocity is independent to x, i.e., v(x,z)=v(z), then the term inside the
brackets must be zero simply because only the zero function can have the zero
function as its Fourier transform, i.e.,
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Within a local area where the velocity is constant, equation (4) can be solved
analytically as

( ) ( ) ( ) ( ) ( )zikexp,kBzikexp,kA,z,k zxzxx −+= ωωωψ
, (5a)

where
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The functions A and B in equation (5a) are to be determined by initial or boundary
conditions.

Equation (4) is equivalent to equation (1) only when the velocity is independent to
x. Equation (5a) is a solution of equation (1) only when the velocity is constant. If the
velocity changes, the accuracy of (5a) as a solution depends on how small the
application area is and how rapidly the velocity changes.

The two terms the right side of equation (5a) represent upcoming and downgoing
waves respectively. In seismic experiments, there is only one boundary condition,
which is the seismic recording at the earth surface z=0. Using exploding reflector
model (Claerbout, 1985), it is reasonable (for most cases) to consider that the
downgoing wave path and the upcoming wave path are the same for zero offset. The
zero offset traces can then be considered as the recorded seismic wavefield emerging
from the subsurface reflectors with half the seismic velocity. This implies that picking
the upcoming wave term in (5a) and using the boundary condition at zero depth will
result in a reasonable solution of the wavefield at some non-zero depth. That is

( ) ( ) ( )zikexp,0,k,z,k zxx −= ωψωψ
. (6)

Combine equations (2) and (6), the wavefield at depth z then can be expressed as an
extrapolation from the wavefield at z=0,



Contents

V(z) f-k migration for PP and PS data

CREWES Research Report — Volume 10 (1998) 37-3

( ) ( ) ( ) ωωωψ ddktixikexp)zikexp(,0,kt,z,x xxzx +−−=Ψ ∫∫
. (7)

The migration result (called imaging) is assumed to be the wavefield before the
waves begin to propagate, i.e., the wavefield at time 0. Set 0=t  in equation (7), then

( ) ( ) ( ) ωωψ ddkxikexp,z,k0,z,x xxx −=Ψ ∫∫
. (8)

Equation (6) and equation (8) are the starting point of the exploding-reflector-model
based migration methods performed in Fourier domain. Gazdag’s phase-shift method
(Gazdag, 1978) and Stolt’s f-k migration method (Stolt, 1978) are the original
examples.

Conventional Migration methods in Fourier domain

The phase-shift migration method can handle vertical velocity variation with
plausible accuracy, because its wave extrapolation (downward continuation) is done
within relatively thin layers, which can reasonably considered as local areas where
wave velocities are constant. This is to say that the assumptions required by equation
(6) and equation (8) are reasonable in each of those layers.

In phase-shift migration, the process expressed by equation (6) is called phase-
shift or wavefield downward extrapolation, while equation (8) is called the imaging
condition. First, the Fourier transform is computed for the wavefield recorded at zero
depth, then by equation (6) the spectrum at depth zz ∆=  is computed, which will be
used to compute the spectrum at the new depth zz ∆⋅= 2 and so on. At each depth
step, equation (8) is used to give the migration image at that depth level. More detail
can be found in Gazdag (1978), Claerbout (1985), and Yilmaz (1987).

Stolt's f-k migration method (1978) is based on the assumption that the entire (x, z)
plane is one area with constant velocity. In this case, the extrapolation process,
equation (6) can be applied for any initial depth 0z  and target depth z, and it is
unnecessary to compute the wavefield at intermediate depth levels, because the phase
shift term (equation (5a)) is now depth independent.

On the right side of equation (8), the integral over kx is a Fourier transform, but the
integral over ω  is not. The key innovation of Stolt’s f-k method is to express ω  in
terms of kz and write the equation as a 2-D inverse Fourier transform. Note that
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For clarity and later comparison, Stolt’s method can be expressed as a 4-step
algorithm:
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Step 1: Fourier transform the surface data, i.e., ( ) ( )ωψω ,0,k,0,x x⇒Ψ .

Step 2: Map data ( )ωψ ,0,kx  to ( ) 


 += 2
z

2
xxzx kkv,0,kk,k ψψ .

Step 3: Scale ( )zx k,kψ  with 
2
z

2
x

z

kk

k
v

+
 to obtain ( )zx k,kψ .

Step 4, Inverse 2-D Fourier transform, i.e., ( ) ( )0,z,xk,k zx Ψ⇒ψ .

The constant velocity assumption for Stolt’s f-k method is not valid for almost all
the seismic experiments, although Stolt’s stretch (1978) may be suitable for the cases
when the velocity changes smoothly with depth. With his non-stationary filter theory,
Margrave (1998b) introduced a new f-k method, which handles the vertically variant
velocity with at least the same accuracy as phase-shift method. The following section
will give a short derivation of this method. Its extension to pre-stack migration for
both PP wave data and PS wave data is discussed in more detail.

V(z) F-K MIGRATION: POST-STACK AND PRE-STACK

Extension of f-k method to vertical velocity variation

The key advantage of Stolt's f-k method is that the imaging process can be done in
one step for the entire space by using Fourier transforms, and this makes the method
the fastest migration algorithm known. However, equation (9) leaves no space to
accommodate the depth (or time) variant properties.

Margrave (1998b) shows how equation (9) is related to a non-stationary filter,
which can conveniently handle the vertical velocity variation. The frequency domain
scaled mapping can be interpreted as a non-stationary transform from the frequency
of input traces to the frequency (or depth wavenumber) of migrated output traces.

To obtain the wavefield at any depth z, equation (6) can not be directly used
because the materials between surface and depth z may have different velocities.
Gazdag’s phase-shift is based on the assumption that, in each infinitesimally thin
layer with thickness dz, the wave propagation velocity does not change. Using this
assumption, equation (6) can be applied recursively to obtain
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Where n is an integer such that dzdznz ⋅+⋅= θ  with θ  always smaller than 1.0.
Taking the limit as dz approaches 0, the following equation results
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This is equivalent to a first order WKBJ solution (Aki and Richards, 1980) of
equation (4). It includes the effects of Snell’s law at every velocity interface but
neglects transmission losses. Substitute (10) into equation (8) and ignore the Fourier
transform over kx for now,

( ) ( ) ( ) ωωωψψ d,z,km,0,k0,z,k xxx ∫=
. (11)

For each kx, equation (11) is a non-stationary combination filter expressed in the
mixed domain (Margrave, 1998a). The new method (called V(z) f-k migration) can be
implemented based on this equation. However, it is good to see some results from the
algorithms based on the Fourier domain non-stationary combination filter.
Implementation of the mixed domain algorithm will be done later.

Fourier transform of equation (11) from z to zk gives the following,

( ) ( ) ( ) ωωωψθ dk,k,M,0,kk,k xzxzx ∫=
. (12a)
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Equation (12a) is an expression of a non-stationary combination filter in the Fourier
domain. ( )ω,z,km x  in equation (11) and ( )xz k,k,M ω  in equation (12a) can both be
called migration filters. m is called the mixed domain filter while M is called the
Fourier domain filter. Equations (12a) and (12b) suggest a new algorithm for
migration in f-k domain, and it can be explicitly implemented in four steps:

Step 1: Fourier transform the surface data, i.e., ( ) ( )ωψω ,0,k,0,x x⇒Ψ .

Step 2: Compute the migration filter ( )xz k,k,M ω  for each kx.

Step 3: Compute the 2-D transformed image, i.e., ( )zx k,kθ ;

Step 4, Inverse 2-D Fourier transform, i.e., ( ) ( )0,z,xk,k zx Ψ⇒θ .

Comparing to the 4-step algorithm for Stolt’s method, the differences reside in
Step 2 and Step 3, while the Fourier transforms in Step 1 and Step 4 are the same.
The purpose of the Step 2 and Step 3 in both algorithms are to properly transform the
input data f-k spectrum to the f-k spectrum of migration data. Besides the capability
of properly handling the velocity variation, using non-stationary filters in this new
algorithm has another advantage. It avoids Fourier domain mapping required in
Stolt’s method, which involves complex-valued interpolation (Claerbout, 1985) and
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might result in many artifacts if is not handled properly. However, the computation
and the application of migration filters in Step 2 and Step 3 consume more
computation time than the mapping and scaling in Stolt’s method.

To understand what the migration filters do, Margrave (1998b) shows how
migration filter theoretically coincides with the mapping and scaling in Stolt’s
method when the velocity is constant. An intuitive point of view is that, the migration
impulse responses (called “smiles”) change their shapes when the impulse changes its
time location, even for constant velocity cases.

Extension to pre-stack with mode conversion

Wavefield extrapolation in the common mid-point, x, and source-receiver half-
offset, h, domain can be expressed as (Claerbout, 1985)

( ) ( ) ( )( ) ωωωψ ddkdkhkxktiexp,z,k,kt,z,h,x hxhxhx −−=Ψ ∫∫∫
, (13a)
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for constant velocity cases. The two square root terms correspond to the wavefield
downward continuations for both downgoing waves from the source and upcoming
waves to the receiver respectively. Use the first order WKBJ approximation as for the
deviation of equation (10), (13b) for vertical velocity variation case can be
approximated as
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where vS and vR are velocities for downgoing (S stands for source) and upcoming
waves (R stands for receiver). The migration result (imaging), which is the wavefield
at time t=0 and offset h=0, can then be expressed as

( ) ( ) ( ) ωωψ ddkdkxikexp,z,k,k0,z,0,x hxxhx −=Ψ ∫∫∫
. (14)

Ignoring the integral over kx and kh for now, and Fourier transforming in z direction, it
gives
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(15a)

where

( )

( ) ( ) .  dzzk'dz
2

kk

'zv2

kk

'zv
iexp

k,k,k,M

z

z

0

2
hx

2
R

22
hx

2
S

2

hxz

∫ ∫





























−


















 +−+





 −−−= ωω

ω

(15b)

Similar to post-stack case (equation (12a)), a new pre-stack f-k migration algorithm
based on equation (15a) can be explicitly expressed as following four steps.

Step 1, Fourier transform the recorded surface seismic data in three dimensions,
i.e., ( ) ( )ωψω ,0,k,k,0,h,x hx⇒Ψ ;

Step 2, Compute the migration filter ( )hxz k,k,k,M ω , as defined in (15b) for given
kx and kh;

Step 3, Use equation (15a) to compute the 2-D Fourier transform of the migrated
image, i.e., ( )zx k,kθ ;

Step 4, Inverse 2-D Fourier transform to obtain the final migration, i.e.,
( ) ( )0,z,xk,k zx Ψ⇒θ .

CONSIDERATIONS FOR ALGORITHM IMPLEMENTATION

The implementations for the algorithms of post-stack and pre-stack migration by
the direct V(z) f-k method are very similar. The discussions in this section mainly
deal with the pre-stack case, the post-stack case implementation will be mentioned
when there is significant difference.

Even though we tried to reduce the computation cost in many aspects, the present
algorithm is still time consuming. Other ways to simplify the computation are in the
context of further research.

Computation of the migration filter in Fourier domain

The computation and application of the migration filters is the main difference of
present method from the conventional migration methods in Fourier domain. Also, it
is the most time-consuming part of the algorithm.

In the four-step algorithm described above, the input to Step 2 (the computation of
migration filters) consists of the “traces” which are Fourier transformed in 3
dimensions. For the post-stack case, such a trace is a vector with its elements
representing the temporal frequency spectrum for a fixed wavenumber kx, and
different traces correspond to different wavenumbers. For the pre-stack case, such a
trace represents the temporal frequency spectrum for fixed pair of wavenumbers
denoted by (kx, kh). Different traces correspond to different wavenumber pairs. Like
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many other normal seismic data processing methods, the computation and application
of migration filters is designed to operate in a trace-by-trace manner.

Same migration filter for a group of input traces

Major computation cost savings arise because the computation of the migration
filter does not have to repeat for each input trace. The following discussion shows
that, some different pairs of kx and kh have identical migration filters.

From equation (15b), the definition of the migration filter for the prestack case,
( )hxz k,k,k,M ω , as a function of kx and kh, has some symmetry, that is

( ) ( )hxzhxz k,k,k,Mk,k,k,M −−= ωω
.

This means that, for the case of pre-stack algorithm with mode-conversion, any two
traces representing opposite-sign horizontal wavenumber kx and opposite-sign offset
wavenumber kh have the same migration filter. For every two traces, only one
migration filter needs to be computed, so that the total computation is reduced by
half.

If the down-going and up-coming velocities are the same, i.e., no wave mode
conversion is present, more symmetry in equation (15b) occurs. This is

( ) ( )hxzhxz k,k,k,Mk,k,k,M ωω =
 .

Thus, four different input traces with four different pairs of (kx, kh) with the same
value pair ( )hx kk ,  have the same migration filter. This reduces the total computation

cost by almost 75%.

Phase-shift term pre-computation using sampled ray parameters

It is instructive to re-write equation (15b) into

( ) ( )[ ] ( )∫ +⋅−= dzzikexpk,k,,ziexpk,k,k,M zhxhxz ωζω
, (16)
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Step 2 is then subdivided as follows:

Step 2-1: For every input trace with fixed kx and kh, compute the phase-shift term
( )hx kkz ,,,ωζ  as a function of both depth z and temporal frequency ω . Then multiply

( )hx kkz ,,,ωζ  with –i and calculate the exponential.
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Step 2-2: Fourier transform in z for each ω . This may take the majority of the
computation time.

Equation (17) can be further re-formatted as
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Although the ray parameters p1 and p2 depend on variables ω , kx and kh, they can
be tabulated as

( ){ }1111 1 , ,2 , ,0 pNppp P ∆−∆∆= ê
 and 

( ){ }2222 1 , ,2 , ,0 pNppp P ∆−∆∆= ê
.

The number of ray parameters NP or the sample intervals ∆p1 and ∆p2 can be
determined by practical application testing.  The limiting parameters are determined
by observed velocities.

( )



∈

Svp min
1,01

 and ( )



∈

Rvp min
1,02

.

Two tables for 1ζ  and 2ζ can then be formed using equation (17) at discrete depth
and ray-parameter locations and they can be used for all the input traces. For each
pair of ( )hx k,k , either the nearest sampled ray parameter or linear interpolation
between the nearest two ray parameters in the tables can be used. This saves many
square-root operations.

Although the total number of possible different ray parameters is close to the
product of three large numbers, (i.e., the numbers of possible ω , kx and kh

respectively), practically, it suffices to tabulate a number similar to the number of the
samples of an input trace. The accuracy is usually very good. For example, we have
used 500 ray parameters for 500-sample input traces, while the number of offset and
CDP wavenumbers are both around 100. The relative differences between the
accurate phase-shift terms calculated by directly using equation (17) and the phase-
shift terms by linear interpolation of phase-shift tables are less than 0.1 percent.

Notice that for both non-mode-conversion and post stack case, only one phase shift
table is needed because there is only one velocity function.

In addition, the computation of phase-shift terms is further constrained by the
evanescent energy limit, maximum frequency and maximum dip to migrate. These
limitations are discussion in the next section.
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Zero elements in migration filter matrices

In equation (17b), for each given ω , kx and kh, ( )hx kkz ,,,ωζ  is a function of z
limited by the following two numbers,
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.

This means the migration filter M in equation (16), as a function of depth-
wavenumber kz, has non-zero values only within the interval [ ]maxminz ,k ζζ∈ . The

difference between minζ  and maxζ  only depends on the difference between the
maximum and the minimum velocities. If the velocity is constant, we only need to
compute phase-shift terms at one wavenumber maxminzk ζζ ==  for given ω , kx and kh.
(Actually, the algorithm can reduce to the Stolt’s f-k migration in this case.)

Migration filters are 2-variable functions of depth wavenumber kz and temporal
frequency ω for each pair of kx and kh. Figure 1 shows two examples of migration
filters for constant velocity cases. (a) shows a migration filter for a same upcoming
and downgoing velocity, and (b) shows a migration filter mode-conversion case.
Figure 2 shows two migration filters for velocities with linearly vertical variation.
Again, (a) is for the non-mode-conversion case, and (b) is for the converted wave
case. The white lines in both Figure 1 and Figure 2 are the curves corresponding to
the limits [ ]maxmin ,ζζ . When the velocities are constant, these two values become the
same.

      

Figure 1: Two migration filters for constant velocity cases. In (a), the downgoing and
upcoming wave velocities are all equal to 1800 m/s. In (b) the downgoing wave velocity is
1800 m/s and the upcoming wave velocity is 900 m/s. For both cases, the migration filters are
computed for the same kx and kh values
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Figure 2: Two migration filters for linearly varying velocity cases. The filter in (a) is calculated
for the non-mode-conversion case, where the velocity is 1800+0.8z. The filter (b) is
calculated for different upcoming and downgoing velocities, they are 1800+0.8*z and
900+0.5*z respectively. Again, the two migration filters are computed for the same kx and kh.

It can be seen that, for all the four migration filters, the non-zero values can not be
totally limited by the boundary curves. This is because the mapping from ω to kz is
not a simple one to-one relation. To determine an output at certain kz, a range of ω is
needed. This is related to both the Fourier domain interpolation and the non-
stationary filter in Fourier domain. For the constant velocity cases, if the Fourier
domain interpolation is used, it turns out to be Stolt’s method. The advantage of V(z)
f-k method is that, the Fourier domain interpolation is replaced by full range Fourier
transform, and it obtains the highest possible accuracy for any interpolation
algorithm.

In Stolt’s f-k method, the Fourier transformed traces are mapped from input
temporal frequency ω to output depth wavenumber kz (or out migrated temporal
frequency). The new algorithm achieves a similar mapping since a migration filter is
a linear transform from input ω space to output kz space.

Figure 1 and Figure 2 show that, for single input trace with fixed (kx, kh), the
migration filter performs a different mapping for different velocities. When a trace is
migrated with higher velocity the output frequency range tends to be lower and vise
versa. This implies that if P-P and P-S data have the same frequency bandwidth, the
migration of the P-S data tends to have broader kz bandwidth than that of the migrated
P-P data. On the other hand, for given migration velocity functions, migration filters
for different ray parameters (which correspond to different pairs of (kx, kh)) have
different non-zero zones. Larger ray parameters tend to map the data to lower
frequency. An extreme case occurs when the ray parameter is too large and out of the
range determined by the reciprocal of the minimum velocity. Then, the migration
filter is evanescent and can be simply set to zero. Thus a trace (kx, kh) corresponding
to too large ray parameter will not be migrated.

Efficient computation of the upper and lower limits of kz suggests that many
multiplication operations for Step 3 (refer to page 9) in the algorithm are
unnecessary. Unfortunately, the computation cost of Step 3 is much less compared
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with Step 2, the cost-saving by limiting kz practically does not make much difference.
Also, it adds some computations for the limits themselves. However, if we only
computed the migration filter between the kz limits by some approximation, then we
would save much more time. Currently, the computation of migration filter is done by
Fourier transforms of the filter in mixed domain (refer to equations (11) and (12)).

Migration limitations

Evanescent energy

Evanescent waves are those wave-equation solutions that decay exponentially in
the spatial domain instead of oscillating in a sinusoidal manner. The exponentially
decaying waves quickly become neglectable and are often simply eliminated,
although it is simple to include the evanescent energy in many migration methods.
The current implementation does not include this energy.

For a laterally uniform medium with velocity changes only in depth, the
evanescent solutions are those which make kz imaginary. For the post-stack case,
equation (5b) gives a condition for evanescent energy as

( )zvkx ⋅<ω
. (18)

This is a localized condition since it gives a different limitation on the range of kx and
ω depending on the local velocity. A Fourier plane wave propagates with a sinusoidal
waveform at low velocity regions, and will turn into a decaying exponential when the
propagation velocity goes high enough to make inequality (18) valid.

For pre-stack case, equation (13b) shows kz to be
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(19)

so the evanescent energy conditions for both downgoing and upcoming waves are
similar to the post-stack case, equation (18). However, from equation (19), when a
downgoing plane wave identified by (ω, ks), for example, becomes evanescent at
some depth z, the upcoming wave with this same frequency, i.e., the one identified by
(ω, kr), may still be sinusoidal at this depth.

During the downward continuation, if the evanescent energy from the downgoing
(for example) part of the wavefield were ignored, then there would be no energy
transmitting beyond some depth level where all the waves become evanescent. By the
imaging condition of the migration process, downward continuation of the upcoming
wave should also stop at this depth. Thus, it seems reasonable to treat the entire
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operator ( ( )zikexp z∆ ) as evanescent when either square root in equation (19) becomes
imaginary. This leads to the evanescent condition we are using for pre-stack case:

( ) ( ){ }hxRhxS kkzv,kkzvmax
2

1 +⋅−⋅<  ω
. (20a)

When the two velocities are the same, (20a) is simply

( ) ( )hx kkzv
2

1 +⋅<ω
. (20b)

Equations (20a) and (20b) are the limitations used in the current algorithm.

Migration dip limitation

A limitation on migration dip is actually a limitation on the range of ray
parameters. For a given value of horizontal spatial wavenumber kx for post-stack case
or ks and kr for pre-stack case, this limitation becomes a limitation on the temporal
frequency ω. The limitations can be written as
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for the post-stack case, where the velocity is half of the wave velocity, and
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(22)

for the pre-stack case. Where maxθ  is the maximum dip to migrate.

Comparing (21) and (22) with (18) and (20) shows that the limitations of
evanescent energy are special cases of the dip limitations. In this way, the evanescent
energy can be understood as that with ray angle greater than 90 degrees.

Frequency limitation

Usually for computational efficiency reasons, it is desirable to limit the frequency
range for the migration process. That is, if the vast majority of the seismic energy
resides inside 80Hz, then it is unnecessary to migrate the frequencies beyond 80Hz.
Frequency limitation is always uniform for all the wavenumbers and usually applied
only at the high-frequency end.

As discussed above, the limitations related to evanescent energy and migration dip
can be also considered as limitations on temporal frequency. These limits on
frequency change with spatial wavenumbers and other parameters, and they always
are limitations at the low-frequency end.
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Special consideration for mode-conversion

In V(z) f-k algorithm, the pre-stack migration for mode-converted cases introduces
some specific difficulties.

Wavefield extrapolation formulation

The imaging condition for downward wavefield extrapolation results in some
restrictions on our formulation. The imaging condition for the prestack case is
equivalent to putting source and receiver physically together (set both offset and time
to zero) at each extrapolation depth level. This implies that before we perform the
imaging process, both sources and receivers must be at the same physical depth level.
For non-mode-conversion case, because the propagation velocities for both
downgoing and upcoming waves are the same, the survey-sinking process (Claerbout,
1985) can be done either in depth or in vertical traveltime. But for the mode-
converted case, to express the downward extrapolation in time steps, then the physical
depths for P-waves and S-waves “sunk” by the extrapolation processes will be
different, and then no imaging condition can be applied in this situation. This means,
the algorithm for mode-conversion case should be directly formulated in depth
domain.

When downgoing and upcoming velocities are different, it is not difficult to
formulate the equations into whatever time domain desired (PP time, PS time or even
SS time). However, at every downward extrapolation step, waves with lower
velocities take longer time than the waves with higher velocity. It is equivalent to the
depth to time conversion after the migration is done.

Offset orientation

For the non-mode-conversion case, the directions of the source-receiver offsets do
not make any difference in the migration process when the velocity changes only in
depth. However, for the mode-converted case, there are differences.

    

Figure 3: Impulse responses of V(z) f-k migration method for non-conversion data. The input
trace for the response in (a) has one impulse at time 582 ms with offset equal to 275 meters.
The input trace for the response in (b) has one impulse also at time 582 ms but with offset
equal to -275 meters. The velocity functions used to migrate the two traces are the same,
1800+0.8*z m/s. The difference of these two responses is shown in Figure 5(a).
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Figure 3 and Figure 4 show the results from the migration of a synthetic trace with
only one impulse. Positive and negative offsets are assigned to this trace. As
expected, there is no identifiable differences between the results from non-mode-
conversion case, they both give symmetric ellipses (Figure 3). While the migration
response results for converted waves, the “ellipses” are stretched in opposite different
directions (always stretched to the direction of lower velocity) (Figure 4).

    

Figure 4: Impulse responses of V(z) f-k migration method for converted wave data. The input
trace for the response in (a) has one impulse at time 582 ms with offset equal to 275 meters.
The input trace for the response in (b) has one impulse also at time 582 ms but with offset
equal to -275 meters. The velocity functions used to migrate the two traces are the same. For
downgoing waves, the velocity is 1800+0.8*z m/s and for upcoming waves, the velocity is
900+0.5*z m/s. The superposition of these two responses are shown in Figure 5(b) for their
position difference.

    

Figure 5: (a) The difference of two migration responses in figure 3 and (b) the superposition
of the two migration responses shown in Figure 4. The average amplitude in the difference
section (a) here is about 0.00013% of the average amplitudes in the responses in Figure 3.

Figure 5 shows two results to further clarify the similarity of the two responses in
Figure 3 and the difference of the two responses in Figure 4.

A practical advantage of the migration for non-mode-conversion case is that,
traces with negative and positive offsets can be binned only according to the absolute
offset values before migration, which is not valid for the converted wave case.
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Non-zero elements in migration filters

As mentioned in previous sections, the non-zero zone in a migration filter moves
when the migration velocities change. For same size of data sets for P-P wave and P-
S wave from the same area, the migration velocities for converted wave case will be
slower. This implies that the range of ray parameters where the migration filters have
non-zero elements for P-S data will be larger than the one for P-P data. Whenever
there are non-zero elements in migration filter, the filter must be computed, so that we
have to compute more migration filters for P-S data case than for P-P data case.

Computation cost

As discussed above about the computation of the migration filters, as a matrix
function of two variables kx and kh, the migration filters have different symmetries for
mode-conversion case and non-conversion case. Usually, 4 input traces have exactly
the same migration filter for the non-mode-conversion case, while only 2 traces have
the same filter for the converted wave case. The computation cost doubles when
mode conversion is considered.

In addition, two phase-shift term tables have to be built for mode-conversion case,
while for non-conversion case, only one table is needed. This make considerable
memory size difference.

Zero time and zero offset: the imaging condition

In the derivation of the migration formula in the previous section, i.e., from
equation (13) to equation (14), we just simply set t=0 and h=0. This is always correct
mathematically. But in the computation of discrete Fourier transform, it is usually
assumed that the first element in the forward transformed vector is the DC (zero
frequency or wavenumber) term. And the first element in the inverse transformed
vector is also the zero time or spatial location (such as depth or offset, or CDP in
locations for our case).

If the start time on input traces is not zero, then the summation over the frequency
of the discrete Fourier transformed traces will not provide the wavefield at zero time.
Padding samples to make the input traces starting at zero time may be needed to
ensure consistency between the imaging condition and the discrete Fourier transform
algorithm.

The same problem occurs with the imaging condition on offset for the pre-stack
case. Because the offset samples almost never start at zero in normal seismic data, it
may be necessary to either phase-shift in offset direction or pad traces for the imaging
condition. Instead of computing every time for different starting offsets or padding
too many traces, three options are used to handle this offset shifting problem, which
are (1) there are only positive offsets, (2) there are only negative offsets and (3) there
are both positive and negative offsets.
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Zero padding: three directions

The V(z) f-k algorithm for pre-stack migration in CDP coordinates requires
Fourier transformation in three dimensions: time, horizontal space (CDP) and source-
receiver offset. The fast Fourier transform (FFT) requires equal spacing sampling, it
may be necessary to insert some traces (usually zero traces). Most of the time this
happens only in the offset dimension. Also, Fourier transform theory is based on the
periodic functions which requires extending the size of the data in all the dimensions
to avoid wrap-around effects.

Usually, performing a 3-D Fourier transform for a volume of data is faster than
performing 1-D Fourier transforms consecutively on three dimensions. This is not
true for our algorithm for pre-stack migration in CDP-offset coordinates. Very often
zero padding doubles the size of the data o a 3D Fourier transform may spend more
than half the time to do the transform on zero traces. Performing 1-D Fourier
transform on each input trace (properly padded) before padding traces in offset
direction, and then performing 1-D transform in offset before padding traces in CDP
direction will not do any Fourier transforms on zero-element vectors in any of the
three directions. This actually saves computation time.

APPLICATIONS AND DISCUSSIONS

The application of pre-stack V(z) f-k method to many synthetic data examples
shows that the algorithm has very high accuracy. Some results from Blackfoot-III
vertical and radial data are also shown.

Synthetic data examples

The “broken hockey stick”

This set of synthetic data is modeled from a constant velocity subsurface with one
dipping reflector connected with a segment of flat reflector, like a hockey stick, and a
point reflector (the puck?). The dipping reflector has a dip about 45 degree and has a
gap (broken?) in the middle. The modeling velocity is 10,000 feet per second.

Figure 6 shows the stacked section with a wild range of stacking velocities (from
10,000 ft/s up to 57,000 ft/s) along the line. The point reflector can be recognized by
the diffraction hyperbola. The dipping reflector and the short flat segment are both
properly stacked. The gap in the dipping reflector is smeared, although it can be
noticed that there may be some “anomalies” along the dipping reflector. Migrating
this section by both Stolt’s f-k method and Kirchhoff method with the wave
propagation (modeling) velocity showed that post–stack migration may not capable to
resolve the gap. The migration results are not shown here. It is possible that DMO
may help post-stack migration to provide better results.
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Figure 6: The stacked section of the “broken hockey stick” data. The stacking velocity was
picked for every 20 CDP locations (2000 feet apart). The stacking velocity ranges from the
accurate wave propagation velocity (10,000 ft/s) up to 57,000 ft/s. It can been seen that, the
scattered diffraction, the flat and dipping reflectors are all well stacked. But the gap in the
dipping reflector is smeared, although it is recognizable that there may be some “anomalies”
along the reflector.

Figure 7: V(z) f-k pre-stack migration of the “broken hockey stick” prestack synthetic data.
The migration velocity is 10,000 feet per second, which is the accurate velocity used for
modeling the data set. With the stacked section shown in Figure 6 as a comparison, this
image result is very good. Not only the dipping reflector is properly located, and the scatter
point is highly focused, the gap in the dipping reflector is also clearly resolved.



Contents

V(z) f-k migration for PP and PS data

CREWES Research Report — Volume 10 (1998) 37-19

Figure 7 shows the result of V(z) f-k pre-stack migration using the accurate
velocity, 10,000 feet per second. Apart from some migration artifacts at the ends of
the flat reflector, the imaging is very good. Not only the dipping reflector is properly
located, and the scatter point is highly focused, the gap in the dipping reflector is
clearly resolved.

One curved reflector

The earth subsurface model shown in Figure 8 contains only one curved reflector.
The maximum dip along the reflector is more than 45 degrees. The layers above and
below the reflector are assumed isotropic. The P wave and S wave velocities in the
upper layer are 1800m/s and 900m/s respectively, and the P wave and S wave
velocities in the lower layer are 3000m/s and 1200m/s respectively.

Figure 8: An earth subsurface model with one curved reflector. The two layers above and
below the reflector are assumed isotropic.

The geometry of the source and receiver spreads has 41 shots at a 25 meter interval
from 500 meters to 1500 meters, and 161 receiver locations from 0 to 2000 meters
with an interval of 12.5 meters. At each receiver location, there are two channels
connected to a vertical geophone and a radial geophone. All the geophones at all the
receiver stations are activated for all the shots. Thus, the CDP range is from 250 to
1750 meters, and the fold is high. From this model, two sets of synthetic data are
obtained, one is P-P data from the vertical channel and the other is P-S mode-
converted data from the radial channel.

Figure 9 and Figure 10 show the results of V(z) f-k migration results of the P-P
data and the P-S data respectively. There are some artifacts in both results, but the
basic images are clear.
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Figure 9: V(z) f-k prestack migration of the P-P data acquired from the model in Figure 8.

Figure 10: V(z) f-k prestack migration of the P-S data acquired from the model in Figure 8.

Experiments with Blackfoot-III 20 meter data

The Blackfoot-III 20meter data has three receiver components. The migration
experiments with V(z) f-k method used vertical (P-P) data and radial (P-S) data. Both
vertical and radial data have been processed by Matrix Geophysical. The datasets
used for migration experiments are those ready for final stack, which are already
properly amplitude gain recovered and deconvolved, and the statics are estimated and
applied. The experiments show the migration results using different velocity
functions. The target is the imaging of the Glauconitic sand channel at a depth about
1520 meters.

P-P data: velocities from RMS stacking velocity or from well log

The current V(z) f-k implementation requires the input velocity function be given
as interval velocity in depth. The interval velocity can be computed from the stacking
velocity using Dix’s equation, or directly from well information.
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Figure 11: The V(z) f-k prestack migration result of the Blackfoot-III 20-meter vertical data.
The migration velocity is obtained by converting the stacking velocity (from Matrix
Geophysical) into depth interval velocity. The target channel area is boxed.

 Figure 11 shows the V(z) f-k migration result with the depth interval velocity
computed from the final stacking velocity observed by Matrix Geophysical. The
horizontal location of the channel is about 120 to 160 in CDP numbers, and for
emphasize, the channel area is boxed in the Figure. Although the image of the
channel is very clear and easy to identify, it is noticed that the migration result gives a
channel image at about 200 meters too deep. This suggests that the migration velocity
used might be too high.

Figure 12 shows the result of V(z) f-k migration by using the velocity information
from the well log in the area. The well log gives only the information from depth 220
to 1600 meters. It was assumed that the wave velocity at the depth shallower than 220
meters is isotropic and with a constant velocity value such that the target channel will
be at the right depth. The velocity after 1600 meters is the same as used for the result
in Figure 11.
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Figure 12: The V(z) f-k prestack migration result of the Blackfoot-III 20-meter vertical data.
The migration velocity is obtained using the well log information. The near surface velocity is
assumed constant, while the velocity at layers deeper than the well keeps the same as that
used for migration shown in Figure 11. The target channel area is also boxed.

In Figure 12, the imaged depth of the target is correct, but comparing to the
imaging shown in Figure 11, not only the channel was not imaged clearly, the entire
section is also much noisier. The events other than the channel area were not properly
imaged either. At first, it was expected that the depth difference of the target channel
might be caused from the differences between the well velocity and the converted
stacking velocity. However, this is not the case.

For further discussion, the migration velocities used to obtain the migration results
shown in Figure 11 and Figure 12 are analyzed in more detail. Figure 13 shows the
two interval velocities (as functions of depth). The difference between these two
velocities is not significant except in the first 220 meters. The converted stacking
(RMS) velocity is more like a smoother version of the well velocity. The converted
stacking velocity, which results in the deeper target image, is not faster at all. In fact,
in the depth range with well information available (220 to 1600 meters), the
traveltime calculated from the well velocity is even longer.
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Figure 13: Migration velocity functions used for the results shown in Figure 11 and Figure 12.
The wider dashed curve is the velocity converted from the stacking velocity, the thinner solid
line is the detailed blocked well velocity plus some extra values before 220 meter depth and
after 1600 meter depth. The two velocity functions are exactly the same after 1600 meter, so
the values after 2000 meters are not shown.

For efficiency, the prestack P-P data is further processed for later migration
results. Besides trace equalization, which was also applied for results in Figure 11 and
Figure 12, a weak f-x prediction filter is applied on shot gathers prior to migration.
Then, a bandpass filter with 4 corner frequencies 5, 8, 80 and 100hz and an AGC with
window length 500 ms are applied. In addition, the data is desampled into 2 ms rate,
while the original sample rate is 1 millisecond. The computation cost was greatly
reduced, and the later results show that the imaging quality is well preserved.

The next V(z) f-k migration experiment is done with a velocity function combined
from the two velocities in Figure 13. The new velocity function equal to the one
converted from stacking velocity at the depth shallower than 220 meters and depth
deeper than 1600 meters, while at the depth between 220 and 1600 meters (where the
well information is available), the blocked well velocity is used. Figure 14 shows the
imaging result.
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Figure 14: The V(z) f-k prestack migration of the P-P data with the combined velocity from the
two velocities used for the images shown in Figure 11 and Figure 12. The blocked well
velocity is inserted into the converted stacking velocity between 220 and 1600 meters. Also,
the data for migration is weakly filtered and the bandwidth is limited to 5-8-80-100Hz. The
channel area is boxed.

In Figure 14, the data is cleaner than both the one in Figure 11 and Figure 12. The
image of the channel area is not as good as the one migrated with converted stacking
velocity (Figure 11), but better than the one using the velocity which matches the
depth of the Glauconitic channel (Figure 12). It is also noticed that the channel in
Figure 14 and the channel in Figure 11 have only about 20 meters difference in depth.
This implies that the 200 meters difference between the channel depth in Figure 11
and Figure 12 is mainly because of the differences of the migration velocities at the
first 220 meters.

The imaging of the channel in Figure 14 is not as good as the one in Figure 11.
This is not because of the filtering effects on the data before migration, but the
differences between the well velocity and the converted stacking velocity. This is
further proved by the imaging result shown in Figure 15, which use the converted
stacking velocity again, but on the filtered data.
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Figure 15: The V(z) f-k prestack migration of the filtered data using the converted stacking
velocity, which is the same as the one used for Figure 11. The imaging is even more focused
than figure 11. This at least implies that the filter applied on the data before migration did not
reduce the imaging capability of the data.

  As a summary, there is still a question about these experiment results. Why is the
best imaging velocity not the velocity which puts the target at the right place?
Comparing the two velocity functions shown in Figure 13 and the two images in
Figure 11 and Figure 14, it is clear that the incorrect depths of migration images are
not because of the difference between well velocity and converted stacking velocity.
They result from the difference of the migration velocities at the depth shallower than
well logging depth (220 meters).  This implies that the answer of the question maybe
lies in the datuming problem. That converted stacking velocity gives very a good
image may be because stacking velocity is not sensitive to the small errors in
datuming.

When the best imaging velocity is available, and the depth of the target is known,
it is easy to get a reliable time and depth image with conversions between time and
depth after migration. Figure 16 is a time domain version of the image shown in
Figure 15.
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Figure 16: The depth to time conversion of the image in Figure 15. The conversion velocity is
the migration velocity which gives the best imaging. The channel area is again boxed for
comparison.

P-P data: post stack migration or prestack migration

For seismic data from plain areas like Blackfoot, Alberta, regular processing often
does not include prestack migration. Many examples show that, prestack migration
does gives better imaging when it is used.

Figure 17 shows the stacked section with the final stacking velocity observed by
Matrix Geophysical, the input for the stacking is the 2 ms sample filtered data. Figure
18 shows the results of post-stack phase-shift migration with the converted stacking
velocity. The channel areas in both sections are boxed for comparison.
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Figure 17: Stacked section of the filtered P-P data with the final stacking velocity observed by
Matrix Geophysical. The channel area is boxed for comparison.

It can be seen that although the stacked section had very good quality, the events
in the target channel area are very clear although they are not well shaped. The post-
stack migration (Figure 18) can not resolve the channel shape very clearly, as the
prestack migration does (Figure 16).

Mathematically, the current implemented version of V(z) f-k migration is the same
as the phase-shift migration, including the assumption and formulation, the
comparison between our V(z) f-k prestack migration (Figure 16) and the post-stack
phase-shift migration is reasonable.
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Figure 18: Post-stack phase-shift migration of the stacked section shown in Figure 17.
Comparing to The prestack V(z) f-k imaging shown in Figure 16, this result does not resolve
the channel area (boxed) very clearly.

P-S Data: offset orientation and velocity

One of the difficulties to migrate a set of converted-wave data is the effects of
offset orientation. When the wave velocity changes only in depth, for P-P data,
besides the imaging quality, the migration may only position the events at the wrong
depth due to the velocity error. While for the converted wave data, velocity errors not
only result in a bad image and the wrong depth, but also the wrong lateral locations.
Even worse, due to velocity error, the lateral position of the same target moves in
opposite directions for positive and negative offset traces. In these cases, the
summation of the images from positive and negative offset data may degrade the
imaging quality, instead of enhancing the final image.

Figure 19 (on page 29) and Figure 20 (on page 30) show the results of V(z) f-k
migration from the negative offset data and the positive offset data respectively. As
expected, the energy is moved away from the CMP location to the direction where the
receivers are located, and the magnitude of this energy displacement changes with the
depth.
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Figure 19: V(z) f-k migration from the traces in the radial data with negative offsets only. This
data is shown here without AGC or trace equalization in order to tell how the migration fold is
distributed. The energy at one CMP location is tends to be moved to the direction where the
receivers are.
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Figure 20: V(z) f-k migration from the traces in the radial data with positive offsets only. This
data is shown here without AGC or trace equalization in order to tell how the migration fold is
distributed.
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Figure 21: V(z) f-k migration from vertical data. Figure 16 is just the middle part of this
migrated section. As a comparison with the sections shown in Figure 19 and Figure 20, this
section is shown without AGC or trace equalization in order to tell how the migration fold for
P-P is distributed.
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The overall amplitudes in figures 19, 20 and 21 are proportional to the final
migration fold because the input data was trace-equalized. Comparing the migration
fold distributions in Figure 19 and Figure 20, it is evident that the energy of a seismic
trace in converted wave data at some CMP location tends to be moved to the direction
where its receiver is. The migration fold changes not only in depth direction, but also
changes laterally, which is different for positive and negative offsets. As a
comparison, in the migration result from P-P data, which is shown in Figure 21, the
changing of migration fold is mainly vertically. It is clearer to see at the deeper depth,
where the PP migration fold keeps in a smaller (comparing to the shallower depth)
range in the middle of the line, where the CDP fold is higher. In both positive and
negative offset migration for converted-wave data, the folds keeps high until one edge
of the line, although each offset is at a different edge.

For the analysis of the imaging quality of target channel from converted wave
data, the target area in both Figure 19 and Figure 20 are zoomed and shown if the
following Figure 22 and Figure 23 respectively.

In Figure 22, which shows the channel area of the V(z) f-k migration from the
negative offset traces, a solid line is drawn to follow the possible channel bottom. As
a comparison, a dashed line is also shown which is the solid line in Figure 23, which
is the migration from positive offset traces. The differences between the two lines are
small not explained yet.

Figure 22: A part of the Figure 19. The possible channel bottom is followed by a solid line.
While the dashed line is a copy of the solid line in Figure 23, in which the channel bottom is
interpreted differently.
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Figure 23: A part of the Figure 20. The possible channel bottom is followed by a solid line.
The dashed line is a copy of the solid line in Figure 22, in which the channel bottom is
interpreted differently.

As a summary, the V(z) f-k migration of the whole converted wave prestack data
is shown in Figure 24. It is mathematically the direct summation from the two
migrated sections shown in Figure 22 and Figure 23. The two interpretations of the
channel bottom are shown in very thin lines so that the characters of the events can
also be seen.

As noticed, the depths of the channel are about 200 meters deeper than its
geological depth, and the interpretations may be wrong. These experiments highlight
some aspects of concern for the prestack migration of converted-wave data.

CONCLUSIONS AND FUTURE WORK

The V(z) f-k migration for prestack PP and PS data is implemented as a module in
ProMAX. Many synthetic data and real data experiment shows that this module
works, and it provides high quality migration results.

The algorithm is currently implemented in the Fourier domain so that the
theoretical advantages of the algorithm can be investigated. Although the current
algorithm mathematically has no difference from the conventional phase-shift
migration, the introduction of the nonstationary filter concept may help extending the
method further to both more efficient and theoretically more accurate directions.
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Figure 24: The V(z) f-k migration of the whole converted wave prestack data. It is not the
direct summation from the two migrated sections shown in Figure 22 and Figure 23, but
theoretically it should be. The two interpretations of the channel bottom are shown in very thin
lines for not overriding the characters of the events.

As mentioned in this report, this algorithm can be implemented as a mixed-domain
non-stationary filter, which should be more efficient.

The current implementation only considered the ray angle up to 90 degrees, and
the evanescent energy is simply ignored. As a Fourier domain migration, it is easy to
include the evanescent energy and ray angles beyond 90 degrees in the migration
process.

This V(z) f-k method can be implemented as an algorithm applied on shot gathers.
It will be more efficient at least in handling the Fourier transform and computer
memory.

There are some possible ways to compute the migration filters in some
approximate manner. This should save a significant amount of computation cost,
because the most of the computation in the current algorithm is to prepare the filters.

The further theoretical extension of this method might be the accommodation of
the lateral velocity variation. This could lead to a very accurate prestack depth
migration.
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Combined with the correlation analysis of P-P data and P-S on migration depth
section, this method, on the other hand, can be used as a tool to get more accurate S
wave velocity or more reliable P to S velocity ratio.

Migration to multi-offset sections is also a direction to extend this method.
Accurately migrated offset sections may provide more accurate AVO information.
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