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ABSTRACT

Using separation of variables the wave equation in laterally inhomogeneous media
can be spatially separated into two eigen-equations corresponding to the direction of
extrapolation and the other transverse direction. The two equations are connected via
eigenvalues, which leads to an eigenvalue problem represented by a second order
differential equation. This equation can be solved either approximately or exactly.
The solutions obtained with different approximations can lead to different methods in
seismic exploration seismology.

INTRODUCTION

The study of wavefield extrapolation in laterally inhomogeneous media is
important because the geological structures are often modeled as laterally
inhomogeneous layered structures. The main purpose in exploration seismology is to
create a seismic image is of the area of interest. Many methods for seismic imaging
are built on the concept of wavefield extrapolation.

In homogenous media, the wavefield extrapolation problem can be solved
analytically. However, in strongly inhomogeneous media, finding the solution is a
great challenge. Many standard methods fail in this case.

The Kirchhoff approach, the most commonly used method for the problem, relies
on high-frequency ray tracing. This is a problem for caustics, shadow zones, and even
chaotic rays (Fei et al. 1996; Audebert et. al. 1997). More accurate ray tracing is
computationally more expensive and more difficult to implement. Therefore, it is
desirable to find wave-equation methods that can avoid these difficulties.

The full wave equation (two-way wave propagation) (Baysal et. al., 1985;
Wapennar, 1987) is capable of solving wave solutions for arbitrary complex media.
Unfortunately, such approaches are very time consuming. Moreover, the methods
lacks control over multiple scattering, resulting in a strong noise background (Jin et.
al., 1998). Based on the paraxial wave equation, one-way wave propagation methods
are very efficient but are limited to a range of propagation angles (e.g. Claerbout,
1985).

Methods implemented in the frequency-wavenumber (F-K) domain are very
efficient due to the use of fast Fourier transform. However, most of the methods
developed are incapable of dealing with strong laterally inhomogeneous media. Phase
shift (Gazdag, 1978) is accurate only if the velocity is constant. The screen
propagators, including the split step Fourier transform method (e.g. Stoffa et. al.,
1990), phase screen and pseudo screen methods (e.g. Wu, 1994; Jin et. al., 1998),
have been proposed to calculate one way wave propagation for either forward
modeling or seismic migration. Even though these methods work well for weak
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contrast media, in the case of complex structure with strong velocity contrasts, such
as the salt dome related structure where velocity of the salt body can be about three
times higher than the surrounding media, the methods are only accurate for waves
with small angle of incidence. In order to improve the accuracy in this case, several
extensions of the phase shift and split step Fourier methods have been developed, e.g.
phase shift plus interpolation (PSPI) (Gazdag, 1981) and the extended split step
Fourier method with multiple reference velocities (e.g. Kessinger, 1992). However,
inaccuracies associated with the interpolation process may arise.

Recently, the non-stationary phase shift method was developed based on pseudo-
differential operator theory for improving the efficiency and accuracy of the
wavefield extrapolation (Margrave & Ferguson 1997, 1999). Comparing with original
PSPI, it overcomes the shortcoming of the global nature of reference velocities
selection and still keeps many advantages of the PSPI. However, in order to reach a
satisfactory accuracy, a recursion has to be performed.

Based on eigen-expansion techniques, Grimbergen et. al. (1998) developed the
modal expansion method for wavefield extrapolation in laterally varied velocity
structure. The numerical implementation of the method given by Grimbergen et. al.
(1998) to 2D wavefield extrapolation leads to a very similar result as that of
nonstationary filter (Margrave & Ferguson 1997, 1999).

The methods mentioned above for wavefield extrapolation in inhomogeneous
media are all approximate methods. Therefore, they have limits, such as accuracy and
stability. In this paper, a new method based on a generalized eigenfunction transform
is presented for wavefield extrapolation in laterally varied velocity media.

METHOD DESCRIPTION

The acoustic wave equation (2D) is often written as the Helmoholz equation

(B§+3§+%)‘P(x, z,0)=0

(1
with initial condition
¥Y(x,z=0,w) =%,
(2a)
and radiation condition
¥ (x,z = too,) = 0
(2b)

where ¥ denotes the pressure, v is the velocity field that is independent of z
coordinate and  is angular frequency, i.e. 27f".

Using the technique of separation of variables, we seek a solution for the
wavefield in the form
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¥Y(x,z,w)=¥,(x,0)¥,(z,w)
. 3)

Substituting equation (3) into wave equation (1) and dividing through by ¥, '¥. ,
we have

Y, |

P, 2
= A ) 0

Y, v (x) ) (4)
The two terms on the left side of equation (4) are the functions of z and x respectively.

Therefore, the only way the equation can be satisfied is if each of them is equal to a
constant that is independent of x and z, i.e.

82’}’2 1 _ BZ'IUXL w? \_ 1.2
02 Y.~ (axz v, + vz(x))_k (5)
or
o, | _ .2 O @ .2
822 '}/z _k ( axz '}’x + Vz(x))_k (6)

Equation (6) can be compared to the classical Sturm-Liouville eigenvalue problem (
e.g. Stakgold, 1979), which has the properties: the equation has an infinite number of
solutions which are the modes of a vibrating string, the modes are characterized by a

mode shape function (eigenfunction) ¥, or ¥, and a constant k (eigenvalue).

Now the problem is to find the eigenvalue k. Solving equation (6) under different
conditions leads to different methods.

Constant velocity
When the velocity is constant, the second equation of (6) is

D, =(Z— I,
(7)

where D? denotes second order differential operator. Applying the Fourier transform
pair

Ff(x)= [ f)exp(=ikx)de  F' f(k,) = [ £k,)explik, x)dk,
to D?, equation (7) becomes

FRF W, = (2 k)Y
X X X X vz X
(8)

then the eigenvalue can be found by
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k2 :Fx (w_zz_k)?)Fx_l
)
Substituting equation (9) into the first equation of (6) and applying the conditions (2a)
and (2b), the solution to the wave equation can be written as

Y (x,z,0) = Fl exp(+i, /2% —k2)F, ¥,
’ (10)

where ¥, =¥ (x,z =0,w) . The analytic solution (10) is the phase shift method for the
up and downward extrapolation (Gazdag, 1978).

Generally, if velocity is an arbitrary continuous function of x, seeking an analytic
solution like (10) is very difficult. However, if the velocity model is discretized,
finding the solution numerically may become easier. In the following, the wavefield
and the velocity function are discretized (along the x coordinate, z coordinate is

. . . . 1 T

ignored for convenience) into columns vectors, i.e. (¢ , \|12, '''''' , V) and (vi, vy,
T .

----- , Vo) , respectively.

Finite difference method

For each local spatial point, the second equation of (6) can be written as
DY, =(% k)Y,
Vi (1=1,2, .....n) (11)
Using the second order finite difference operator D/ to approximate the second

differential operator in equation (11), an equation for all locations can be written as
the matrix equation

DIw, =(C* -K?*)P,

(12)
where K” is the diagonal matrix containing the elements of &;,

-2 1 o - - 0 0

-2 1 0

0 1 =2 0

D] =

(13)

0 0 -2 1

0 0 O 1 =2

and
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2

(71) 0 0

2

" 0 (P 0

(14)
2
0 0 G
From equation (12) K° can be found as
K*=c*-Df

(15)

which is a real valued and symmetric matrix. Based on matrix algebra theory this
matrix can be decomposed into

K*=LAL"
(16)
where L is the matrix with its columns composed of the eigenvectors of the matrix
K?, L is the inverse of L , which is equal to the transpose of L, and A is a diagonal
matrix with its diagonal elements composed of the eigenvalues of K °.  Substituting
(16) into the first equation of (6) and applying the conditions (1b) and (1c), the
solution to the wave equation can be written as

¥ (x,z,0) = Lexp(xiA"?z) L7,
(17)

which is the modal expansion method for the up- and downward extrapolation
(Grimbergen et. al., 1998).

Nostationary phase shift method

Rewriting equation (8) for laterally varying velocity

FIUCF Y, =2 )y
x Mxtx tx Vz(x) X
(18)

this equation can be changed into

2 — w 2 — (0 2 w?
kxelPx_Fx (Vz(x) k )\Px_(vz(x) k )Fx\Px+[Fxﬂ Vz(x)] (19)

va(x)

where the commutator [ s 3
vi(x) vi(x)
be ignored as a approximation, then

F.. If the commutator can
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K =F (2 - *)F

X

V2(x) (20)

and the final solution can be written as

2

W(x,Az,0) = F," exp(+i e kZAZ)FY,,

2

21)
which is the limiting form of PSPI in non-stationary phase shift method(Margrave &
Ferguson, 1997, 1999). We show in another paper that the nonstationary phaseshift

method can be considered as a generalization of the pseudospectral method (Yao &
Margrave, 1999).

It should be mentioned that the neglect of the commutator in equation (19) can be
exact only if the velocity is constant. In general, the velocity changes in a small area
can be considered as small as required to be ignored. In this case, the condition
required for (19) is satisfied. Therefore, like the finite difference approach, equation
(21) is also a localized technique and when it is applied in wavefield extrapolation,
the step length of extrapolation should be carefully chosen to ensure accuracy and
avoid instability (Yao & Margrave, 1999).

Comparing the finite difference method to the nonstationary phaseshift method
shown above, the difference is in the spatial derivatives calculation. The calculation
of the derivatives by Fourier transform can very much improve the quality or
accuracy of the solution (Kosloff & Baysal, 1982). Therefore, equation (21) is
superior to equation (17) .

Full spectral method

Equation (19) can be further written as a set of equations coupled over &,

K*FY¥, =F. (‘2 - k)Y, =(0,S> -K*)F, ¥,

Vi) (22)
where the diagonal matrix sz 1S
— k(D)
K?= ' (23a)
— k2 (n)
and the Toeplitz matrix S is
SO . . S—(n—l)
sr=| (23b)
S(l’l—l) . . Sn
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In the equation above, &, is the horizontal wavenumber with discretization interval
Ak, =2r/ L, defined by the horizontal length of the model L. The elements s, are the

Fourier components of v=2(x), i.e.

s, = % jv_z (x)exp(—inAk, x)dx
(24)
Matrix S is a Hermitian Toeplitz matrix. If velocity is constant, then the matrix

become diagonal and each equation can be solved separately, which leads to phase
shift method (Gazdag, 1978). The off diagonal elements in the matrix expressed the

components of ¥ coupled with each other in lateral inhomogeneous media. Solving
equation (22)

K*=o0’S-K? (25)

which is a Hermitian matrix and can be decomposited via its eigenvaluses and
eigenvectors, i.e.

K*=vpyrt
(26)

where V is the matrix with its columns composed of the eigenvectors of the matix

K?, 7is the conjugate complex transpose of ¥ and D is a diagonal matrix with its
diagonal elements composed of the eigenvalues of K>. Substituting (26) into the first
equation of (6) and applying the conditions (2a) and (2b), the solution to the wave
equation can be written as

¥(x,z,0) = F.V exp(xiD"*z)(F.V) ¥,
(27)

which is the exact solution to the wave equation.

As the summary, the solutions expressed by equation (9), (17), (21) and (27) can
be uniformly written in the form of

W (x,Az,m) = Adexp(xiQ' *Az) A7,
(28)
where A is the matrix composed of generalized eigenfunctions and then finding
the solution is equivalent to find the transform defined by eigenfunctions, i.e. ¥ =A

'Y, Under the transform components of the wavefield can be separated and the
solution can be simply obtained by analogue to the standard phase shift method, i.e.
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¥ (x, Az, 0) = exp(xiD " > Az)P,
(29)

A NUMERICAL EXAMPLE

The numerical examples shown in following are only regarding to the full
spectrum method because the examples for the rest of the methods mentioned above
can be found in corresponding literatures.

Figure 1 shows a model composed of two blocks. The velocity on the left block is
1500 m/s and on the right it is 2500 m/s. One point source is located close to the
velocity boundary on the left. After extrapolation with Az=200 m, the result is shown
in Figure 2. The red solid line is the traveltime of first arrival calculated by solving
eikonal equation with finite-difference method (Vidale, 1988) that matches our result
very well. The reflection from the velocity boundary occurs in the left lower velocity
block following the direct wavefront. The energy of the wavefront in the right high
velocity block is week comparing to that in the left because the transmission
coefficient effect. Figure 3 shows the result when the wavefield extrapolated back to
Az=0. The original spike pulse is well recovered, which means that the method itself
is consistence for both forward and backward extrapolations.

DISCUSSIONS AND CONCLUSIONS

The methods presented above solve the wavefield extrapolation problem in lateral
inhomogeneous media. The algorithms based on the approximations are the localized
techniques, which limit the step length of extrapolation. However, if the step length of
extrapolation is too small, the cost of calculation time will be expensive. Furthermore,
for the sharp changes of the velocity media, these methods may have stability
problem at the sharp change boundary (Etgen, 1994). Very often the sharp change
boundary is of interest in seismic interpretation. Full spectral approach provides the
exact solution for wavefield extrapolation that can avoid this problem. It should be
expected that it can improve the seismic image when applying to seismic migration.

It is well known from time-frequency transforms by FFT that under-sampling in
one domain cause aliasing (wrap-around) in the other domain (e,g, Margrave &
Ferguson, 1997), This is due to the periodicity assumed by introducing the discrete
Fourier transform. For the discrete Fourier transform to be correct, the field must
vanish outside the range interval considered, otherwise it will be wrapped into the
neighboring windows. Therefore, the evaluations of equation (9), (22) and (27) do not

produce Y(x,z) but rather i‘l’(xﬂzL,z), i.e. a sum of the signals in all range

windows of width L=Ndx (N is total number of sample points). The alias can be
reduced either by choosing L so large that the signal is known to die out within the
range window or by aperture compensation (Margrave & Ferguson, 1997).
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Figure 1. The velocity model.
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Figure 2. The result of the wavefield extrapolated with Az=200 m of a pulse source
located in the middle of the velocity model.
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Figure 3. The result of the previous wavefield extrapolated back to Az=0.
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