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ABSTRACT 
It has been shown (e.g., Cox, 1999, Section 7.9.2) that one difficulty of the cross-

correlation procedure in trim statics is that it is possible to have spurious reproduction 
of signal.  This phenomenon is quantified and is shown, in the limits of large fold, 
small correlation window, and large maximum allowable shift, to behave as a simple 
function of these variables for physically reasonable wavelet lengths.  A quantitative 
expression for the cross-correlation coefficient of purely random traces is obtained 
which appears to be valid within certain limits.  These results are of particular value 
in that they allow one to predict what choice of cross-correlation parameters are likely 
to result in spurious alignment of noise. 

INTRODUCTION 
Individual traces possess small (and in some cases large) time shifts relative to 

each other.  Statics calculations attempt to correct for these errors.  A statics 
procedure typically begins as follows:  First, traces with the same midpoint are 
stacked together to form a reference or pilot trace.  Second, the individual traces are 
scaled to a common rms amplitude.  Third, a time cross-correlation function is 
calculated between each individual trace and the reference.  Finally, the time shift 
corresponding to the largest cross-correlation value is identified for each trace.  This 
process of picking the time shifts is the focus of this paper. 

When calculating the cross-correlations, it is important to keep in mind the role of 
the maximum allowable shift (which we will denote tmax).  If too small of a tmax is 
chosen, then the algorithm will not be allowed to explore enough of the cross-
correlation function to properly correct the traces.  If too large of a tmax is chosen, 
incorrect alignment can occur through processes such as cycle skipping (Yilmaz, 
1987; Cox 1999). 

The purpose of this paper is to study the ability of the time-pick algorithm to 
spuriously align noise in individual traces in order to reproduce a reference trace.  To 
do this we synthesize traces out of pure random noise and apply the cross-correlation 
procedures.  From this we are able to provide quantitative guidelines that will help to 
prevent noise alignment with real data. 

DESCRIPTION OF CALCULATION 
The study is based on several series of calculations.  Each calculation involves 

generating M reference traces, and, for each reference trace generating n individual 
traces to be stacked.  A correlation function is calculated between each reference trace 
and each one of the traces in its stack, and, within a given maximum allowable shift 
(tmax), the optimal shift is located which gives the maximum cross-correlation.  The 
traces are then stacked using their optimal shifts, and the stacked trace is then cross-
correlated with the reference trace to obtain an estimate of the similarity of the two.   
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The output of the calculation consists of the cross-correlation coefficient (ccc) 
between the stacked trace and the reference trace averaged over the M reference 
traces.  We will denote this <ccc>, where <�> indicates an average over the M 
reference traces.   <ccc> = 0 implies that no signal has been generated, while <ccc> = 
1 implies that the reference trace has been perfectly reproduced.  The signal to noise 
ratio (SNR) may be estimated as 

 SNR = <ccc > / (1−<ccc>). (1) 
The following algorithm generated each of the M reference traces for each 

calculation.  Each point in the .002s sample rate trace was assigned a random number 
between −1 and 1.  The trace was cubed in order to thin out the number of major 
peaks while preserving the sign.  This result was convolved with an Ormsby wavelet 
of duration v.  The trace was then multiplied by a window function which has a value 
of 1 from �w/2 to w/2, and 0 elsewhere. This defines a correlation window of 
duration w.  Because the reference trace is truncated to zero outside of the window, 
we are able to use an FFT procedure to carry out the cross-correlation more 
efficiently. 

 Each reference trace was associated with a stack of n traces.  These were 
generated in the same fashion as the reference trace, but with a length of w+2tmax. For 
zero time shift, the center of the reference trace was assumed to coincide with the 
center of the traces to be stacked.  We were thus able to model displacements of up to 
± tmax.  These traces are intended to model random noise traces.  

The variables that are adjusted for each calculation are the window size (w, in 
seconds), the maximum allowable shift (tmax, in seconds), the number of traces to be 
stacked (n), and the wavelet duration (v, in seconds).  Other variables that we hold 
fixed are the number of reference traces (M = 10) and the wavelet parameters (f1 = 
0.4/v,  f2 = 0.8/v,  f3 = 4.0/v,  f4 = 5.6/v).   

We present the data as plots of <ccc> as it varies with combinations of w, v, n, and 
tmax.  We also present some representative collections of reference traces and 
corresponding synthetic stacked data. 

RESULTS OF CALCULATION 

Degree of alignment for representative ccc values  
Figures 1a through 1e each illustrate ten different stacks produced by the 

correlation procedure with a given reference trace.  These particular calculations used 
parameters of w = .256s, tmax = .032s, and v = .08s.  Values of n vary from n = 1 in 
Figure 1a to n = 50 in 1e.  
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Figure 1.  In each part, a)-e), of this figure, n randomly generated traces are each correlated 
with the given reference trace (which is repeated three times for visibility).  The n traces are 
then stacked, and the cross-correlation coefficient (ccc) is calculated between the reference 
and the stack.  This process is repeated for nine more sets of n traces to give a total of ten 
stacks (shown in each part) and ten ccc values, which are averaged to obtain <ccc>.  It is 
clear that as <ccc> increases, the reproduction of the reference trace improves as well.  All 
calculations used the parameters w = .256s, tmax = .032s, and v = .08s.  The SNR for each set 
of stacks as estimated from Eq.(1) is a) 0.47 b) 1.1 c) 1.7 d) 2.6 e) 9.0. 

It is clear that for a large enough n the random noise can reproduce the reference 
signal.  As a rough guide we might say that at ccc = .9 there is good alignment, at ccc 
= .7 there is moderate alignment, and at ccc = .5-.6 there is emerging alignment.  For 
ccc = .3 there is essentially no alignment.  We now turn to delineating the dependence 
of the ccc on n, w, and tmax for values of v between .02s and .16s. 

ccc dependence on w and n  
In this section we establish that ccc varies as the square root of w/n, and that w/n 

and tmax are variables independent of each other.  To show this we begin by plotting 
values of  <ccc> against w and n. 

In Figure 2 the dependence of <ccc> on n is given for v = .08 and for a selection of 
values of w and tmax. In Figure 3 the dependence of <ccc> on w is given for v = .08 
and for a selection of values of n and tmax.    
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Figure 2.  The variation with number of stacked traces (n) of the averaged cross-correlation 
coefficient (<ccc>) between a reference trace and stacked, correlated random noise.  Note 
that in the plots t is the same as tmax.  

 

Figure 3.  The variation with correlation window (w, in seconds) of the averaged cross-
correlation coefficient (<ccc>) between a reference trace and stacked, correlated random 
noise.  Note that 1−<ccc> appears to vary as √w. 
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After considering the behaviour of the data in these two figures, it is appropriate to 
recast them in Figures 4 and 5, where the same information is given but in the form of 
(1−<ccc>) vs. √(w/v/n), where v is included to scale w to a unitless quantity.  In 
Figure 4 the value of w is fixed in each plot and only n varies, while w varies and n is 
fixed in Figure 5.  At least two aspects of these graphs are noteworthy.  First, a linear 
approach to the origin is apparent both for large n and for small w.  Second, the lines 
are grouped according to the value of tmax, not only within each graph, but between 
graphs as well. 

It is also apparent that the linearity degrades slightly for the very largest values of 
n and very smallest values of w.  In the case of w this is because the traces are in 
numerical form, and <ccc> must take on a value of unity for w = dt.  Thus in Figure 5 
the curve tends to zero slightly before the origin. 

 

Figure 4.   The variation with number of stacked traces (n) of the averaged cross-correlation 
coefficient (<ccc>) between a reference trace and stacked, correlated random noise.  This is 
the same data as in Figure 2, but 1−<ccc> is plotted instead of <ccc>, and 1/√n instead of n. 
Furthermore, n is scaled by v/w.  Note the linear behaviour for large n, and that plots are 
grouped by their value of t (same as tmax). 
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Figure 5. The variation with correlation window (w) of the averaged cross-correlation 
coefficient (<ccc>) between a reference trace and stacked, correlated random noise.  This is 
the same data as in Figure 3, but 1−<ccc> is plotted instead of <ccc>, and √w instead of w. 
Furthermore, w is scaled by 1/(nv).  Note that lines are grouped by their value of t (same as 
tmax) in this Figure, and also that lines in Figure 4 with a given value of t are similar in the 
linear region to lines in this Figure with the same value of t.  

The linear behaviour of these graphs can be readily rationalized.  Allowing a non-
zero tmax for random noise traces endows them with an effective non-zero signal-to-
noise ratio.  Noise in averaged samples generally decreases as 1/√n, and this is 
precisely what is observed here.  However, if the correlation window size is doubled, 
there are twice as many points to align with, and thus twice as many traces are 
required to produce the same result.  On the basis of these plots then it seems 
reasonable to write the large-n, small-w limit of <ccc> as 

 
nvwvtfccc /)/(),(1 max>=<−

 (2) 
where, according to the above figures, f is a decreasing function of tmax, as would be 
expected.  We next delineate this function. 

ccc dependence on tmax  
Can we make some guesses as to the likely form of f?  For a trace of random 

points, not convolved with a wavelet, displacing a trace over an interval of 2tmax 
relative to the reference trace would be analogous to comparing the reference trace to 
(2tmax/dt)+1 different traces (dt is the sample rate).  Convolving with a wavelet results 
in an auto-correlation length of ∼v, so that shifting the trace over an interval of 2tmax 
would be similar to comparing the reference trace to (2tmax/v)+1 different traces.  
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Thus, by analogy to the <ccc> dependence on n, it is reasonable to attempt a plot of 
(1−<ccc>) vs. 1/√(2tmax/v+1).  This exercise is carried out in Figure 6.   

 

Figure 6.  The variation with maximum allowable shift (tmax) of the averaged cross-correlation 
coefficient (<ccc>) between a reference trace and stacked, correlated random noise.  Note 
that the behaviour is linear for large tmax, but that the plots do not approach the origin.    

The behaviour is indeed linear, but does not intersect closely to the origin.  As 
expected, the lines are grouped according to their value of w/n.  One could further 
specify Eq. (2) in its large-tmax limit as 

 
nvwvtBAccc /)/(]1)/2(/[1 max ++>=<−

 (3) 

where A and B are unknown constants, which may depend on v, but not on w or n. 
A and B can be evaluated by obtaining the slope and intercept of the linear part of  

each line in Figure 6, and dividing those values by √(w/v/n), then averaging the 
results.  This gives A = .14±.05 and B = .36±.08 for v = .08s.  Note that A and B are 
both dimensionless. 

How sensitive are A and B to the value of v?  We have repeated the calculation 
above for data obtained using v = .02s and v = .16s, with results for (A,B) of 
(.21±.03,.38±.09) and (.12±.06,.31±.12) respectively.  From this it appears that both 
A and B decrease with v, but on the other hand, taking the error limits into 
consideration, all of the above would be consistent with A = .18 and any B in the 
range .29 to .43.  We conclude that in the range of physically relevant wavelets, a 
convenient expression for the cross-correlation coefficient is 
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vw

vt
ccc /

1)/2(
2118.01 )(

max +
+−≈

 (4) 

From the regions of Figures 4 through 6 where linear behaviour is observed to begin 
(and from similar data for v = .02s, .16s not shown), we surmise that this expression 
should be applicable at least for tmax >0.06s and w/n<0.03s, and for .02s<v<.16s. 

ccc dependence on v 
In the previous section we assumed that A and B of Eq. (3) are roughly 

independent of v.  Figure 7 shows the behaviour of  <ccc> with varying v.  It is 
apparent that <ccc> changes but little with v, and compares favourably with 
behaviour predicted by Eq.(4).  For instance, two features of the data points that are 
consistent with the Eq.(4) are, first, tany change that <ccc> does experience is a 
monotonic increase with v, and second, that v is independent of w/n, as the two plots 
in Figure 7 with the same value of this ratio overlie each other.  Improvements to 
agreement to agreement with Eq.(4) would probably come through refining the 
dependence on w/n. 

  

Figure 7.  The variation of <ccc> with the wavelet length, v.  Values derived from the cross-
correlation procedure are given as points, while values from Eq.(4) are given as 
corresponding solid lines.  Note that <ccc> varies little with v.  Any increase is monotonic, in 
agreement with Eq.(4), and the two plots with the same value of w/n lie over top of each 
other, also consistent with Eq.(4). 
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APPLICATION 
In carrying out trim statics corrections, such as in the first step of a residual statics 

calculation, Eq. (4) should be applied to any contemplated set of correlation 
parameters.  If a value of ccc ≥ 0.6 is obtained, then it is possible that the correlation 
procedure will result in the spurious alignment of noise, unless there is a good signal-
to-noise ratio in the individual traces.  Conversely, if ccc ≤ 0.5 is obtained, then 
spurious alignment is unlikely, even for noisy data.   

The present study was carried out with the extreme case of  random noise data.  
Real data has some degree of signal, so there would be a competition between signal 
and noise for alignment.  Thus it is conceivable that cross-correlation could be valid 
even if Eq.(4) predicts a value of ccc > 0.6.  A further paper (Ursenbach, 2000, this 
volume) builds on the results of this study to consider the separate problem of 
distinguishing between alignment of signal and noise. 

CONCLUSIONS 
In the large-n, small-w, and large-tmax limits, the correlation procedure of trim 

statics time shift selection is shown to be capable of aligning random noise traces to 
reproduce a given reference trace.  The functional dependence on these parameters is 
shown to follow a reasonable and simple form for physically sensible v values.  This 
result can be of considerable practical help in choosing parameters for cross-
correlation procedures. 
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