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Elastic finite difference modelling with stability and 
dispersion corrections 

Peter M. Manning and Gary F. Margrave 

ABSTRACT 
This paper presents a very general method to limit the dispersion and instability 

inherent within finite-difference elastic modelling in two dimensions. The method is 
based on an extension of the Von Neumann stability analysis. For a fixed frequency 
an analytic relationship is derived between the continuous derivatives in the elastic 
wave equation and their second order finite-difference approximations. Typically, the 
continuous derivative is equal to a finite-difference result divided by a correction 
factor that is a squared sinc function dependant on frequency and grid size. When the 
continuous derivatives are replaced by these expressions, an exact formulation of the 
elastic wave equation results that involves finite differences and correction factors. 
These correction factors are all frequency dependent. The frequency dependence can 
be converted to wavenumber dependence using P and S wave velocities. This allows 
the correction factors to be applied as spatial filters. Numerical tests show that these 
correction factors compensate for a wide range of dispersion and instability. 

INTRODUCTION 
The fact that a simple substitution of finite differences for continuous differentials 

is unstable or dispersive has long been understood, for example as Von Neumann 
stability analysis in Aki and Richards (1980). The early studies showed the nature and 
magnitude of the problem in order to allow an appropriate selection of sample rates. 
Later papers addressed the economics of solving real problems, for example by using 
higher order spatial derivatives to allow a more coarse spatial sample rate as in 
Levander (1988). This report presents another approach to improving the estimate of 
continuous differentials by the type of analysis presented in Press et al (1992) for 
stability estimation. It is very similar to, and an extension of, the one spatial 
dimension study in Manning and Margrave (1999). 

The approach here will be to show that two dimensional finite difference formulae 
can be derived that will propagate pressure and shear plane waves in close 
approximation to the way that continuous equations will. The theoretical steps 
involved are presented in the following subsections: 

• The continuous wave equation 

• Pressure wave continuous solution 

• Equivalent finite difference pressure equation (has the same solution as the 
continuous equation) 

• Shear wave continuous solution 
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• Equivalent finite difference shear equation (has the same solution as the 
continuous equation and turns out to be the same as the pressure equation) 

• Formulation of frequency correction terms  

• Equivalent equation test 

Wavefield propagation examples will be shown in the section following the 
theory. 

THEORY 

The continuous wave equation 
The two dimensional, continuous, elastic wave equation is (along with a similar 

equation with x and z switched) 

 
( ) ( )

22 2 2

2 2 22 xz z zUU U U
z x z x t

λ µ λ µ µ ρ∂∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂ ∂

.
 

(1) 

Here λ and µ are the Lame elastic parameters for an isotropic medium and Ux and 
Uz  are the components of the particle displacement. 

Pressure wave continuous solution 

A monochromatic compressional plane wave propagating at an angle θθθθ to the z 
axis is shown in Figure 1, and can be represented by the formula 

 
( )( )cos sin  ,        sin  cos  i z x k tU k k x ze θ θ ω θ θ+ −= = +

! !" ! ! ,
 

(2) 

where the hat denotes a unit vector. In component notation 

x 

z 

θθθθ    

Figure 1. A monochromatic plane wave is shown propagating at an angle θθθθ. 
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( )( )cos sincos  i z x k t

zU e θ θ ωθ + −=  (3) 

 
( )( )cos sinsin  i z x k t

xU e θ θ ωθ + −= . (4) 

For the continuous case, the following derivatives of the compressional wave can 
be calculated 

 
( )( )

2
cos sin2 2

2 cos cos  i z x k tzU k
z

e θ θ ωθ θ + −∂ =−
∂  

(5) 

 
( )( )

2
cos sin2 2

2 cos sin  i z x k tzU k
x

e θ θ ωθ θ + −∂ =−
∂  

(6) 

 
( )( )

2
cos sin2sin sin cos  i z x k txU k

x z
e θ θ ωθ θ θ + −∂ =−

∂ ∂  
(7) 

 
( )( )

2
cos sin2

2 cos    i z x k tzU
t

e θ θ ωθ ω + −∂ =−
∂

. (8) 

To check that the pair of equations (3) and (4) are a solution of (1), equations (5), 
(6), (7) and (8) can be substituted into (1) giving 

 

( )( ) ( ) ( ){ }
( )( )

cos sin2 2 2 2

cos sin2

cos   2 cos sin sin

cos    

i z x k t

i z x k t

k e
e

θ θ ω

θ θ ω

θ λ µ θ λ µ θ µ θ

θ ω ρ

+ −

+ −

− + + + +

=−
. (9) 

This is true if 

 
( ) ( ){ }2 2 2 2 22 cos sin sink λ µ θ λ µ θ µ θ ω ρ+ + + + = , (10) 

and true if 

 
( ) ( ){ }2 2 2 2 2 2cos sin 2 cos sink λ θ θ µ θ θ ω ρ+ + + = , (11) 

and true if 

 

2
2

2

2 v
k α

λ µ ω
ρ
+ = = , (12) 

where vα is the compressional wave velocity. 

Equivalent finite difference pressure equation 
To investigate the results of a two-dimensional finite difference operator, the finite 

difference formulae can be applied to the waveform of equations (3) and (4). The 
second derivative in the direction of the axes is the same as the one dimensional form, 
so that 
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(14) 
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(16) 

 
( )( )cos sin2 2 2 2cos  cos  sinc

2
i z x k tz

z z
k zD U k e θ θ ωθ θ + −

∆

 ∆ =−   
, (17) 

which takes the same form as the continuous differential but with the extra sinc 
squared factor, specifically 

 

2
2 2

2 sinc
2
z z

z z
k z UD U
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Similarly it can be shown that 
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(19) 

 
( )( )cos sin2 2 2 2cos  sin  sinc

2
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x z
k xD U k e θ θ ωθ θ + −

∆

 ∆ =−     
(20) 

 

 

2
2 2

2 sinc
2
x z

x z
k x UD U

x∆

 ∆ ∂=    ∂
. (21) 

 
It should be emphasized that equations (18) and (21) are true only for a 

monochromatic plane wave characterized by the wave number k. 
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Equations (18) and (21) give the contribution of displacement in the z direction to 
acceleration in the z direction. The contribution from Ux has single differentials in 
both x and z. The staggered-grid representation displaces this x component one half 
grid spacing in x and z, and the output point then can be made to coincide with the 
output points for the terms in (18) and (21) as shown in Figure 2. 

 

x+∆x/2 x-∆x/2 

z-∆z/2 

z+∆z/2 

 

Figure 2. The arrows show the relative positions of the input and output displacements for the 
second term of equation (1) using the staggered grid. The output Z acceleration is in the 
centre. The four contributing input X displacements surround it evenly. 

The Ux contribution then takes the following form 
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2 2

cos sin
2 2

cos
2 2

sin

z xi z x k t

z xi z x k t

x z x z xi z x
D U

x z

e

e

e

θ θ ω

θ θ ω

θ

θ
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                        +   

 
(22) 
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(24) 

 ( )( )cos sin2
sin sin sin cos

2 2sin  sin cos
sin cos

2 2

x z x

i z x k t

D U
k x k z

k k x k z e θ θ ω
θ θ

θ θ θ
θ θ

∆ ∆

+ −

=
   ∆ ∆         − ∆ ∆  

(25) 
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   ∆ ∆  =−        
. (26) 

Again, this is similar to the continuous differential with the two sinc functions as 
extra terms, so 
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The time differential is identical to the one dimensional case, where 
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 ∆ ∂=    ∂
. (30) 

Shear wave continuous solution 
A two dimensional grid can also be expected to propagate a shear wave, and the z 

and x components of a possible shear wave (similar to expressions (3) and (4)) are 



Finite difference modelling 

 CREWES Research Report � Volume 12 (2000)  

 
( )( )cos sinsin  i z x k t

zU e θ θ ωθ + −=
 

(31) 

 
( )( )cos sincos  i z x k t

xU e θ θ ωθ + −=− . (32) 

The negative sign in (32) is required to give a displacement perpendicular to the 
propagation direction. Again, for the continuous case, similar to equations (5), (6) and 
(7), we have 
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∂ ∂  
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∂
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These four equations are substituted into (1) giving 
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This is true if 

 
( ) ( ){ }2 2 2 2 22 cos cos sink λ µ θ λ µ θ µ θ ω ρ+ − + + = , (38) 

and true if 

 
( ) ( ){ }2 2 2 2 2cos 2 cos sink λ λ θ µ µ θ µ θ ω ρ− + − + = , (39) 

and true if 

 

2
2

2 v
k β

µ ω
ρ
= = , (40) 

where vβ here is now the shear velocity. 

Equivalent finite difference shear equation 
Application of the finite difference formulae for the first term of the differential 

equation to the shear plane wave results in an expression that is similar to (17) 
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∆

 ∆ =−   
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Note that comparison of the finite difference and continuous differentials gives 
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, (42) 

which is exactly the same as equation (18). Similarly 
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. (45) 

Note that equations (21), (27) and (30) relating the finite difference and continuous 
differentials still apply. It appears that in general the continuous equation (1) can be 
represented by the following finite difference equation 
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   +   ∆        =     ∆      + + +        ∆ ∆∆                 

. (46) 

The spatial derivatives here will result in the same values as those calculated by 
the pseudo-spectral approach from Fornberg (1987). 

Formulation of frequency correction terms 
Note that the left side of equation (46) is fully determined because the complete 

wavefield in space is available to calculate the spatial wavenumbers in x and z. 
Therefore the acceleration can be calculated exactly. The sinc correction on the right 
side of the equation can not be made in a straightforward way because the temporal 
frequencies are not yet available. 

In the one-dimensional case the ωωωω can be determined from the formula ωωωω=vk, as in 
Manning and Margrave (1999). This works because there is only one velocity and it 
can be used to relate the spatial and time frequencies. In the two-dimensional case it 
can also be expected to work in the case where only one type of wave can propagate. 
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In the case of a compressional wave travelling in the z direction, the displacement 
in the x direction is zero, and the variation of the z displacement in the x direction is 
also zero. The only non-zero terms from equation (1) are then the first and the last so 
that 
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z t
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∂ ∂

. (47) 

Substitution of the finite difference second derivatives yields the equation 
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So the contribution of the first term of (46) must be corrected by the sinc function 
on the right above, yielding 
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Similarly, only the third term on the left of equation 1) is relevant to a shear wave 
propagating in the x direction, with the result 

 

2

2 2
t

2

sinc
2

D
sinc

2

x z z
x

v k t

D U U
k x

β

µ ρ∆ ∆

 ∆      = ∆    

. (50)
 

The factor for the centre spatial term of the equation was found by inspection, and  
the fully corrected finite-difference elastic wave equation is 
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 ∆    +  ∆    
 ∆ ∆ + −        +    ∆ ∆         

 ∆     +  ∆    

2
tD zUρ ∆

                     =                      

. (51) 

In principle, this equation is an exact reformulation of the elastic wave equation. 
No approximations have been made to accommodate finite differencing. Each 
additive term consists of a product of elastic constants, a finite difference operator, 
and a ratio of sinc functions. We refer to these various sinc function ratios as 
�correction factors�. If all of the sinc functions are set to unity, then the conventional, 
second order, finite difference elastic wave equation results. If the sinc functions are 
directly evaluated, they �correct� the finite difference for its dispersion and instability. 
However, the correction factors are frequency dependent and so must be applied as 
spatial filters. Furthermore, the correction factors all involve sinc functions that have 
zeros. We expect that the occurance of these zeros will limit the ability of these 
correction factors to fix dispersion and instability effects.  

Equivalent equation test 
To show that equation (51) propagates a pressure wave properly, a wave described 

by equations (3) and (4) can be used. Equations (17), (26), (20), and (29) describe 
how the finite difference operators apply to this wave. The right hand side of these 
equations may be substituted into equation (51). The spatial sinc functions obviously 
cancel out, and when the factor ( )( )cos sincos  i z x k te θ θ ωθ + −  is divided from both sides, the 
remaining terms are 

( ) ( )2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 sinc cos  k 2 sinc sin  k
2 2

sinc sin  k sinc sin  k sinc
2 2 2

v k t v k t

v k t v k t t

α α

β β

λ µ θ λ µ θ

ωµ θ µ θ ρω

   ∆ ∆  − + − +        
   ∆ ∆  ∆   + − =−              

. (52) 

This is true if 
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( ) 2 2 2 22  k sinc sinc

2 2
v k t tα ωλ µ ρω
   ∆ ∆  + =        

, (53) 

and true if /v kα ω= and ( ) 2 2 22 / /v kαλ µ ρ ω+ = = , consistent with the definition of 
pressure wave velocity. Note that this result is independent of θθθθ, and so it is valid for 
a pressure wave propagating in any direction. 

In a similar fashion, equations (31) and (32) describe an arbitrary shear wave. 
Equations (41), (44), (43), and (45) describe the results of applying the finite 
difference operators to this wave. This set of consistent equations may also be 
substituted into equation (51). The spatial sinc functions cancel out as before, and 
when the factor ( )( )cos sinsin  i z x k te θ θ ωθ + −  is divided from both sides, the remaining terms 
leave 

 

( ) ( )2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 sinc cos  k 2 sinc cos  k
2 2

sinc cos  k sinc sin  k sinc
2 2 2

v k t v k t

v k t v k t t

α α

β β

λ µ θ λ µ θ

ωµ θ µ θ ρω

   ∆ ∆  − + + +        
   ∆ ∆  ∆   − − =−              

. (54) 

This is true if 

 
2 2 2 2k sinc sinc

2 2
v k t tβ ωµ ρω
 ∆  ∆ =       

, (55)
 

and true if /v kβ ω=  and 2 2 2/ /v kβµ ρ ω= = , consistent with the definition of shear 
wave velocity. Note that this result is also independent of θ . 

APPLICATIONS 
The method described here has been tested by a straightforward Fourier domain 

approach. For each component, the result of each of the three finite difference terms 
were transformed into the Fourier domain and multiplied by the appropriate 
wavenumber surface. The components were then added together and inverse 
transformed for use in time stepping. Thus the correction factors are applied after 
each time step. 

An example of a wavenumber surface for the first term in equation (51) is shown 
in Figure 3. The two sinc functions correct for a net dispersion effect in the z 
direction, and a net unstable effect in the x direction. Figure 4 shows one quarter of 
the correction in space (it is symmetric in x and z). 
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Figure 3. The correction factor for term 1 in equation (51) is shown in the wavenumber 
domain 

 

 

Figure 4. The correction factor for term 1 in equation (51) is shown in space. 
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Several comparisons were made of finite-difference wave propagation with and 
without the correction factors. The first example is a 30 Hz P wave initiated in the 
centre of the model and propagated, uncorrected in Figure 5 and corrected in Figure 
6. 

 

Figure 5. An uncorrected P wave is shown after propagation through 120 time steps. Note the 
�square� shape to the dispersion pattern within the wavefront. 

 

Figure 6. This is similar to Figure 5 except that the correction factors have been applied after 
each time step. 
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The second example is a combination of two cylindrical source waves, one a 
pressure wave and the other a shear wave. The waves were initiated by defining them 
at two times separated by an interval equal to the sample rate. The definition at time 
zero is plotted in Figure 7. Both waves are 30 Hz Ricker wavelets in time. 

 

Figure 7. The initial P and S waves about to be propagated are shown in detail. The S wave 
is at upper left, the P wave is centred. 

 

Figure 8. The uncorrected model propagated 120 steps from Figure 7 is shown. Note that the 
scale has changed. The finer sample rate in space and time compared with Figure 5 has 
allowed the P wave to propagate quite evenly, but the S wave remains distorted. 

S 

P 
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Figure 9. This shows the corrected model propagation from Figure 7. The S wave has 
retained its circular shape and the P wave has retained its zero phase character. 

The propagated models are shown in the following figures. Figure 8 is uncorrected 
and Figure 9 is corrected. 

It is obvious that the uncorrected modelling has not propagated all the frequencies 
of the shear wave accurately, but the corrected modelling has. The pressure wave has 
been propagated by the uncorrected modelling in Figure 8 much better than in Figure 
6 because of the finer sample rate. However a close inspection of the uncorrected 
pressure wave in Figure 8 shows that it hasn't preserved the zero phase nature of the 
wavelet evident in the corrected version of Figure 9. Another method of comparing 
these results is shown in Figures 10 and 11 where individual traces through the model 
are displayed. The preserved zero phase nature of the pressure wave in Figure 11 is 
very obvious. 
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Figure 10. The uncorrected S wave (left) and P wave (right) are shown on a trace from Figure 
8. The S wave has been badly distorted and the P wave has been phase shifted. 

 

Figure 11. The corrected S wave (left) and P wave (right) are shown on a trace from Figure 9. 
Both S and P waves are zero phase. 

The corrected modelling can also allow for slightly unstable sampling. A pressure 
wave velocity of 2000 and a spatial sample rate of 6 requires a time sampling of less 
than .0021 (Lines et al (1999)). The uncorrected modelling in Figure 12 shows this 
instability after 6 steps because the sample rate is .0025. The corrected modelling in 
Figure 13 is stable (for 40 steps) until edge effects build up. 
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Figure 12. The start of unstable artifacts in an uncorrected model is shown here in the centre 
of the figure. These are caused by a time sample rate that is too large. 

 

Figure 13. The results of corrected modelling is shown here. The correction allows for an 
excessive time sample rate until edge effects grow too large. 

The methods developed here should improve the economics of finite-difference 
modelling. In timing comparisons, the corrected modelling of the P wave in Figure 6 
took 2.5 times the computation time of the uncorrected model of Figure 5. A halfing 
of the sample rate and doubling of the number of samples in x, z, and t would give 
results equivalent to those for the uncorrected P wave in Figure 8 and cost 8 times as 
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much for lower quality. If short correction operators in the space domain can be 
developed, the economics could be improved much more by avoiding the long 
Fourier transforms used for the tests here. 

CONCLUSIONS 
The corrections developed in this paper for finite�difference modelling have been 

proved to propagate plane waves in arbitrary directions exactly like the continuous 
solution would. Since the continuous solutions have no dispersion or instability, the 
equivalent finite difference solutions should be stable and non-dispersive also. Many 
non-plane waves can be composed from plane waves, and they too should be 
propagated correctly. 

Application of the theoretical corrections to practical models have confirmed the 
stable and non-dispersive properties. The corrections were applied in the frequency 
domain after Fourier transforms, and even though no special coding was used to 
suppress edge effects or wraparound, the results were satisfactory except in the basic 
unstable case. 

The corrected modelling proved to be much more efficient at providing high 
quality results than smaller sampling rates with uncorrected modelling. Far more 
efficient methods of applying corrections can be expected in the future. 

FURTHER WORK 
The highest priority will be given to making corrections in the space domain 

instead of the Fourier domain. Figure 4 shows an operator in the space domain, and 
the small size of the coefficients is typical. This should make space domain 
convolutions quite practical. 
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