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ABSTRACT
Nonstationary filter theory and its application in single-trace deconvolution are

reviewed. The wavelet estimation methods used in nonstationary deconvolution
(NSD) are examined. As an alternative, the homomorphic method gives a good
estimation of the propagating wavelet when the noise level is low and a proper low
pass filter in the quefrency domain is applied. A reformulation of nonstationary
deconvolution using homomorphic wavelet estimation gives promising results.

INTRODUCTION
Most conventional single-trace deconvolution techniques are based on the

assumption of a stationary wavelet. The wavelet is assumed stationary so that it can
be removed by from the seismic trace by applying a single stationary inverse filter.
Such an assumption leads to unacceptable errors when serious wavelet distortion
occurs due to anelastic attenuation or nonstationary effects. We use ‘propagating
wavelet’ to describe a model of nonstationary seismic wavelet. Low seismic quality
factor (Q) and strong stratigraphic filtering effects cause serious nonstationary
wavelet distortion.  This can only be handled well by a proper nonstationary inverse
filter. With the assumption of local minimum phase, nonstationary deconvolution
(NSD) (Schoepp, 1998) handled this problem well. The propagating wavelet is
estimated from the time-variant-spectrum (TVS) of a seismic trace. The inverse filter
is applied in the frequency domain in the manner of nonstationary convolution.

The success of nonstationary deconvolution is dependent on how well the
propagating wavelet is estimated. Following the traditional way of estimating a
minimum-phase wavelet from a smoothed version of seismic trace amplitude
spectrum, NSD smoothes the TVS by convolving the amplitude spectra with a 2-D
boxcar smoother and then calculates the corresponding minimum-phase spectrum.
The inverse filter is then calculated and applied through nonstationary filtering. As in
traditional techniques, the idea behind the smoothing is to remove both the primary
and multiple reflections from the amplitude spectrum, leaving only the wavelet
signature.  A closer examination of NSD shows that simple spectrum smoothing may
not be the best method. Another approach, homomorphic method, which is capable of
separating a rapidly varying component (reflectivity) from a slowly varying
component (wavelet), can be a good option for wavelet estimation.

NONSTATIONARY THEORY AND NSD
The concept of nonstationary convolution and time-variant filtering were first

formulated by Pan and Shin (1976) and Sheuer and Oldenburg (1988). Margrave
(1998) used a more complete formulation and showed that there are two fundamental
types of nonstationary filters, called nonstationary convolution and nonstationary
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combination. The nonstationary convolution and its Fourier counterpart can be
written as:
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The nonstationary combination in time domain and its Fourier counterpart can be
written as:
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where )(th , )( fG are the input signal and its Fourier transform. )(ta  and )( fA  are an
arbitrary linear filter and its Fourier transform, )(tg and )( fG  are the nonstationary
convolution and its Fourier transform, while )(tg and )( fG  are the nonstationary
combination and its Fourier counterpart.  t is the time tracking )(tg  or )(tg , while τ is
the vector tracking the running time of nonstationary filter at time t, f and F are their
counterparts in Fourier domain.

Comparing the forms of nonstationary convolution and combination, it is
interesting to see that equation (2) and (4) are frequency domain combination and
convolution, respectively. The derivation of the above equations can be found in
Margrave, 1996.

Nonstationary deconvolution (Schoepp, 1998) was developed after this theory.
A seismic trace with anelastic attenuation can be modeled by the convolution of time-
varying (or propagating) wavelets with a stationary reflectivity and multiple impulse
responses. The concept of superposition remains valid. A simple physical model
describing the noise free procedure can be written in the mixed time-frequency
domain as:

),(),(),(),( ftWftMftRftS =
, (5)

where S(t,f) is the time-variant spectrum of output seismic trace, R(t,f) and M(t,f)
delineate primary and multiple impulse responses as varying with time t, W(t, f)
stands for the propagating wavelet whose absolute amplitude and frequency content y
attenuate with time due to anelastic attenuation. With the assumption of minimum
phase, Q attenuation (Futterman, 1962), the amplitude spectrum variation with time
of the seismic trace can be written as:
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where α (t,f) is a generalized attenuation coefficient, W(f) is now the original seismic
source spectrum at time t=0.  The idea behind the NSD is to design a time-variant
filter which inverse w(f) and the Q effect and then apply it to the seismic data. Figure
1 illustrates how NSD recovers band-limited reflectivity. The forward nonstationary
convolution is shown in figure 1 (a). The seismic trace is created by applying a
forward constant Q filter (Q=40) to a minimum phase wavelet with dominant
frequency of 50 Hz and then convolved with a pseudo-random reflectivity. The TVS
of the synthetic seismic trace shows the attenuation of high frequency at larger travel
time (figure 1 .b). The inverse filter is calculated using a 10 Hz by 1.0 s boxcar
smoother on residual TVS (figure 1.c) of the seismic trace. The residual TVS  is
created by removing a Q=50 attenuation surface from the TVS of the seismic trace.
The Q=50 attenuation surface is restored after smoothing, for the purpose of
preserving the physical attenuation trend. The inverse filter and the TVS of filtered
trace is shown in figure 1.d and figure 1.e. NSD is able to recover the band-limited
reflectivity from the synthetic trace (figure 2)

(a) Synthetic seismic trace is created by multiplication of a time-variant wavelet matrix with
stationary reflectivity.

(b)TVS of the synthetic trace. (c) Smoothed residual TVS. A constant Q=50
decay surface is removed.

Figure 1
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(d) Inverse of smoothed TVS. (e) TVS of deconvolved seismic trace.

Figure 1. Frequency domain operator of NSD on a synthetic seismic trace.

(a) (b) (c) (d)

Figure 2. NSD with 10Hz by 1.0 s boxcar smoother is able to recover the reflectivity fairly
well. (a) Reflectivity, (b) synthetic trace with Q=40 attenuation, (c) band-limited reflectivity
by convolving a 5-10-70-85 (same bandwidth as the deconvolved trace) ormsby wavelet
with the reflectivity, (d) deconvolved trace.

HOMOMORPHIC SYSTEM AND WAVELET ESTIMATION
The essential step in NSD is the estimation of the amplitude spectrum of the

propagating wavelet from the TVS. Any wavelet estimation or reflectivity removal
method can be used in this process. Homomorphic method can separate a slowly
varying component from a rapidly varying component in a convolution model. A
nonstationary seismic trace satisfies a nonstationary convolution model and
homomorphic theory can be applied locally to each time of the TVS.

The application of homomorphic theory on seismic deconvolution has been
examined by several authors in 70's and 80's. fundamental papers include Ulrych,
(1971); Stoffa et al., (1974); Buhl et al, (1974). However, the original idea of
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converting filtering in the time domain to simpler windowing in the quefrency
domain, is given by Oppenheim (1965a, 1965b). Oppenheim et al. (1968) and Schafer
(1969) applied homomorphic deconvolution in echo removal and found this method
offered a considerable advantage that less assumption about the nature of seismic
wavelet or the reflectivity is necessary. This method as applied in the estimation of
propagating seismic wavelet was further addressed by Ulrych, (1971). Stoffa et al.
(1974) and Buhl et al. (1974) developed the theory for water-bottom multiple
attenuation using homomorphic deconvolution.  However, it is a common conclusion
that the deconvolved result is severely degraded when the signal-to-noise ratio is not
high enough and the reflectivity sequence is not minimum phase.

I  Homomorphic characterization system
Using the Z-transform, Schafer (1969) gave the following three steps to define the

complex cepstrum for discrete functions of unit sample interval,
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where x(t) is the original data, X(z) is its Z-transform and T is the pseudo time in the
quefrency domain.

The three-step inverse definition to return to the time domain is:
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In practice, we use Fourier transform instead of Z-transform. There are several
computational considerations when the input seismic trace passes through the
homomorphic system,

I. The complex natural logarithm defined in equation 7.b is a multivalued
function since )](arg[ zX  has multiplicity of 2nπ where n=0,1,2…. Since

)(ˆ zX must be continuous, )](arg[ zX  can not be restricted to its  principle
values. Phase unwrapping should be done to convert )](arg[ zX  to a
continuous function so that )(ˆ zX  is continuous. It is important to remove
the linear phase component from the unwrapped phase prior to the
computation of the complex cepstrum (Ulrych, 1971).
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II. Aliasing is introduced into the complex cepstrum when the nonlinear
logarithm operation of equation 7.b is followed by discrete Fourier
transform (DFT). Although X(z) may be adequately sampled, the nonlinear
operations, including logarithm, absolute value and arctangent introduce
harmonics into )(ˆ zX . Thus )(ˆ zX  is under sampled when

2/...,2,1,0,/2 Nnez Nin ±±±== π , as in the DFT. Since all harmonics out to
infinite quefrencies or periods are present, the complex cepstrum will be
nonzero out to infinity. DFT aliases the periods outside of the principal
period range, fTf ∆≤<∆− 2/12/1 , into this range. Schafer (1969)
showed that weighting the input trace by a tta ∆/ factor, helps to suppress the
aliasing, where a is a positive number close to 1, t is the travel time and

t∆ is the sample rate. This reduces the high frequency fluctuation in )(ˆ zX ,
thus the high frequency harmonic noise generated from the nonlinear
operations are reduced.  In practice, we use the Fourier transform instead of
the Z-transform.

II  Homomorphic deconvolution and wavelet estimation
After transforming the input seismic trace into complex cepstrum, the

deconvolution in the time domain becomes the removal of the low quefrency part.
This is because the slowly varying wavelet spectrum has low quefrency values.
Ulrych (1971) gave some fundamental examples on the separation of wavelet and
reflectivity in the quefrency domain using simple windowing. Figure 3 shows the
recovery of a simple four-point minimum-phase reflectivity series and a wavelet from
their convolutions. The cases of zero-phase wavelet (figure 3.a), minimum-phase
wavelet (figure 3.b) and mixed phase wavelet (figure 3.c) are also shown.  The zero
phase wavelet is the best recovered, since the wavelet and reflectivity component are
well separated in the complex cepstrum. In the case of minimum-phase wavelet, the
quality is good, but slightly inferior to that of the zero-phase case. The major part of
the wavelet energy is still confined near the origin but a small amount of energy is
spreaded throughout the complex cepstrum. This leads to inaccuracy in wavelet
estimation. Obviously, the mixed-phase case is the worst. The cepstrum near the
origin now has combined contribution from the wavelet and reflectivity.  The
estimated wavelet does not resemble the original wavelet very well, neither does the
estimated reflectivity resemble the real reflectivity. Note that the wavelet used in this
case is close to maximum-phase. It is generally true that with minimum-phase
reflectivity, the closer the wavelet resembles a zero-phase wavelet, the better the
result that can be obtained from homomorphic deconvolution.

The reason of focusing on the minimum-phase case is that minimum-phase
deconvolution or wavelet estimation is perhaps still the most important among the
deconvolution methods. To get fair result as shown in figure 3.a or 3.b, the
requirement of a minimum-phase reflectivity must be satisfied. Weighting the trace
with a factor of na  can convert the reflectivity sequence into minimum-phase, where
a is slightly less than 1, n=t/∆t, ∆t is the trace sample rate. Figure 4 and figure 5 show
the effect of exponential weighting in the zero-phase and minimum-phase case.
Homomorphic deconvolution can not recover either the wavelet or the reflectivity
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without the weighting. It is generally true that for the same nonminimum-phase
reflection sequence, the a for minimum-phase wavelet should be slightly smaller
than that for the case of zero-phase wavelet. The weighting factor used in figure 4 and
5 are 0.992 and 0.97, respectively.

(a)Homomorphic deconvolution recovers
both the reflectivity and the input zero-phase
wavelet very well.

(b)Homomorphic deconvolution generates
fair results in the case of a minimum-phase
wavelet.

(c)Homomorphic deconvolution does not perform well for a mixed phase wavelet. Neither the
estimated wavelet nor the reflectivity resembles the input.

Figure 3. Homomorphic deconvolution performance in the case of zero-phase wavelet,
minimum-phase wavelet and mixed-phase wavelet.

(a) Without weighting (b) Weighted by 0.992t/dt

Figure 4. Homomorphic deconvolution works well when the trace is scaled by a factor of
0.992t/dt. There is a delay of half wavelength between the original and the result.
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(a) Without weighting. (b) Weighted by 0.97t/dt. .

Figure 5. Homomorphic deconvolution works well when the trace is scaled by a factor of
0.97t/dt in the case of minimum-phase wavelet. No time delay between the original and the
result.

HOMOMORPHIC WAVELET ESTIMATION IN NONSTATIONARY
DECONVOLUTION

I. Propagating wavelet estimation
The idea of applying homomorphic method in nonstationary deconvolution is a

rather direct extension of the methodology of eliminating the reflectivity from the
TVS so that the propagating wavelet is recovered and the its inverse can be
calculated. In the following sections we will use homomorphic nonstationary
deconvolution (HNSD) for this new method.

HNSD used the same windowing methods as NSD to calculate the TVS. However,
the data within each sliding time windows are scaled by an exponential decaying
function (as described in the above section), starting from the beginning of the time
windows. Instead of computing the TVS and then removing the reflectivity by 2-D
smoothing, HNSD uses both the amplitude and phase to calculate the cepstrum of the
sliding time window. A simple windowing in quefrency domain is performed to
retrieve those samples belonging to the wavelet, or, in the other words, remove those
samples belonging to the reflectivity. The wavelet samples are then Fourier
transformed and the logarithm operation is compensated by exponential operation.
We found that at this stage we have to again utilize the local minimum-phase wavelet
assumption since the returned phase of the wavelet is highly unstable. This is due
partly to the white noise added into the power spectrum when the logarithm operation
was performed, and partly to inaccurate windowing in the quefrency domain.
Although the wavelet component is close to the origin of the cepstrum, it still has
some overlap with the reflectivity. An error of one or two samples of the filter length
can lead to rather large phase contamination in the Fourier domain. However, the
filtering error has less impact on the wavelet amplitude spectrum. A minimum-phase
assumption is probably still the best in estimation for wavelet phase estimation.  After
extracting the propagating wavelet from the sliding time windows, a small 2-D
smoother was still required to remove the residual reflectivity. The inverse is
computed and applied in the same fashion as that of NSD.
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II   Comparison of the results from HNSD and NSD
Figure 6 shows the TVS of the propagating wavelets, estimated from

homomorphic method, its inverse and the TVS of the deconvolved seismic trace.

(a)TVS of propagating wavelet estimated
from homomorphic method.

(b) Smoothed version of (a). Box car
smoother: 5Hz by 0.3 s.

(c) Inverse of (b). (d) TVS of deconvolved trace.

Figure 6. TVS of the propagating wavelets, estimated from homomorphic method, its inverse
and the TVS of the deconvolved seismic trace.

Wavelet estimation is strongly degraded at 0.4 s and 0.7 s. Strong spikes distribute
regularly in the high frequency band, roughly at 75 Hz, 125 Hz, 175 Hz and 225 Hz at
0.4 s. The same effect appears in the second time window, however, much weaker.
This is due to the exponential decay scaling failing to convert the reflectivity within
the time windows to minimum-phase, because large reflection coefficients exist at the
end of the time windows.  A 2D boxcar smoother is used to reduce this local effect.
The small troughs in the TVS of the inverse filter is an immediate consequence of this
effect.  The TVS of HNSD processed trace is also shown in figure 6.  It has the same
band width as that of the NSD processed trace, while it is 'whiter' than that of NSD.
The roughness of TVS outside the valid band width is because that each sliding time
window has different noise level.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7. Comparison between the band-limited reflectivity, NSD and HNSD processed
results. (a) Original reflectivity, (b) Band-limited reflectivity, (c) NSD processed trace, (d)
HNSD processed trace, (e) amplitude spectrum of band limited reflectivity, (f) amplitude
spectrum of NSD processed trace, (g) amplitude spectrum of HNSD processed trace.

Figure 7 shows the comparison between the band-limited reflectivity, NSD
processed and HNSD processed seismic trace. The band-limited reflectivity is created
by convolving the reflectivity with an ormsby filter, which has the same bandwidth as
the deconvolved seismic trace. Both the NSD and HNSD processed trace are quite
good. However, the amplitude spectrum of the HNSD processed traces is better
whitened than that of the NSD processed trace.  The notch at 45 Hz for the NSD case
is not found in the HNSD result.
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DISCUSSIONS AND CONCLUSIONS
The quality of HNSD process is comparable to NSD. This can be easily seen

in both the time domain and the frequency domain.  However, testing suggests that
HNSD may give a better amplitude spectrum than NSD.  However, HNSD is more
sensitive to the parameters related to the homomorphic system. The nature of
reflectivity is also an important issue in homomorphic wavelet estimation.  Before
HNSD is applied, the following issues should be considered,

1) Exponential decay scaling. For random reflectivity without strong reflection
coefficient, an exponential decay parameter slightly less than 1 should be enough to
generate a minimum phase reflectivity sequence. However, this exponential gain fails
when a large reflection coefficient exists at the end of a sliding time window, which
makes it difficult to estimate a wavelet by a simple quefrency domain  windowing.

2) The design of the windowing filter in the quefrency domain is the most crucial
step, and the deconvolution result is highly sensitive to this filter since a small error
can be exponentially magnified in the frequency domain. Figure 8 shows how the
results can vary when the filter varies from 11 to 13 with other parameters kept all the
same. As we can see that 12 is the optimum filter. Both 11 and 13 gave less
satisfactory results.

(a) (b) (c)

Figure 8. HNSD is sensitive to windowing in the quefrency domain. One sample away from
the optimum value (12) gives degraded results. (a) 11 sample window filter, (b) 12 sample
window filter, (c) 13 sample window filter.

3) Since additive noise in the time domain has tremendous negative impact on
traditional homomorphic deconvolution, it is important to examine how robust HNSD
when additive noise is present. Figure 9 shows the comparison of HNSD and NSD
when 10% and 30 % additive noise is present in the synthetic seismic trace. NSD and
HNSD generate similar results, which suggests that HNSD is at least as robust as
NSD in dealing with additive noise.
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(a) (b) (c) (d) (e) (f)

Figure 9. HNSD and NSD generate similar degraded results at the presence of 10% (a,b,c)
and 30% (d,e,f) random noise. (a) NSD result, (b)HNSD result, (c) original trace plus 10%
random noise, (d) NSD result, (e) HNSD result, (f) original trace plus 30% random noise.

HNSD is a simple extension of nonstationary deconvolution. Potentially all
wavelet estimation methods can be incorporated with nonstationary deconvolution.
There are many possibilities to improve this deconvolution method.
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