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ABSTRACT

The method of wavefield extrapolation by nonstationary phase shift is extended to
the case of data recorded on a topographic surface. Using the NSPS (nonstationary
phase shift) algorithm, the space-domain input data is phase shifted to a horizontal
datum beneath the lowest topographic point. The nonstationary phase shift
simultaneously accounts for lateral velocity variations and the lateral variation of
downward step size. The f-k spectrum of the downward continued data is
synthesized at the datum. A much more computationally expensive pseudo-inverse
technique is also formulated for comparison. Tests on simple synthetics show that
the NSPS method works nearly as well as the pseudo-inverse technique.

INTRODUCTION

Nonstationary phase shift methods have been developed at CREWES and
elsewhere (Margrave and Ferguson, 1997 and 1999) to extrapolate wavefields through
complex media. The key concept is to generalize the stationary phase shift method of
Gazdag (1978) by allowing the velocity to depend upon the coordinates transverse to
the direction of extrapolation. It was shown that this leads to a generalization of the
PSPI (phase shift plus interpolation) method that has been independently derived by
Fishman and McCoy (1985). A further method, called NSPS (nonstationary phase
shift) was discovered and is now known to be the transpose (in lateral coordinates) of
PSPI. Both of these forms are expressible as generalized Fourier integrals known as
nonstationary filters or equivalently as pseudodifferential operators.

The essential feature of these new Fourier extrapolators is their ability to allow
simultaneous dependence upon a space variable and its corresponding Fourier
wavenumber. This generalizes the classical phase shift, that depends upon transverse
wavenumber, to one that allows the velocity to depend upon the transverse
coordinate. This same feature can accommodate topographic variations of the surface
on which the seismic recording takes place by allowing an initial downward
extrapolation step size that depends upon the lateral coordinate.

For simplicity, suppose a horizontal datum plane is defined slightly beneath the
lowest topographic point and that a velocity model is available for the volume
between the datum and the topography. Then, a downward extrapolation step, whose
magnitude is the elevation difference between the topography and the datum at each
lateral coordinate, can be accomplished with nonstationary filter theory. A further
complication arises in that the recorded data cannot be regarded as being regularly
sampled in space. Even if care is taken to accomplish regular sampling in the
horizontal coordinate, the topographic variation means that the sampling is irregular in
the vertical coordinate. This means that the f-k spectrum of data recorded on the
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topography is not well estimated with fft methods that assume regular sampling.
Consequently, the methods considered here assume the input data is in the space
domain and estimate the f-k spectrum at the datum.

DERIVATION OF TOPOGRAPHIC EXTRAPOLATION

Consider the geometry shown in Figure 1 where the datum plane is taken at z=0
and the topography is given by z=-h(x) where h(x) is a positive function giving the
topographic elevation above the datum. Then, an expression to upward continue
upgoing acoustic waves from z=0 to z=-h(x) using the PSPI algorithm is

(1)

where

. (2)

In equation (1) ϕ(kx,0,ω) is the spectrum of the data at the datum and the – subscript

on α indicates the direction of extrapolation. The insertion of the function h(x) in the
extrapolation phase shift accomplishes a variable-size extrapolation step. In this way,
we implicitly avoid the issue of the proper calculation of the f-k spectrum of the
recorded data.

We explore two options to recover ϕ(kx,0,ω) given ψ(x,-h(x),ω). First, we consider
the approximate inverse to equation (1) using the NSPS extrapolator (Margrave and
Ferguson, 1998). That is

(3)

where α(kx,x,ω) is the complex conjugate of α−(kx,x,ω). This expression has the

advantages of simplicity and that it does not, in principle, require that ψ(x,-h(x),ω) be
regularly sampled. This is analogous to computing the spectrum of an irregularly
sampled function by direct implementation of the forward DFT (discrete Fourier
transform). Letting LN symbolize the integral operator of equation (3), we have

. (4)

Here the middle form recreates equation (3) while the final form expresses the
expectation that ϕN approximates ϕ. If LP- is the linear integral operator of equation
(1), then equation (4) expresses the fact that LNLP- ~ 1 (Margrave and Ferguson,
1998).

Second, we consider the generalized, or pseudo-inverse, to (1)
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. (5)

If the square matrix LP
TLP is of full rank, then the generalized inverse is equivalent to a

least-squares solution. This approach is known to be a better solution to the irregular
data problem than the direct forward DFT (discrete Fourier transform) similar to
equation (3). Equation (5) can be computed directly using any of a variety of
numerical techniques. In this work we have used Matlab’s pseudo-inverse function
pinv.

Equation (4) can be viewed as an approximation to equation (5). Since LNLP- ~ 1
we can infer that LN~LP

-1; however, Lg
-1 will generally be a much stronger inverse for

LP.

EXAMPLES

As an illustration of these topics, Figure 2 shows a simple topographic profile
while Figure 3 shows an input wavefield consisting of eight horizontally aligned
impulses. In Figure 4 is the result of upward extrapolating these impulses to the
topography, using the PSPI expression of equation (1) and a recursive sequence of 5
m steps. Since the PSPI algorithm becomes very accurate in the limit of small
extrapolation steps, this can be considered as a nearly exact forward model. A
constant velocity of 2000 m/s was assumed and close inspection of Figure 4 shows
that the diffraction responses have identical asymptotic slopes but differing delays.

In Figure 5 is shown the result of using NSPS (equation (3)) to extrapolate the
wavefield of Figure 4 back down to the starting elevation. Unlike the upward
extrapolation, this was done in a single step whose magnitude varies with lateral
position. The resulting focal points are quite good for a test of this sort. Perfect
impulses are not recovered because inverse wavefield extrapolation never attempts to
recover the evanescent portion of the wavefield. Inversion of the evanescent
frequencies requires the application of a growing real exponential which is unstable.
The best that can be achieved is the recovery of an “x” pattern at each impulse
position. This result has achieved the expected image except that there is some slight
spatial variation in quality.

A full inversion using the pseudo-inverse calculation is shown in Figure 6.
Remarkably, this has recovered an almost-perfect image of the input wavefield. This
is because, in a noise-free simulation with high precision numerics, the pseudo-inverse
approach actually inverts the evanescent energy. It is interesting that, even though the
forward wavefield was calculated with 15 extrapolation steps, the inverse was
accomplished by inverting a one-step model. The full inversion of equation (5)
required ~1011 floating point operations while the direct NSPS approach of Figure 4
required only ~108 floating point operations.

A more realistic example uses the input dataset of Figure 7 that is identical to that
of Figure 3 but with 5% random noise added. The single-step NSPS inverse
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extrapolation is shown in Figure 8 and comparison with Figure 5 shows that the result
is just as good as before.

If the noisy data is inverted as before with the pseudo-inverse approach, the result
is unusable due to a tremendous amplification of the noise caused by attempted
inversion of the evanescent energy. Instead, a pseudo-inverse was used in which
singular values smaller that 4% of the maximum are not inverted. The result, shown in
Figure 9 is quite different from the exact result of Figure 6 and actually is similar to
that obtained, with much less effort, using NSPS (Figure 5). The width of the focal
points is determined by the back propagation of non-evanescent energy and is similar
in both Figures 9 and 5.

The strong diagonal artifacts seen in the inversion of Figure 9 can be reduced by
inverting yet fewer singular values (a softer inversion) as shown in Figure 10. In this
case singular values less than 12% of the maximum were not inverted. Though the
inversion quality is improved, the process still takes much longer than the one-step
NSPS result.

A final example of a more extreme topography problem is shown in Figure 11.
Here the topographic variation is nearly three times that of the previous model and
the velocity field between topography and datum (at 0 meters) shows complex
variation. The forward-modeled response (using the same input wavefield (Figure 2))
is shown in Figure 12 and its f-k spectrum is in Figure 13. The f-k spectrum of the
data in Figure 2 is shown in Figure 14 for comparison with Figure 13. The complex
(x,t) domain recording at the topography can be seen to have a muddied f-k spectrum
instead of the clear spectral lines of the input. (A constant-velocity phase shift from
one horizontal datum to another preserves these lines.)

The result of a single NSPS downward step is shown in Figure 15 and its f-k
spectrum is in Figure 16. A very good focus of each image point has been achieved
and the f-k spectral lines have been resolved fairly well. The variable velocity
structure beneath the topography suggests that better results could be obtained in this
case by recursively stepping to the datum. Figures 17 and 18 show the wavefield and
spectrum after taking five recursive steps to datum using the NSPS algorithm. In
comparison with the single-step results (Figures 15 and 16) the focal points are
sharper and the spectral lines are better resolved. In this case, more steps are not
much better as is seen in Figures 19 and 20 where twenty recursive steps were taken.

The recursive stepping was implemented by dividing the distance from the
topographic maximum to datum into n equal intervals. Across each interval, a variable-
size extrapolation step is taken. The step magnitude is zero if the topography is
beneath the bottom of the interval, equal to the interval thickness if the topography is
above the top of the interval, and equal to the distance from the topography to the
bottom of the interval for the intermediate case.

From the perspective of resolution, it is noteworthy that the impulses beneath the
topographic highs (e.g. the fourth and sixth from the left) are better resolved than
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those beneath lower spots. This is probably because the anticline topography allows
a wider range of scattering angles to be captured.

DISCUSSION

There are many other methods for migration from topography. One of the simplest
is to simply perform a Kirchhoff migration that raytraces traveltimes directly from
the topographic surface as in Wiggins (1984). An alternative approach has been the
use of the “zero-velocity layer” (Beasley and Lynn, 1992; Gray, 1997) in conjunction
with recursive finite-difference algorithms. This latter assumes that data have been
static-shifted to a horizontal datum above the highest point of the topography. Wave-
equation downward continuation is done assuming zero velocity (for diffraction
effects only) between the datum and the topography.

The method proposed here is most closely related to the zero-velocity layer, in
that a recursive downward continuation is done, but is distinct from it in that the
downward step size is modified, not the velocity. Conceptually, we advocate
stepping downward directly from the topography to a horizontal datum (below the
lowest topographic point) using a step size that is the vertical distance from the
topography to datum. For strong velocity variations, we advocate a similar process
using a series of recursive steps. This method does not require separating diffraction
and thin-lens effects in the extrapolator and is in approximate accord with the wave
equation. Furthermore, since we use the NSPS extrapolator, that expects a space
domain input, we do not assume that the data is regularly sampled on the acquisition
surface.

Many other problems remain to be assessed and addressed to make this a practical
algorithm. For example, geometric irregularities other that those due to topographic
fluctuations will cause additional difficulties in computing accurately the integral in
equation (3). Also, statics solutions are still the most reliable method of estimating in
short-wavelength variations in the near surface. A practical implementation of our
method must define how statics solutions should be incorporated. This is especially
problematic with residual statics techniques because they only estimate traveltime
delays and do not produce a near surface model.

More realistic topographic models should also be studied. The occurrence of great
topographic relief is often associate with thrust faulting and that can lead to strong
velocity gradients in the near surface that are much different than those modelled in
this study.

CONCLUSIONS

We have demonstrated that nonstationary phase shift methods, particularly NSPS,
can accurately account for topographic effects. The method advocated uses a
nonstationary phase shift that incorporates a laterally variable extrapolation step size
in addition to laterally variable velocity. Synthetic tests show results with NSPS that
are similar to a much more computationally expensive pseudo-inverse approach.
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Figure 1. The coordinate system and datum plane used in the theoretical description.

Figure 2. A simple topographic model.
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Figure 3. The input wavefield into the synthetic studies.

Figure 4. The result of upward extrapolating the wavefield of Figure 3 from z=0 to the
topographic curve of Figure 2. The PSPI algorithm was used with 5 m depth steps.
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Figure 5. The result of downward continuing the wavefield of Figure 4 from the
topography to the datum at z=0. The NSPS algorithm was used and a single laterally-
variable extrapolation step was taken.

Figure 6. The result of pseudo-inverse downward continuation, from topography to
datum, of the wavefield of Figure 4.
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Figure 7. The wavefield of Figure 4 with a low-level of random noise added.

Figure 8. The result of downward extrapolation, from topography to datum, of the
wavefield of Figure 7. A single step with the NSPS algorithm was used. Compare with
Figure 5.
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Figure 9. A pseudo-inverse downward continuation of the dataset of Figure 7. Most, but
not all, singular values of LP were inverted.

Figure 10. Similar to Figure 9 except that fewer singular values were inverted.


