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ABSTRACT 
Cluster analysis is used to construct fluid flow zones from seismic attributes. The 
steps are: 1. Remove grid points that contain outliers in any seismic attribute; 2. Scale 
each attribute to zero mean and unit variance; 3. Use principal component analysis to 
transform the scaled attributes to uncorrelated principal component attributes; 4. 
Principal component attributes are grouped into categories of similar seismic response 
using cluster analysis; 5. Upscale the seismic grid to the computational grid scale 
using a weighted voting procedure (morphing); 6. Spatially filter cluster assignments 
to remove small, isolated spots using a weighted voting scheme; 7. Assign a seismic 
zone to spatially connected elements with the same cluster category. Using a Gulf of 
Mexico test case, the zoning procedure produced useful computational zones and 
reduced the time required for history matching.  

INTRODUCTION 
Subsurface flow simulation models require the specification of permeability and 

porosity at every node within the computational mesh. The values of permeability and 
porosity are not known with high precision because data are only sparsely sampled, 
interpolations are inexact, the scale of permeability measurements is different from 
the scale of the computational mesh and measurements are inexact. Consequently 
flow simulators must be calibrated. Optimization techniques can be used to perform 
calibrations.  

The number of elements in a computational mesh can be in the tens of thousands 
so that the optimization problem is computationally intractable. One approach for 
alleviating the problem of high dimensionality is to group nodes into spatially 
continuous zones that are updated as a group. In general this has been done on an ad 
hoc basis. 

In the following, a methodology is described for using a spatially dense set of 
geophysical attributes to create spatial zones. The fundamental assumption is that 
spatially continuous areas of similar geophysical response are areas of relatively 
homogeneous hydraulic properties. The method will be applied to a 3D seismic data 
set acquired over a field in the Gulf of Mexico. 

THEORETICAL OVERVIEW 
It is assumed that a geologic interpretation has defined the geometry of the aquifer 

boundaries and significant, well-defined lithologic units. A geologic mapping is then 
conducted within these boundaries. The process of geologic mapping, or, in the 
present case zone definition, involves the identification of homogeneous regions 
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(Harf & Davis 1990). The first step is typification or classification, in which the 
distribution of multivariate attributes is divided into a set of classes. The second step 
consists of regionalization, in which classes from the first step are divided into 
continuous regions of relatively homogeneous classes.  

Cluster analysis will be used to classify points within a seismic volume into 
categories of similar seismic response. Clustering is done on the basis of seismic 
attributes. After spatial filtering, spatially continuous areas containing elements with 
the same classification category are grouped into seismic zones. The processing steps 
are described below. 

Outlier removal 
In the following processing steps, seismic attributes will be transformed to zero 

mean, unit variance and a Principal Component Analysis will be performed on them. 
Bad data and outliers can significantly degrade the quality of the results of these 
steps. For that reason, elements within the seismic volume that contain bad data or 
outliers are removed (trimmed) at the start of the processing stream. The trimmed 
elements will be subsequently assigned cluster categories during the spatial filter 
(morphing) step.  

Seismic attribute transformation 
The magnitude and range vary greatly between different seismic attributes. In 

order to improve the performance of the following statistical analysis steps, each 
seismic attribute is transformed into a zero mean unit variance set. 

Principal component analysis 
Clustering will be used for classification (Jain & Dubes 1988). Clustering is based 

on the definition of a proximity measure. The proximity measure is the quantification 
of the difference between two attribute vectors that are referred to as objects. 
Statistical correlation between attributes complicates the calculation of the proximity 
measure. Accordingly, the zero mean, unit variance attribute vectors are transformed 
using principal component analysis (PCA) to create a new data set in which the vector 
elements are not correlated. 

PCA is used to create a new set of primary variables from linear combinations of 
original primary variables. Linear correlation does not exist between the PCA 
transformed variables. The principal components of a random vector are not scale-
invariant, but all of the variables have been transformed to zero mean and unit 
variance in the previous processing step. In general, only the principal components 
that account for the majority of the variance would be used in the cluster analysis, and 
the principal components that only explain minor amounts of variance would be 
ignored.  

Cluster analysis 
Cluster analysis divides data sets into groups (clusters) of observations that are 

similar in a well-defined way. Dissimilarity is the measure of the difference between 
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two data points. The partitioning algorithm CLARA (Chapter 3 Kaufman & 
Rousseeuw 1990) is used to perform the clustering. CLARA creates a partitioning 
clustering as opposed to a hierarchical clustering. The advantage of the algorithm is 
that it requires significantly less storage and memory than hierarchical algorithms, so 
that CLARA can deal with very large datasets. 

The results presented in this paper are based on the dissimilarity measure: 
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where dlk is the dissimilarity between the lth and kth objects (transformed attribute 
vectors associated with a location in the seismic data volume), PN  is the number of 
retained principal components and P

jla is the jth principal component element of the lth 
object. Other dissimilarity measures are possible and more work remains to define the 
optimal clustering norm. Superscript P is to indicate principal component data as 
opposed to the original data. 

Spatial Filter (morphing) 
Spatial filtering is used to remove small, isolated areas of a single cluster category 

and to upscale the cluster categories of the geophysical data grid to the computational 
grid.  

Cluster categories have no inherent rank order, and our scheme is based on a 
weighted voting criterion. A weighting template is fixed on each element in turn 
(Figure 1). The centre to centre distances between the element E and the surrounding 
elements are calculated. Elements whose distance is less than the analyst defined 
filter radius rf are active in the vote for element E. In Figure 1, the element E and the 
eight surrounding elements are members of the filter. Each category k, receives votes 
according to the equation:  
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where Wf is the weight of voting element f , Nf is the number of voting elements, Nk is 
the number of categories and ( )kδ  is the Kronecker delta which is equal to one if 
element f is in category k and zero if element f is not in category k. After all the filter 
elements have been polled, element E is assigned the category with the largest 
weighted vote. Ties are assigned by a random draw from the tied categories.  

The morphing procedure is aggressive. The filter is sensitive to choice of filter 
radius and filter weights. To date our experience is that the filter radius should be kept 
small and that local voting exerts a strong filtering effect. Several weighting 
alternatives exist. To date most of our experience has been with a modified inverse 
distance weighting. 
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where WEf is the voting weight of filter element f  (f≠E) and rEf is the distance 
between the centre of element f and element E. The distance rEf is normalized by the 
element width so that rEf=1 for adjacent row elements. The contribution of the 
element to its own vote WEE is set independently. The larger WEE, the more tendency 
for the element to remain in the same category. 
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Figure 1. Weighting Template. The weighting template geometry for element E is defined by 
the filter radius rf. The filter weights (WiE) are calculated based on the distance between the 
centre of element E and the centre of the filter element (e.g. r8E).  

Other weighting schemes are possible, such as schemes based on the spatial 
correlation structure. Optimizing the weighting scheme remains an area of future 
work. 

Upscaling 
In some cases, a geophysical attribute grid will contain more elements than desired 

for the computational grid. Morphing can be used to upscale the geophysical grid 
cluster assignments to cluster assignments on a coarser computational grid scale. A 
weighting template is defined by the analyst. The centre of the template is set on the 
centre of the new upscaled grid element. The upscaled grid element is assigned to the 
category with the largest vote count. Uniform weights on a template which covers the 
area of the upscaled element appears to work well, but more work needs to be done. 
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Removing small features (spot removal) 
Small, isolated groups of elements with the same cluster category will yield zones 

that have minor impact on the flow system. In general, the data available for 
parameter estimation will be insensitive to these small zones. However, these zones 
significantly increase the number of decision variables. Consequently, after upscaling, 
small, isolated groups of cluster categories are removed using the morphing 
procedure. First, cluster categories are assigned with the morphing procedure to all 
elements that were removed during trimming. Then, a minimum region size for 
elements with the same classification is defined. All �spots� that are less than or equal 
to the analyst specified size are removed by sequential morphing of the elements 
within the spot (Figure 2). In other words, the elements within the spot are assigned 
new cluster values based on the voting criterion described previously. Generally, the 
weight of the element being reassigned is set to zero (WEE=0). It is our experience to 
date that spot removal through morphing can be effective in reducing the number of 
regions without the loss of important detail.  

 

Figure 2. Spot Removal. A. Minimum region size is set to three. The three white elements 
constitute a single region completely surrounded by other categories. B. Each element is 
morphed in turn until they are all assigned categories of the surrounding cells. The new 
assignments depend on the weighting template that is used. In example B, an inverse 
distance weighting function was used. 



Bentley, Huang, and Laflamme 

 CREWES Research Report � Volume 12 (2000)  

Regionalization 
Regionalization is the process of forming geometrically continuous zones of 

relatively homogeneous classification. This process requires the definition of 
boundaries between zones of homogeneous classification. The boundaries will then 
define the geometric limit of zones. The zones must be indexed and every element in 
the computational mesh is assigned to an indexed zone. Regionalization is performed 
using a simple search algorithm. The search begins at an element which has not been 
assigned a zone and continues until another connected element of the same cluster 
category cannot be found. A node can be connected along an element face, edge or 
corner. For example, the three white elements in Figure 2A would be classified as a 
zone with three elements. 

EXAMPLE 
Data from a three-dimensional seismic survey in the Gulf of Mexico will be used 

to demonstrate the method. The survey was conducted over a turbidite sheet sand 
reservoir offshore Louisiana before production (Huang et al. 1997). The data from the 
top of the target zone was extracted and used to perform a 2-D seismic zonation for 
eventual use in a flow model. There are 15,306 seismic elements in the areal two-
dimensional grid that covers the survey area. 

From the many possible seismic attributes, seven were chosen for use in the 
seismic zonation procedure. Clusters were created using instantaneous phase, 
instantaneous amplitude, instantaneous frequency, amplitude weighted frequency, 
energy weighted instantaneous frequency, average energy and arithmetic mean. These 
attributes were chosen because previous work indicated that they were the most 
sensitive to changes in porosity.  

Clustering 
Data was trimmed and each attribute was transformed into a zero mean unit 

variance equivalent. PCA analysis was performed on the trimmed, transformed data, 
and the objects were clustered into seven categories based on the dissimilarity 
measure of equation (1) using all seven principal components. The trimmed elements 
were reassigned by morphing with a template radius of 1.5 blocks (i.e. 9 element 
template shown in Figure 1) and all voting weights equal to one. A voting radius of 
1.5 is used because it is greater than the square root of two, so corner elements are 
included, but less than 2 so the next layer of elements is excluded. The results are 
shown in Figure 3. The 15,306 seismic elements are reduced to 2,504 regions after 
clustering and regionalization. The number of decision regions has been reduced by a 
factor of six, but it is still large. 

Morphing 
Many small regions exist that are not hydraulically signficant at the field scale. 

Consequently, the clustered data will be spatially filtered to remove sequentially 
larger and larger isolated spots until significant structure is lost. In this way, the 
number of seismic zones will be reduced, without affecting the ability of the 
simulator to capture the aspects of flow required in the parameter estimation step. In 
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the following, the weighting templates all have template radii of 1.5 elements (Figure 
1) and the voting weights are calculated using equation (3) with the distance 
normalized by the element width. The centre element weight is equal to one.  

 

Figure 3. Seismic clusters. Results of seismic clustering with seven categories and trimmed 
elements reassigned. 

 

Figure 4. Spot removal. Spots of categories with continuous area of four and less elements 
have been removed from the image in Figure 3. 

Removing spots of size one yielded 1,201 regions. From these results, removing 
spots of size two yielded 772 regions. Sequentially removing spots of size three, four 
and five yielded 588, 466 and 393 regions, respectively. Visually, it appeared that 
some significant detail was being lost after removing spots of five and less elements. 
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The results after removing regions of four and less elements were deemed appropriate 
for flow modelling and they are shown in Figure 4. 

Upscaling 
It was decided that a coarser computational mesh was desirable. Consequently, the 

seismic grid was upscaled to a coarser computational grid using the morphing 
procedure. Square zones of three by three seismic elements were combined into one 
computational grid element. The pre-morphing cluster categories shown in Figure 3 
were used. A three by three weighting template was centreed on the centre element of 
the three by three region to be upscaled. The voting weights were all set to one. The 
upscaling reduced the number of elements from 15,306 to 1,716 and produced 320 
regions before spot removal. The upscaled image is shown in Figure 5. 

 

Figure 5. Upscaled clusters. Seismic clustering from Figure 3 is upscaled to computational 
mesh scale using a 3X3 template. 

Spot removal on upscaled grid 
The image in Figure 5 was morphed to remove regions of size one using a three by 

three template with all weights except the centre weight equal to one. The centre 
weight was set to zero. This resulted in a reduction from 320 to 134 regions. Using 
the same weighting pattern, the image in Figure 5 was morphed to eliminate all 
regions of size two and less, resulting in a reduction from 320 to 86 regions (Figure 
6).  

FLUID FLOW MODELLING 
The example site was modelled using a computational mesh with 1,716 elements 

like those in Figure 6. When a fluid flow simulator is run, the permeabilities are not 
well known. They must be adjusted so that the output of the model matches the 
observed changes in the reservoir. This is known as �history matching.�  In the past 
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most history matching has been done with production volumes and pressures at 
producing and injecting wells. This leads to nonunique estimates of the 
permeabilities. Recently, production and seismic history have been matched 
simultaneously (Huang, et al. 1997), reducing the nonuniqueness of the solution.  

 

Figure 6 Spot removal of upscaled categories. The upscaled image in Figure 5 has isolated 
spots of size two and less removed. 

Permeabilities of the model were adjusted by matching the production and seismic 
histories. The history match was accomplished with a simulated annealing 
optimization algorithm (Huang, et al. 1997, 1998). In one case the permeabilities of 
the entire set of 1,716 elements were used as decision variables. In a second case only 
permeabilities of the 86 zones shown in Figure 6 were used as decision variables. The 
predicted change in seismic response of the optimized nonzoned case is shown on the 
left of Figure 7, the actual change in seismic response is shown in the centre and the 
predicted response of the optimized 86 zone case is shown on the right. The unzoned 
optimization calculation took over seven days of computer time and the zoned case 
about two days demonstrating the value of the reduced dimensionality and zoning. 
The quality of the solutions is comparable. Figure 8 compares the observed water cut 
to the 86 zone optimized solutions for production history match, seismic history 
match and simultaneous production-seismic history match.  

DISCUSSION 
The clustering procedure combined with morphing has produced a set of seismic 

zones that have captured the main features of the spatially distributed clusters. The 
zones have been used with an automated history match and they have performed well 
for this data set indicating that zonation of fluid flow models using seismic cluster 
analysis has merit. Reduced dimensionality lead to reduced computational effort. 
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Figure 7. Comparison of observed (centre) and predicted changes in seismic response. The 
image to the left is the predicted solution of the unzoned optimized solution and the image to 
the right is the predicted response of the 86 zone optimized solution. 

The fundamental assumption of the method is that continuous areas of similar 
geophysical response are also continuous areas of relatively similar hydraulic 
properties. Seismic attributes will be affected in a complex way by lithology, 
porosity, fluid saturation, layer thickness, depth and the properties of the over and 
underlying materials. With only a limited number of categories, it is possible that 
different combinations of these variables could generate seismic attribute objects that 
are classified into the same cluster category.  Since the end use of the zonation is to 
create separate zones for decision variables, the nonuniqueness will not cause 
problems as long as the different geologic regimes which have been assigned the 
same cluster category are spatially separated. A potentially more difficult problem 
exists where seismic response is dominated by the fluid saturation as may occur in 
gas zones. In those cases, it may be that variations in the porosity, lithology and other 
geologic factors which control fluid flow are masked and the area is not subdivided 
into appropriate zones. 

The analyst must make several decisions during the seismic zonation procedure 
and much work remains to develop guidelines and quality control measures. The 
major issues are the number of clusters to use, the shape of the voting templates, the 
voting weight selection and the size of spot removal that is appropriate. A measure of 
the quality of the final zonation needs to be developed. In addition, it may be 
necessary to vary the morphing filter spatially, because some areas will require more 
detail than other areas. 



Fluid flow modelling with seismic cluster analysis 

 CREWES Research Report � Volume 12 (2000)  

Figure 8. Production History 

CONCLUSION 
A method has been presented for creating parameter zones from a multi-attribute 

geophysical data set. The objective is to create zones that will reduce the 
dimensionality of decision variable sets used in fluid flow simulator calibration 
routines. The example data set consists of a set of seismic attributes at each location 
within a seismic grid. The primary assumption is that continuous areas of similar 
seismic response will be areas of relatively homogeneous hydraulic response. The 
procedure is: 

1. Remove grid points that contain outliers in any seismic attribute.  

2. Scale each attribute to zero mean and unit variance.  

3. Use principal component analysis to transform the scaled attributes to 
uncorrelated principal component attributes. 

4. Principal component attributes are grouped into categories of similar seismic 
response using cluster analysis.  

5. Upscale the seismic grid to the computational grid scale using a weighted 
voting procedure (morphing). This step is performed only if required. 

6. Spatially filter cluster assignments to remove small, isolated spots using a 
weighted voting scheme.  
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7. Assign a seismic zone to spatially connected elements with the same cluster 
category.  

The procedure was applied to a data set collected over a turbidite sand sheet 
located in the Gulf of Mexico. The 15,306 points in the seismic grid were reduced to 
466 regions with the removal of regions of size 4 and less while maintaining the main 
structure of the original cluster category map. An upscaled cluster map for use with a 
computational grid was constructed from a three by three element upscaling using the 
morphing procedure. After removing regions of two and less elements, the 1,716 
elements contained 86 seismic zones.  Visually, these zones look suitable for use in a 
fluid flow simulator. The zoned computational grid provided production and seismic 
history matches that were similar in quality to the unzoned grid. The reduction in 
dimensionality significantly reduced the computational effort required to achieve the 
history matches. 
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