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ABSTRACT 
As a seismic wave propagates through the earth, its amplitude attenuates over time 

and frequency due to microscopic processes such as internal friction. Thus, on one 
hand, the earth is an anelastic medium; on the other hand, Hooke�s law, which is 
normally used in the derivation of the wave equation, applies only to perfectly elastic 
media. Despite that fact, seismic attenuation can be modelled macroscopically over 
typical seismic bandwidths via an exponential amplitude decay in both time and 
frequency, at a rate determined by a single dimensionless quantity, Q.  

Current seismic deconvolution methods, based on the stationary convolutional 
model, attempt to estimate, and subsequently filter out, the embedded causal wavelet. 
We present a nonstationary seismic model, expressed in the time-frequency Gabor 
domain, in which (1) the embedded causal wavelet is represented as the product of a 
stationary seismic signature with a nonstationary exponential decay; and (2) a 
nonstationary impulse response for the earth is tractable. 

By least-squares fitting our model to the Gabor-transformed seismic trace, we 
robustly determine both a unique Q-value and an estimate of the seismic signature, 
and thus an estimate of the nonstationary causal wavelet. Using these estimates to 
obtain a smoothed version of the seismic trace in the time-frequency domain, a least 
squares nonstationary minimum phase deconvolution filter is constructed. The 
preliminary results, coded in MATLAB, look very promising. It is hoped that in 
future work, the residual error in this least-squares approximation will provide a good 
measure of the ambient random noise, up to the accuracy of our model, and hence a 
method by which to improve the signal-to-noise ratio.  

INTRODUCTION 
This paper is concerned with the application of Gabor theory to the analysis, 

modelling, and subsequent deconvolution of a nonstationary, constant-Q-attenuated 
seismic signal. In a broader context, Gabor deconvolution is discussed by Margrave 
and Lamoureux (2001). The Gabor theory sets the stage for nonstationary analysis of 
a signal, �in which time and frequency play symmetrical parts, and which contains 
�time analysis� and �frequency analysis� as special cases.� (Gabor, 1946) Indeed, our 
everyday experience with sound, as in speech or music, demands a mathematical 
description that places time and frequency analysis on equal footings. The human ear, 
which operates much like a hydrophone in principle, combined with the brain�s 
processing capabilities, deciphers band-limited acoustic amplitude information into 
temporally localized packets of spectral information. Conversely, while following a 
prescribed musical score, a musician transforms a time-frequency representation of a 
signal into temporally varying acoustic amplitude data.  
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The Fourier theory, although mathematically sound, is an idealized theory: it fails 
to capture our intuition that �frequency content� changes with time. �The reason is 
that the Fourier-integral method considers phenomena in an infinite interval, �and 
this is very far from our everyday point of view.�(Gabor, 1946) These fundamental 
observations strongly suggest that we ought to be modelling the localized time and 
frequency characteristics of a seismic signal simultaneously; and it is the milestone 
theory of Gabor that can provide us with the appropriate mathematical tools.  

We first present a derivation, to first order, of a time-variant spectral model for the 
Gabor transform of a constant-Q-attenuated seismic trace. Remarkably, in addition to 
being intuitively plausible, this model expresses a generalization of the familiar 
convolutional model (as described in Sheriff and Geldart, 1982, for example). Next, 
the model is fitted to the data in the least squares sense. This process provides 
estimates for both Q and the stationary part of the wavelet, and thus an estimate of the 
nonstationary, Q-attenuated wavelet. The theory is then used to formulate an 
algorithm for the deconvolution of a synthetic Q-attenuated seismic trace. Finally, we 
close with an illustrative discussion of our preliminary results. 

A TIME-VARIANT SPECTRAL MODEL  

Let ( )r t  be a (random) reflectivity, ( )w t  a stationary wavelet, and ( ),t fα  the 
time-frequency symbol of a constant Q operator. Specifically for the latter 

 
( ) ( )/ /, ,f t Q iH f t Qt f e π πα − −=

 (1) 
where H denotes the Hilbert transform. A stationary wavelet, in this context, is a 
wavelet whose time-frequency decomposition is equivalent to its Fourier transform, 
which in turn depends only on frequency. An assumption is that this Fourier 
transform, ( )� ,w f  is smooth. Note that by definition ( ),t fα  is also reasonably 
smooth.  

Then a nonstationary synthetic can be constructed by a nonstationary convolution 
(see Margrave, 1998, or Margrave and Ferguson, 1998) of the Q operator and the 
reflectivity, followed by a stationary convolution with the wavelet. Letting ( )s t  
denote the nonstationary synthetic trace, then using the mixed domain form of 
nonstationary convolution (Margrave, 1998, or Margrave and Ferguson, 1998) gives 

 
( ) ( ) ( ) ( ) 2� � , ,if ts f w f t f r t e dtπα

∞
−

−∞

= ∫  (2) 
where the hat denotes the Fourier transform. Thus 
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( ) ( ) ( ) ( )

( ) ( ) ( ) [ ]

2 2

2

� ,

� , .

if u if t

if t u

s t w f u f r u e du e df

w f u f r u e dfdu

π π

π

α

α

∞ ∞
−

−∞ −∞

−

 
=  

 
=

∫ ∫

∫∫
 (3) 

This may seem a bit lacking in justification but is, in fact, quite well established. We 
now want to show that a time-frequency decomposition of ( )s t , call it ( ),Ts τ ν , has 
the approximate factorization: ( ) ( ) ( ) ( )�, , ,Ts w Trτ ν ν α τ ν τ ν∼ . Here ( ),Tr τ ν  is the 
time-frequency decomposition of the reflectivity. This will be demonstrated using 
Gabor spectra as the time-frequency decomposition (see e.g., Margrave and 
Lamoureux, 2001 for a related treatment, or Feichtinger and Strohmer, 1998 for a 
thorough treatment of Gabor analysis). 

Now, the Gabor transform of ( )s t  is defined as 

 
( ) ( ) ( ) 2, ,i t

gV s s t g t e dtπ ντ ν τ
∞

−

−∞

= −∫  (4) 

where ( )g t  is the Gabor analysis window (usually a Gaussian).  Substituting (3) into 
(4) gives 

 
( ) ( ) ( ) ( ) [ ] ( )2 2�, , .if t u i t

gV s w f u f r u e dfdu g t e dtπ π ντ ν α τ
∞

− −

−∞

 = − ∫ ∫∫  (5) 
Consider the t integral in equation (5): 

 
( ) [ ]2 .it fI g t e dtπ ντ − −= −∫  (6) 

Let t t τ= −′  and so 

 
( ) [ ][ ] [ ] ( )2 ' 2 � ,i t f i fI g t e dt e g fπ τ ν π τ ν ν− + − − −′ ′= = −∫  (7) 

so that equation (5) becomes 

 
( ) ( ) ( ) ( ) [ ] ( )22� �, , .i fifu

gV s w f u f r u e e g f dfduπ τ νπτ ν α ν− −−= −∫∫  (8) 

Now, let f fν= −′  so that 

 
( ) ( ) ( ) ( ) [ ] ( )2 2� �, , .i f u i f

gV s w f u f r u e e g f df duπ ν π ττ ν ν α ν ′− − ′−′ ′ ′ ′= − −∫∫  (9) 

Then, using Taylor series� to represent ( )�w fν ′−  and ( ),u fα ν ′− , 
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( ) ( ) ( )��,g

wV s w fτ ν ν ν
ν
∂ ′= − + ∂ ∫∫ … i

  

 
( ) ( ) ( ) [ ] ( )2 2 �, , i f u i fu f u r u e e g f df duπ ν π ταα ν ν

ν
′− − ′−∂ ′ ′ ′− + ∂ 

…
 (10) 

or 

 
( ) ( ) ( ) ( ) [ ] ( )22� �, , i u fi u

gV s w u r u e e g f df duπ τπ ντ ν ν α ν − ′−  = +′ ′ ∫ ∫ $
 (11) 

or 

 
( ) ( ) ( ) ( ) ( ) 2�, , .i u

gV s w u r u g u e duπ ντ ν ν α ν τ −= − +∫ $
 (12) 

Let u uτ= −′ : 

 
( ) ( ) ( ) ( ) ( ) [ ]2�, , i u

gV s w u r u g u e duπ ν ττ ν ν α τ ν τ − − ′= − − +′ ′ ′ ′∫ $
 (13) 

Expand ( ),uα τ ν− ′  in a Taylor series: 

 
( ) ( ) ( ) ( ) ( ) [ ]2�, , i u

gV s w r u g u e duπ ν ττ ν ν α τ ν τ − − ′= − +′ ′ ′∫ $
 (14) 

Now, back to u uτ= − ′  

 
( ) ( ) ( ) ( ) ( ) 2�, , i u

gV s w r u g u e duπ ντ ν ν α τ ν τ −= − +∫ $
 (15) 

or 

 
( ) ( ) ( ) ( )�, , , .g gV s w V rτ ν ν α τ ν τ ν= +$

 (16) 
These last several manipulations seem almost circular but they amount to a 
justification that ( ),u vα  can be pulled out of the integral in equation (12), where it 
becomes ( ),vα τ . This analysis shows that the leading order behaviour fits the 
nonstationary model but so far provides no estimate of the next asymptotic term. 

DISCUSSSION OF THE PROBLEM 
To first order, the Gabor-spectral model from equation (16) is 

 ( ) ( ) ( ) ( )�, , ,g gV s w V rτ ν ν α τ ν τ ν= . (17) 

where we have chosen to work with the magnitudes of the various complex quantities 
and the vertical bars denote absolute values. The left side of (17) is the only known 
quantity, namely the Gabor transform of the seismic trace. It is assumed that the 
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reflectivity is approximately white and so its Gabor transform is effectively treated as 
the residual error term in the-least squares estimation process. 

The unknowns in (17) are the seismic signature�s spectrum, ( )�w ν , and the value 

of Q in the time-frequency symbol of the Q-operator, ( ),α τ ν . Of course, the 

reflectivity, ( ),gV r τ ν , is also unknown: it characterizes the very subsurface geology 

that we ultimately want to determine. However, once ( )�w ν  and ( ),α τ ν  have been 

estimated, their product represents a smoothed version of ( ),gV s τ ν , and it is then a 
straightforward matter to design a nonstationary minimum phase deconvolution filter. 

The first goal is to obtain estimates of Q and the function ( )�w ν  that satisfy (17) in 
the least-squares sense. 

SOLUTION OF THE LEAST SQUARES PROBLEM 

We now assume that the Gabor transform of the reflectivity, ( ),gV r τ ν , is �white� 
with a mean of unity. Precisely what is meant here by �white� is not easily defined 
but, intuitively, we mean that ( ) ( )� ,w ν α τ ν  provides the general shape of 

( ),gV s τ ν  while ( ),gV r τ ν  provides only detail. Thus we will drop the ( ),gV r τ ν  
term from equation (17) and seek a trace model as 

 ( ) ( ) /, QS W e πνττ ν ν −= , (18) 

where gS V s= , �W w= , and / ( , )Qe πντ α τ ν− = . The equality in (18) is interpreted in 

the least-squares sense meaning that a residual error with minimized 2L  norm is 
assumed. The residual error represents the random ambient noise plus the Gabor 
transform of the reflectivity. A further simplification is obtained by considering the 
natural logarithm of both sides of (18), which effectively removes the exponential 
term:  

 ( ) ( )ln , ln /S W Qτ ν ν πτν = −  . (19) 

Step one: least squares estimate of Q in terms of W 

We first minimize the function ( ),W Qα α=  given by 

 ( ) ( )
( )

2
,

, ln ,
S

W Q d d
W Q
τ ν πτνα τ ν
ν

 
= +   
∫∫  (20) 
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with respect to Q. Equation (20) expresses the square of the L2-norm of the difference 
between both sides of (19). The domain of integration is finite in accordance with the 
band-limited, finite-temporal nature of the seismic data.  

Remarks concerning numerical integration 
 The region of integration, say Ω , must be appropriately selected so as to 

encompass only the numerically significant part of the time-variant spectrum of the 
signal. This is necessary to avoid large errors due to division by excessively small 
numbers. For numerical implementations, it is convenient to consider integrals over 
rectangular domains. All of this can be accomplished by introducing a characteristic 
weighting function, χΩ : 

 ( ) ( )
( )

1if ,
,

0 if ,
τ ν

χ τ ν
τ νΩ

∈Ω=  ∉Ω
 (21) 

as a factor in the integrand. For example, 

 ( ) ( ) ( )1 1

0 0

, , , ,f d d f d d
ν τ

ν τ
τ ν τ ν τ ν χ τ ν τ νΩΩ

=∫ ∫ ∫  (22) 

where f is any integrand with numerically stable support Ω , and Ω  is contained in 
the rectangle [ ] [ ]0 1 0 1, , .τ τ ν ν×  Any positive weighting function can be substituted for 
χΩ  at the discretion of the processor. Ideally, this function should decay to zero in a 
smooth way to avoid spectral ringing.  

From now on, we will assume that an appropriate region Ω  (or weighting 
function) has been selected. As such, expression (20) can be written in the form 

 ( ) ( )
( )

2
,

, ln ,
S

W Q d d
W Q
τ ν πτνα τ ν
νΩ

 
= +   
∫  (23) 

which can be computed according to the prescription (22). Minimizing (23) with 
respect to Q amounts to solving the following equation for Q: 

 ( )
( ) 2

,
0 2 ln .

S
d d

Q W Q Q
τ να πτν πτν τ ν
νΩ

  ∂= = + −   ∂   
∫  (24) 

Inspection of (24) reveals the trivial solution, ,Q = ∞  but straightforward calculations 
lead to the finite value: 

 ( )
( )

2 2

.
ln

,

d d
Q

W
d d

S

τ ν τ ν
π

ν
τν τ ν

τ ν

Ω

Ω

= ∫
∫

 (25) 
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That this value of Q actually provides a local minimum of ( )Qα α=  is easy to show 
by checking that the second derivative of α  is positive at this point. Now (25) 
expresses Q in terms of the unknown wavelet, ( )W ν , so a second expression is 
required. This second relation is derived in the following section. 

Step two: least-squares estimate of W in terms of Q 
In the last step, ordinary calculus was sufficient for determining the optimal Q 

value. Since we are now interested in finding an optimal function, namely ( )W ν , we 
turn to the calculus of variations (see e.g., Marion and Thornton, 1988, or Pearson, 
1974).  

In order to simplify the notation, we write 

 ln and ln .s S w W= =  (26) 

Next, consider an arbitrary functional variation, ( )w wδ δ ν= . Incrementing the 

unknown function ( )w ν  by ( )wδ ν , expression (23) becomes 

  ( ) ( ) ( ) ( )
2

, ,w w Q s w w d d
Q
πτνα δ τ ν ν δ ν τ ν

Ω

 
+ = − − + 

 ∫ , or  (27) 

( ) ( ) ( ) ( ) ( )

( ) 2

, , 2 ,

.

w w Q w Q s w w d d
Q

w d d

πτνα δ α τ ν ν δ ν τ ν

δ ν τ ν

Ω

Ω

 
+ = − − + 

 

+   

∫

∫
 (28) 

Notice that, if we can determine a function ( )w ν  such that the middle term in (28) 

vanishes, this same function will minimize ( ),w Qα  with respect to w . This reduces 
the problem to solving  

 ( ) ( ) ( ), 0s w w d d
Q
πτντ ν ν δ ν τ ν

Ω

 
− + = 

 ∫  (29) 

for ( )w ν . Since ( )wδ ν  is independent of the time, τ , we can compute the time 
integral in (29), yielding 

 
( ) ( ){

( ) ( ) ( ) ( )

1 1

0 0

1 1

0 0

, ,

, , 0.

s d

w d d w d
Q

ν τ

ν τ

τ τ

τ τ

τ ν χ τ ν τ

πνν χ τ ν τ τχ τ ν τ δ ν ν

Ω

Ω Ω

−


+ =



∫ ∫

∫ ∫
 (30) 
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The ν -integral vanishes for all variations ( )wδ ν , so it follows from the calculus of 
variations that the function of ν  inside the braces must vanish. Thus, upon division 

by ( )1

0

, d
τ

τ
χ τ ν τΩ∫ , and solving for ( )w ν , we have 

 ( )
( ) ( )

( )

( )

( )

1 1

0 0

1 1

0 0

, , ,

, ,

s d d
w

Qd d

τ τ

τ τ
τ τ

τ τ

τ ν χ τ ν τ τχ τ ν τπνν
χ τ ν τ χ τ ν τ

Ω Ω

Ω Ω

= +
∫ ∫
∫ ∫

. (31) 

Using (26) to convert back to the logarithmic notation, we arrive at 

 ( )
( ) ( )

( )

( )

( )

1 1

0 0

1 1

0 0

ln , , ,
exp

, ,

S d d
W

Qd d

τ τ

τ τ
τ τ

τ τ

τ ν χ τ ν τ τχ τ ν τπνν
χ τ ν τ χ τ ν τ

Ω Ω

Ω Ω

    = + 
  

∫ ∫
∫ ∫

. (32) 

The first term in the exponential expresses the time average of ( )ln ,S τ ν , while the 
second term is both linear in frequency and proportional to the average time for each 
frequency. Using a bar to denote the time average, (32) can be written more 
compactly as 

 ( ) [ ]( ) ( )exp ln .W S
Q
πνν ν τ ν 

= + 
 

 (33) 

Observe that these time averages are functions of frequency. Physically, this result for 
( )W ν  states that the best least squares logarithmic fit for the wavelet is obtained as 

the time average of ( )lnW ν , expressed in terms of the model. In other words, had we 

solved (19) for ( )lnW ν , then computed the time average, we would have arrived at 
the same solution (33). 

Solving for Q 
Substitution of (33) into the expression (25) for Q yields 

  
[ ]( ) ( ) ( )

2 2

.
ln ln ,

d d
Q

S S d d
Q

τ ν τ ν
π

πντν ν τ ν τ ν τ ν

Ω

Ω

=
 + − 
 

∫
∫

 (34) 

Finally, solving for Q leads to  

 
( )

[ ]( ) ( )

2

.
ln ln ,

d d
Q

S S d d

τν τ τ ν τ ν
π

τν ν τ ν τ ν
Ω

Ω

 − =
 − 

∫
∫

 (35) 
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NUMERICAL EXAMPLE 

MATLAB functions from the CREWES toolboxes were used extensively in 
developing the code to generate the least-squares estimates (35) and (33) of Q and 

( )W ν , respectively and to perform a Gabor deconvolution. The details of the Gabor 
deconvolution algorithm may be found in Margrave and Lamoureux (2001). Figure 1 
displays a pseudo-random reflectivity and a nonstationary synthetic trace. The 
synthetic was built by applying a forward Q operator to the reflectivity, followed by 
convolution with a 20Hz minimum phase wavelet. The reflectivity has a duration of 
two seconds, with a sampling interval of 0.002 seconds. 

Figure 2 displays the Gabor transform of the reflectivity. The sample points in the 
time direction (row number) correspond to successive translations by 0.01 seconds of 
Gaussian window centres. These Gaussian windows have the property that their sum 
is approximately equal to one over the duration of the synthetic trace, and their half- 
width (0.1 seconds) has been selected such that this criterion is met. Each row is 
computed as the discrete Fourier transform of the windowed trace that is centred at 
the corresponding offset time. In order to obtain sharp spikes, the reflectivity has been 
modified from its original, uniformly distributed, random sequence. This modification 
leads to a time series that is no longer uniformly distributed and induces the weak 
coherency that can be observed along the frequency direction in its Gabor transform. 
This behaviour is similar to that in real reflection coefficient series, such as those 
from well logs. Each sequence of coherent peaks, such as those at about 1 second 
corresponds to a zone of high amplitude in the reflectivity of Figure 1. 

The Gabor transform of the logarithm of the absolute value of the synthetic trace is 
depicted in Figure 3. Since the Q-operator represents an exponential decay surface in 
time and frequency, its logarithm forms a surface whose level sets (i.e. contours) are 
hyperbolae, decaying in magnitude according to the product of the time and 
frequency values. This explains the general decay pattern from the top left toward the 
bottom right in Figure 3. There is progressive loss of bandwidth and mean amplitude 
over time. 

Figures 4, 5, and 6 illustrate the construction of a weighting function, which is 
designed to filter out that part of the data falling below machine precision. This 
weighting function was used in the calculation of the integrals in equations (33) and 
(35) in the manner illustrated in equation (22). Figure 4 essentially matches the decay 
pattern of the data, while Figure 5 displays a secondary filter designed to remove 
edge effects arising from the Gabor transform. The point-wise product of these two 
filters is shown in Figure 5. This final filter is selected as the weighted characteristic 
function mentioned above (see Remarks concerning numerical integration and 
equation (22)) to restrict the domain of integration. 

The prescriptions of equations (35) and (33) produced an estimated Q value of 
about 28, slightly greater than the correct value of 25, and the estimated wavelet, 
whose Fourier spectrum is plotted with that of the original wavelet in Figure 7. The 
envelope of the output wavelet has roughly the right shape, but some additional 
smoothing would likely lead to better deconvolution results. The rugosity in the 
wavelet spectral estimate is a residual effect of the reflectivity and is undesirable. 
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Essentially, it means that, in the time averages in equation (33), the reflectivity has 
failed to average to unity. Even a mathematically �white� white function will only 
average to unity if the average is over an infinite domain. Obviously, the domain 
available here is very finite. 

Figure 8 displays the logarithm of the absolute value of the least-squares model of 
the data. That is it is calculated as ( ) /�ln estQ

est
w e πντν − 

   where the subscript est 
refers to the least-squares estimates. As expected, the amplitude decays smoothly, and 
resembles a smeared version of the display in Figure 3. For this reason we refer to 
this least-squares model as a smoothed representation of the data. 

The deconvolution operator is approximately the inverse of ( ) /� estQ
est

w e πντν −  
combined with the associated minimum-phase spectrum. However, a small positive 
constant, called a stability factor, is added to ( ) /� estQ

est
w e πντν −  prior to inversion to 

prevent the inversion of small, low-precision, numbers. The magnitude of this 
deconvolution operator is shown in Figure 9. Cross sections of the input and least-
squares model Gabor spectra at time t = 1s, plotted in decibels, appear in Figure 10. 
The plot clearly illustrates the effect of the stability factor that causes the model to 
become constant above about 80Hz. Mathematically, the exponential constant-Q 
operator should give an exponential decay over all frequencies. In Figure 10, this 
exponential decay is indicated by the linear trend down from about 20Hz to about 
70Hz. in the input spectrum. At higher frequencies, the input spectrum begins to level 
out and depart from this mathematical expectation. In this simulation, which has no 
added noise, this is due to the limited-precision, floating-point arithmetic employed in 
our digital calculations. Higher precision computation would lead to agreement over a 
larger bandwidth, particularly since this stability factor could be made smaller. 
However, this would only mask the precision problem, which is very real, and is 
magnified in real seismic data due to the limited precision of seismic recording. 

Figure 11 shows the spectra of the original reflectivity and the Gabor 
deconvolution result. Whitening has been limited to below 125Hz � half of Nyquist, 
by a stationary bandpass filter. The two spectra agree quite well over the whitened 
band though discrepancies increase with increasing frequency. Ultimately, the 
precision problem mentioned in the previous paragraph limits degree of whitening 
that can be achieved. Since the level sets of the constant-Q operator are the 
hyperbolae, constantτν = , then the maximum possible whitening will be time-
variant. Finally, Figure 12 compares the original reflectivity, the synthetic 
seismogram, and the Gabor deconvolution result. The reflector locations are well 
correlated, although the amplitudes are somewhat mismatched. The increasing error 
at later times might be attributable to the fact that only a stationary bandpass filter 
was applied to the deconvolved trace in the time domain. Other discrepancies are 
probably due to the errors in the wavelet estimate that, as discussed previously, are 
attributable to reflectivity information failing to average out in the estimate. 
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CONCLUSIONS 
A derivation, to first order, of a time-variant spectral model for the Gabor 

transform of a constant-Q-attenuated seismic trace was presented. Using ordinary 
calculus, together with the calculus of variations, the model was fitted to the data in 
the least-squares sense. Consequently, estimates for both Q and the stationary part of 
the wavelet were obtained, and thus an estimate of the nonstationary, Q-attenuated 
wavelet. The theory was then numerically evaluated via an algorithm for the Gabor 
deconvolution of a synthetic, Q-attenuated seismic trace. The illustrated example used 
an exceptionally low input Q-value, yet returned promising initial deconvolution 
results. These favourable results, clearly reinforced by the fact that our model 
includes the convolutional model as a special case, strongly motivate further research 
in this direction. 

FURTHER RESEARCH 
Several parameters in the code require adjustment whenever the input trace 

changes, so it would be advantageous to automate this parameter selection as much as 
possible. Certain edge effects arise from the Gabor transformation step and the 
weighting function, and these need to be suppressed. Either would lead to a more 
robust estimate of the wavelet, and hence a better deconvolution. The possibility of 
noise reduction via the least-squares residual error should be investigated. A smoother 
wavelet estimate should either be imposed after-the-fact or, ideally, via a smoothness 
constraint in the inversion. The effect of the Gabor window size and increment needs 
more investigation. Reflectivity information such as a better model for whiteness or 
an available well log needs to be incorporated. An allowance for a time-variant Q 
estimate should be investigated. Finally, the algorithm needs to be optimized for 
speed as well as robustness. 
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FIG. 1. A pseudo-random reflectivity (lower) and a nonstationary synthetic (upper) generated 
with an attenuation factor of 25. 
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FIG. 2. Gabor spectrum of the pseudo-random reflectivity of Figure 1. 
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FIG. 3. Logarithm of absolute value of Gabor transform of the synthetic trace of Figure 1. 
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FIG. 4. Filter design for first stage in weighting the Gabor spectrum of the synthetic trace 
according to the numerical precision of the data. 
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FIG. 5. Secondary filter designed to dampen edge effects resulting from the Gabor 
transformation of the synthetic trace. 
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FIG. 6. The weighted domain of integration resulting from the point-wise product of the filters 
in the previous two Figures. 
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FIG. 7. Amplitude spectra of the input wavelet (grey) and the output wavelet (black). 
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FIG. 8. The logarithm of the absolute value of the smoothed spectrum. The output for the 
attenuation factor is Qest ≈  28. 
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FIG. 9. The magnitude of the deconvolution operator that is point-wise reciprocal of the 
exponential of the previous figure. 
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FIG. 10. Cross sections of the input (grey) and smoothed (black) Gabor spectra at time t = 1s, 
plotted in decibels. A stability factor was added to the smoothed spectrum to avoid division by 
excessively small numbers. 
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FIG.11. Fourier spectra of original reflectivity (grey) and Gabor deconvolution result (black). 
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FIG. 12. The nonstationary synthetic (upper), pseudo-random reflectivity (middle), and the 
Gabor deconvolution result (lower). 


