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Snell�s law in transversely isotropic media 

P.F. Daley  

ABSTRACT 
The problem of reflection and transmission of waves at a plane boundary 

separating two transversely isotropic media is considered subject to the general 
condition that the axes of anisotropy in both media need not align with the 
intervening interface. Slowness vectors and surfaces are employed in the treatment 
presented. The characteristics or rays, defining the direction of energy propagation, 
are normal to the slowness surface, which makes slowness space ideally suited for 
treatment of anisotropic problems, as both Snell�s Law and ray properties are 
formulated in terms of slowness. Ray-vector magnitudes are not dealt with here as 
this topic warrants a separate treatment, and the inclusion of which would create 
needless complexity. 

The exact eikonals (Hamiltonians) of the coupled quasi-compressional ( )qP  and 

quasi-shear ( )VqS  wave propagation are used in the derivations and are homogeneous 
of order 2 in powers of slowness, which is a requisite for the use of the theory of 
characteristics. Once this condition is violated through simplifications of an eikonal, 
the theory of characteristics is not applicable. As it is an extremely useful 
mathematical tool for dealing with problems related to wave propagation, negating it 
seems counterproductive, unless it is done for a specific rather than general purpose. 

The possibility of components of the slowness vector becoming complex is briefly 
considered. This is motivated by the fact that, for post-critical regions of quantities 
such as the PP  reflection coefficient at an interface between two transversely 
isotropic media, this becomes a factor in the proper computation of certain quantities. 

INTRODUCTION 
Reflection and transmission of waves at an interface between two transversely 

isotropic media has been considered in numerous publications, one of the more recent 
being the work of Slawinski (1996). The treatment presented here differs from that 
work in that the media type considered do not in general have their anisotropy axes 
aligned with the plane boundary separating the two and that the exact rather than 
linearized eikonals (Thomsen, 1986) are used in the derivations and final formulae. 

This report will be based almost exclusively on some basic properties applicable to 
anisotropic elastic medium: 

•  When considering reflection or refraction of wavefronts due to incidence at a 
plane interface, the horizontal component of slowness, p , is constant for all 
propagation modes involved. The vertical component of the slowness vector, ,q  
may be obtained from the eikonal equation so that the slowness vector is defined 
as ( ),p q=p . The slowness surface is the inverse of the wavefront normal (phase) 
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velocity surface, both being obtained from the eikonal equations discussed in the 
Appendix, Musgrave (1970) and Schoenberg and Helbig (1996). 

•  The degenerate ellipsoidal case is not an unreasonable point to start for most 
problems related to waves propagating in a transversely isotropic medium, as it 
may be dealt with in a general manner and insight obtained is directly transferable 
to the more general case. 

•  The ray (characteristic) corresponding to a given slowness vector, ( ),p q=p , 
has a direction normal to this point on the slowness surface. (Gassmann, 1965; 
Musgrave, 1970). 

•  The magnitude of the ray velocity, given the appropriate initial conditions, may 
be obtained from the solution of the characteristic equations (Courant and Hilbert, 
1962) corresponding to a given eikonal equation which, apart from being 
homogeneous in powers of slowness, is a function of the anisotropic coefficients, 

ijA , that have the dimensions of 2velocity  and may be spatially dependent. (Vlaar, 
1968; Cerveny, 1972; Cerveny and Psencik; 1972). As mentioned earlier, ray 
theory in general will not be dealt with in this report. Certain properties of rays 
will be used when convenient without rigorous mathematical derivations. 

In what follows, two coordinate systems will be used: model and rotated or primed 
coordinates. Model coordinates are related to geological structures such as plane 
boundaries separating two media. Rotated (primed) coordinates are aligned with the 
axes of anisotropy, which need not be the same as the model coordinates. Vectors in 
one system may be expressed in the other using an orthonormal rotation by some 
angle φ , which preserves length. It is practical to require the constraint that 2φ π< . 

All of the figures shown here use surfaces which are applicable to the ellipsoidal 
case, and a reader may infer that the results are only useful in that context. This is not 
so, as this format was adopted to maintain a consistency in the figures, and when 
printed � without most of the annotation � are useful for obtaining solutions of 
reasonable accuracy using simple manual geometrical methods. 

Another assumption incorporated here is that all of the slowness surfaces are 
convex, which, if not invoked, leads to possibility of up to three rays of one type 
corresponding to a single horizontal slowness (Musgrave, 1970). The imposition of 
this was done in an effort to keep the theoretical concepts to a minimum. The 
formulae obtained here may be used in cases where the slowness surface is not 
convex without modification. Some minimal additional theory would be required to 
facilitate pursuit of this problem area. 

To introduce the notation used, the reader is referred to Figure 1. The angle φ  is 
the angle that the primed system is rotated, with respect to the model coordinates; φ  
being measured positive counter-clockwise. The anisotropic parameters are defined 
with respect to the primed coordinate system, so that the half-length of the 
q′ slowness axis is ( ) 1/ 2

33A
−

 and the corresponding quantity along the p′  axis 
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is ( ) 1/ 2

11A
−

(Gassmann, 1965). The slowness vector components in the model and 
rotated coordinate systems may be expressed in terms of one another through the 
following orthonormal transformation 

  

 
cos sin
sin cos

p p
q q

φ φ
φ φ

− ′     
=     ′     

  (1) 

and its inverse 

  

 
cos sin
sin cos

p p
q q

φ φ
φ φ−

′     
=     ′     

 (2) 

 

The characteristics (rays) are the solution of a coupled set of four, first-order, 
ordinary differential equations with appropriate initial conditions (Cerveny and 
Psencik, 1972). Their solution must be obtained in the primed system. Both the 
model, ( ),p q , and primed, ( ),p q′ ′ , coordinate axes will be indicated on the figures. 
Any boundary between two media will be assumed to be plane. Curved boundaries 
may be incorporated but in this discussion are an unnecessary complication. 

Before proceeding with a more structured discussion of the problem, an example will 
be presented in Figure 2 which deals with horizontal slownesses, p± , corresponding 
to the grazing incidence of the qP  ray or equivalently the horizontal slownesses of 
the VqS  in a T.I. medium which result in critical reflection of the qP  ray. The qP  
rays are normal to the slowness surface and in general not parallel to the slowness 
vector. For the VqS  case, in the geometry shown, the rays are always normal to the 
slowness surface and parallel to the slowness vector. In a general transversely 
isotropic medium the VqS  rays behave in the same manner as the qP rays; i.e., not 
aligned with the slowness vector. As the magnitude of the ray velocities are not being 
discussed here, the ray vectors on the figures define only their direction. This will be 
the standard throughout this report. 
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SNELL�S LAW IN ANISOTROPIC MEDIA 
A convention used in the text below, which could possibly lead to some confusion, 

is that even though the vertical slowness coordinate is defined to be positive 
downwards, the reflected slowness angles are measured from the negative vertical 
slowness axis. That is, the reflected angles are the acute angles which the reflected 
slowness vector makes with the vertical slowness axis. This is consistent with the 
manner in which this problem is treated in the isotropic homogeneous case but the use 
of two coordinate systems could tend to mask this. 

Horizontal Slowness, ip  or ip ′ , Known 

There are many instances in practice when only the horizontal component, p , of 
the incident slowness vector ip  is known. In this case it is possible to determine the 
slowness vectors of the three other wave types at a solid/solid interface. This involves 
solving a non-linear equation numerically. If only p′ is known and 0φ ≠ , q′  may be 
obtained using equation (A.18). The slowness in model coordinates, ( ),i ip q=ip , 
may then be calculated using (1). 

Referring to Figure 3, where the problem of an incident qP  wavefront and 
reflected VqS  is depicted, it is clear that Snell�s Law requires i rp p p= = . The 
unknown is rθ from which '

rθ  results as; '
r rθ θ φ= + . Utilizing the right-angle 

triangle diagram insert in the figure the following relation is obtained 

 
( )( ) sin 0VqS

N r rp V θ φ θ + − =   (3) 

which in general requires a numerical solution for the unknown rθ . The sub- and 
superscripts on the velocity quantity, V , indicate that the VqS  wavefront normal 
(phase) velocity is being employed. (See (A.11)). Once rθ  has been determined, 
p′and q′  may be calculated with (A.9) and (A.10) or p′  calculated and q′  obtained 

from (A.18). The return to model coordinates is achieved using (1). 

Another example of the use of this numerical technique is when considering a 
transmitted disturbance into medium 2 due to incidence from medium 1. In this case, 
when 1 2φ φ≠ , the values, which require a solution, are obtained from an equation 
almost identical to that in (3) and is also numerical in nature. This case is shown 
schematically in Figure 4 for a transmitted qP  wave in medium 2. The basic 
equation, which must be considered, and from which all other relevant quantities are 
obtained is (Figure 4.c) 

 
( )( )

2 sin 0qP
N t tp V θ φ θ − − =   (4) 

As is the previous case, p′and q′ , may be obtained in the manner described above 
and the return to model coordinates, ( ),p q , is also done using (1).  
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The numerical algorithm used in the solution of these nonlinear equations is 
similar to that attributed to Dekker-Brent (Press et al., 1997). A routine based on the 
regula falsi method (Press et al., 1997), from the F66 version of the IBM Scientific 
Subroutine Package, archived as (D)RTMI, is employed in the solution. This 
algorithm requires a function of a single variable as one of the calling parameters 

Complex Vertical Slowness 
If the PP reflection from the boundary is required for all angles of incidence in the 

upper medium, 2 2π θ π− ≤ ≤ , θ  being the phase angle, the slowness vector 
components for both the qP-wave and qSV-wave in the lower medium as well as for 
the qSV-wave in the upper medium are required in the range of incident qP phase 
angles in medium 1. Schematics for two different orientations of the qP-wave 
slowness surface in medium 2 are shown in Figures 5.b and 5.c. 

The motivation for considering this case is to introduce complex slowness 
components. In medium 1, 1φ  has been chosen equal to 0, and the incident-wavefront 
type as, qP ; both without loss of generality. The transmitted wavefront in medium 2 
is also of the qP  type. The meridional axes will be chosen at angles of 1φ  and 2φ  
with respect to the model coordinates, which define the plane interface Σ  at which 
the refraction takes place. 

Further, the qP-wave phase velocity is chosen to always be larger in medium 2 
than in medium 1. It should be noted that this may not always be the case. It is 
possible to have two media as described above where the faster layer changes 
depending on the angle. The first case to be considered is that of the transmitted qP  
wavefront being elliptical with its axes of anisotropy aligned with the inter-medium 
boundary (Figure 5.a). The schematic resulting in critical refraction in medium 2 of 
the qP  wavefront is shown. 

The introduction of the imaginary slowness surface in the figure may produce 
some confusion, as this should be really be done by adding another dimension to the 
schematic. However, it is hoped that a reader will understand that this has been 
included in an effort to illustrate what occurs in medium 2 for horizontal slownesses 
greater than that corresponding to critical refraction. 

As tθ  is measured from the vertical ( )q  axis, it is apparent in Figure 5b that the 
vertical slowness for the qP-wave is real for t Cθ θ<  at which point the vertical 
component of slowness in medium 2 for the qP-wave becomes imaginary. The reason 
for this is that it is required that the horizontal components of slowness of all wave 
types, whether incident, reflected, or refracted at an interface, must be the same. This 
is a generalization of Snell�s Law. To accommodate this, together with the fact that 
the eikonal equation for all wave types must be satisfied, the only possibility is that 
the vertical component of slowness must become imaginary. In general, for an 
ellipsoidal qP  slowness surface in medium 2, the vertical slowness is defined as 
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1/ 2(2) 2
11
(2)
33

1 A pq
A

 −=  
   (5) 

with the superscripts on iiA  indicating the medium. At critical incidence 
1/ 2(2)

11p A
−

 =    so that  0q = . For 
1/ 2(2)

11p A
−

 >    q  is purely imaginary* and given by 

 

1/ 2(2) 2
11 2
(2)
33

1
1

A p
q i i

A

 −
 =± =
    (6) 

The sign preceding the term on the right hand side of (6) is chosen such that as the 
associated wave moves away from the interface it decays in amplitude, thus satisfying 
physical radiation conditions. This in turn, dependents on how the exponential spatial 
and time dependence of the wave has been defined; [ ( ){ }exp i tω± ⋅ −p x ]. 

The situation discussed above is depicted in Figure 5b, where the axes of 
anisotropy in medium 2 are aligned with the model coordinates. In medium 2 the 
critical slowness vector and critically refracted ray are in the same direction, parallel 
to the plane boundary Σ . As the slowness vector in this case is parallel to the 
boundary, 2 0φ =  and as a consequence when q  becomes imaginary its value may be 
simply determined by equation (A.18), using the current value of p. This is a result of 
the corresponding slowness vector being aligned with an axis of the slowness surface. 

In the situation shown in Figure 5c the computation of imaginary q  is marginally 
more complicated, as the slowness vector associated with critical refraction is not 
situated along a meridional axis of the slowness surface in medium 2 and 2 0φ ≠ . It is 
required that Cθ  be computed by methods in the previous section, and the value of q  

( )q′  determined in the primed coordinate system and relative to the slowness vector 
associated with Cθ . 

The above discussion is also valid for the general transversely isotropic case and 
the required expressions for q  may be found in the Appendix. 

                                                 
* It should be noted that the term imaginary rather than complex has been used, as in both the 
ellipsoidal and general transversely isotropic problems, the vertical slowness, q, is either real or purely 
imaginary. 
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 EXAMPLES 
Two simple examples of reflection and mode conversion, near vertical incidence at 

an interface with the axes of anisotropy in the incident medium not aligned with the 
interface, will be briefly examined. In addition, a schematic showing the previously 
mentioned instance when the faster medium varies with angle of incidence is shown. 
The qP  slowness surfaces in media 1 and 2 have been designed specifically to 
illustrate this. 
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The two related Figures 6 and 7, depicting a reflected mode conversion at the 
interface Σ , are fairly self-explanatory. The reflected VqS  ray associated with a 
normally incident qP  ray is shown in Figure 6, and in Figure 7, a normally reflected 

VqS  ray is the result of non-normal incidence of a qP  ray. It is the rays that are of 
interest in seismological applications as it is along the rays that energy is transported 
from one point in a medium to another and it is an energy related quantity, particle 
displacement, which is measured by recording devices. 

An overlay of slowness surfaces in media 1 and 2 at the interface Σ  is presented in 
Figure 8 with 1 2 0φ φ= = . The slowness vectors in both media make the same angle 
with the vertical, i tθ θ=  and further =i tp p , that is, the slowness vectors are not only 
equal but their components are equal: i tp p p= = , i tq q q= = . The incident and 
transmitted rays, however, make different angles with the model coordinates as they 
are normal to their respective slowness surfaces. For angles of incidence in medium 
1, iθ θ< , the faster medium is medium 2 while after the intersection of the two 
slowness surfaces, for angles greater than iθ , medium 1 is the faster. Also, if 1 0φ = , 
the reflected slowness vector, rp , is, apart from the sign of rq , equal to the incident 
slowness, ip , and t iθ θ= . This condition holds even if 2 0φ ≠ . 

CONCLUSIONS 

Using the exact eikonals for both qP  and VqS  in two transversely isotropic 
medium, separated by a plane interface, and not requiring the axes of anisotropy in 
either medium to be aligned with the model coordinate system in which the interface 
Σ  is defined, methods have been presented for determining the reflected and 
transmitted slowness vectors for all resulting related modes of propagation. The 
formulae derived may be incorporated into computer programs with little difficulty 
and are of some possible use in exploration seismology as there are numerous 
examples from seismic data where the alignment of anisotropy axes differs from that 
of neighbouring horizons of interest. Once the components of the slowness vector are 
obtained for an incident, reflected, or transmitted wave type they may be used in 
determining related quantities of the associated rays using the theory of 
characteristics. Previous work in this area is being refocused and will be the topic of a 
future report.  

No approximations have been made in the derivations of the formulae presented 
with exceptions of the assumptions of a convex slowness surface and a plane 
interface separating the two media. These two extensions of the theory may be 
implemented with relative ease and were omitted to keep this report from becoming 
unnecessarily complicated. The problem of the vertical component of slowness 
becoming imaginary was given cursory treatment. 
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APPENDIX: EIKONAL EQUATIONS 
The eikonal equation related to the qP slowness surface in a transversely isotropic 

medium may be written as 

 
( ) ( ){ }1/ 22 2

11 33, , , 1 4 1 1
2qP D
AG p q x z A p A q α ε= + + + − =

 (A.1) 
or equivalently 

 
( ) ( ){ }1/ 2( ), , , 1 4 1 1

2
e

qP qP D
AG p q x z G α ε= + + − =

 (A.2) 
( )e
qPG  being the ellipsoidal part of the eikonal and the additional term specifying the 

deviation of the associated wavefront from the ellipsoidal. The quantities in the 
deviation term are defined as 

 
( ) ( )2 2

11 55 33 55A A A p A A qα = − + −
 (A.3) 

 

2 2

2
D

D
A p q

Aα

ε =
 (A.4) 

 
( ) ( )( )2

13 55 11 55 33 55DA A A A A A A= + − − −
 (A.5) 

The quantity DA , which has the dimensions of 2velocity , may be either positive or 
negative. If it is equal to zero, the eikonal equation degenerates to the ellipsoidal case. 
An approximation of the exact eikonal equation in the quasi-compressional, qP , case 
for what has been referred to as mild anisotropy (Schoenberg and Helbig, 1996) may 
be written as 

  

 
( )

2 2
2 2

11 33

2 2
( )

, , , 1

1

D
qP

e D
qP

A p qG p q x z A p A q
A

A p qG
A

α

α

≈ + + ≈

≈ + ≈
 (A.6) 

Not much is gained in the simplification process, unless further approximations are 
made. The problem with making additional simplifications is that the eikonal is 
usually no longer homogeneous in powers of slowness, which was to be retained to 
facilitate the use of the theory of characteristics. 
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For the quasi-shear, VqS , propagation mode, the exact eikonal in a transversely 
isotropic medium is 

 

( ) ( ){ }
( ){ }

1/ 22 2
11 33

1/ 2( )

, , , 1 4 1 1
2

1 4 1 1
2

VqS D

e
qP D

AG p q x z A p A q

AG

α

α

ε

ε

= + − + − =

= − + − =  (A.7) 

with an approximate expression being 

 
( ) ( )

2 2
2 2

55

2 2
( )

, , , 1

1

V

V

D
qS

e D
qS

A p qG p q x z A p q
A

A p qG
A

α

α

≈ + − ≈

≈ − ≈
 (A.8) 

where all quantities in the above equations have been previously defined. 

Using the definitions of the slowness vector components, p and q, (Gassmann, 
1965) 

 ( )
sin

,j
Vj

N j

p j qP qS
V

θ
θ

= =
 (A.9) 

and 

 ( )
cos

,j
Vj

N j

q j qP qS
V

θ
θ

= =
 (A.10) 

with jθ  being the wavefront normal (phase) or equivalently the slowness vector 
angle. The expressions for the phase velocities, NV , may be written as 

 
( ) ( ){ }

1/ 2
1/ 22 2

11 33sin cos 1 4 1
2

j
j j

N j j j D
AV A A αθ θ θ ε

 
= + ± + − 
   (A.11) 

with or Vj qP qS=  and the " "+  and " "−  signs corresponding to the qP  and VqS  
velocities, respectively. The modified definitions of jAα  and j

Dε  are 

 
( ) ( )2 2

11 55 33 55sin cosj
j jA A A A Aα θ θ= − + −

 (A.12) 

 ( )
2 2

2

sin cosD j jj
D j

A

Aα

θ θ
ε =

 (A.13) 

with DA  being as before. 
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For the degenerate (ellipsoidal) case of the coupled VqP qS−  problem, 0DA ≡ , 
the qP slowness surface is an ellipsoid of revolution, while the corresponding VqS  
surface is a sphere. The eikonal equation for qP  is 

 
( )( ) 2 2

11 33, , , 1e
qPG p q x z A p A q= + =

, (A.14) 

while the VqS  eikonal is 

 
( ) ( )( ) 2 2

55, , , 1e
qSvG p q x z A p q= + =

 (A.15) 

which is the same as the isotropic case, as 2
55A β= , β  being the shear wave velocity 

in the medium. However, it is to be remembered that even in this case, the qP  and 

VqS wave motions are coupled. 

In the ellipsoidal case, as in the general transversely isotropic case, it is required to 
have an expression for q  in terms of p and the anisotropic parameters, ( 1,3,5)ii iA = . 
This results in  

 ( )1/ 22
11 331q A p A= −  (A.16) 

for the qP  case and 

  

 551q A=  (A.17) 
The general transversely isotropic expression for q is, as would be expected, more 
complicated than for the elliptical case. It is a quartic equation in even powers of q. In 
addition, the equations for both the qP and qSV  eikonals in terms of powers of q are 
the same. This should not be of any surprise considering that the two waves are 
coupled and the associated eikonals are the two positive roots of a quartic equation. 
The equations defining the vertical slowness, q, for both the qP and qSV   wave types 
are 

 

( ) 1/ 22 4
2j

b b ac
q

a

 − − =  
  

∓

 (A.18) 

with or Vj qP qS=  and the " "−  and " "+  signs corresponding to qP  and VqS . 

The quantities in equations (A.18) are defined as 
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33 55a A A=

 (A.19) 

 
( ) ( ) 2 2

33 55 55 11 33 Db A A A A A p A p= − + + + −
 (A.20) 

 
( ) 2 4

11 55 11 551c A A p A A p= − + +
 (A.21) 

The above equations were obtained using the exact eikonal, and the solution for 
the vertical component of slowness is quite straightforward, as the quartic equation 
has no terms in odd powers of q . Employing an approximation, the eikonal results of 
the form derived by Thomsen (1986) for an analogous purpose requires that a similar 
quartic with the exception that it also contains an odd power of the independent 
variable (Slawinski, 1996). The result of this is a problem, which may be solved 
analytically but is more amenable to numerical solution (Abramowitz and Stegen, 
1970). 

For completeness, as recent publications involving anisotropic topics tend to use 
notation introduced by Thomsen (1986) rather than historical notation, the following 
definitions are included (Daley et al., 1999) to indicate the relationship between the 
two: 

 
0 33Aα =

 (A.22) 

 
0 55Aβ =

 (A.23) 

 
11 33

332
A A

A
ε −=

 (A.24) 

 

( ) ( )
( )

2 2
13 55 33 55

33 33 552
A A A A

A A A
δ

+ − −
=

−  (A.25) 

 
( )11 331 2A Aε= +

 (A.26) 

 
( )( )2

33 33 552DA A A A δ ε= − −
 (A.27) 


