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ABSTRACT 
The theory of wavefield extrapolation by phase-shift and its extension from the 

Fourier domain to the space-frequency domain are reviewed. The extension of the 
phase-shift method to strong lateral velocity variations is also reviewed. It is shown 
that the space-frequency formulation developed from constant-velocity phase-shift 
can be trivially modified to accommodate any of three phase-shift expressions: 
nonstationary phase-shift, phase-shift plus interpolation, and Weyl-form 
extrapolation. These space-frequency equivalents to the Fourier methods are shown to 
be Kirchhoff-style summation operators that are applied by spatial convolution. 
Formulae for the 3-D and 2-D Kirchhoff equivalents of each of the Fourier methods 
are given. An extended 2-D numerical investigation shows that the Kirchhoff 
approach produces virtually identical results to the Fourier techniques. The 
importance of including the near-field term is demonstrated. An examination of 
algorithmic costs shows that the Kirchhoff approach can be dramatically faster than 
the Fourier method for strongly heterogeneous media. 

INTRODUCTION 
The Kirchhoff migration algorithm is probably the oldest one known, dating back 

at least to Hagedoorn (1954), and is currently the preferred approach in many 
circumstances. In part, this popularity is due to the conceptual simplicity of the 
approach and to the ease with which it can accommodate complex acquisition 
geometries. The usual Kirchhoff approach, as described in Schneider (1978) or 
Docherty (1991), combines Green’s theorem with the scalar-wave equation to 
develop an expression giving any sample of the migrated image as a multi-
dimensional integral through the input data. The integration takes place over a 
traveltime surface that is computed by tracing rays from the image point to the 
sources and receivers. Integration weights, that correct for such things as geometrical 
spreading and obliquity effects, follow from careful analysis of appropriate Green’s 
functions. Thus, Kirchhoff methods are a blend of both wave theory and ray theory. 
Formulated in this way, any image point is calculated directly from a weighted 
summation through the seismic data. Typically, the summation surface is defined by 
transmission raypaths as determined by Snell’s law, that is, non-Snell rays and 
multiple bounces are not accommodated. 

Of the alternatives to Kirchhoff migration, many algorithms fall into the general 
category of recursive wavefield extrapolation (c.f. Berkhout, 1981). Also called 
wave-equation migration, these methods downward-continue the seismic data through 
many small depth steps. Each depth step is accomplished by a wavefield 
extrapolation that can be formulated using Fourier methods, finite-difference 
techniques, or other means. Typically, wavefield extrapolators use the assumption 
that, locally, constant-velocity solutions of the scalar wave equation will suffice. 
These methods are recursive in that the wavefield input to a given depth step is the 
output from the previous step. 
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Though they are generally more costly than Kirchhoff methods, interest in 
recursive wavefield extrapolation is fuelled by the observation that the resulting 
images are often superior to those from Kirchhoff methods (Bevc, 1997, Wyatt et al, 
2000, Biondi and Vallant, 2000). A likely reason for this is that the recursive methods 
implicitly image along all possible transmission paths while the Kirchhoff methods 
only use the Snell’s law path. In a limited sense, the recursive methods are analogous 
to a Feynman path integral in quantum mechanics while the Kirchhoff approach 
corresponds to a classical solution (Dickens and Willen, 2000). Since wavefield 
extrapolators are based upon locally constant-velocity solutions to the scalar-wave 
equation, Snell’s law is not explicitly included as it is with Kirchhoff methods. 
Rather, the refraction of wavefronts by Snell’s law emerges implicitly through the 
cascading of many extrapolation steps as a dominant, but not exclusive, propagation 
mode. 

When velocity varies strongly with lateral position across a depth-step, finite-
difference methods are often employed for wavefield extrapolation. However, the 
finite-difference approach suffers from a variety of complex problems such as grid 
dispersion, grid anisotropy in 3-D, and instability. The phase-shift method (Gazdag 
1978) does not have these drawbacks but cannot handle lateral velocity variations. 
Recently, Fourier wavefield extrapolators have been developed that can accommodate 
strong lateral velocity variations (Margrave and Ferguson 1999, Ferguson and 
Margrave, 2001). These operators are now known to be Fourier integral operators 
(Stein 1993) and can be developed via a Taylor-series approach to the variable-
velocity scalar-wave equation (Margrave and Ferguson, 2000). They are higher order 
approximate solutions to the wave equation that produce excellent images of test 
datasets but require long computation times. 

In this paper, we develop space-frequency approximations to the PSPI (phase shift 
plus interpolation) and NSPS (nonstationary phase shift) Fourier integral operators of 
Margrave and Ferguson (1999). We begin with a general discussion of the 
mathematics required to move a constant-velocity phase-shift operator to the space-
frequency domain. Then, various variable-velocity phase-shift extrapolators are 
presented and it is argued that our formulae for the space-frequency domain also 
apply directly to these. Subsequently, we develop analytic forms for space-frequency 
extrapolators that correspond to local Kirchhoff summation operators. The 3-D form 
is exact while in 2-D a high frequency approximation for the Hankel function is used 
to derive an approximate near-field correction. After briefly examining and 
discarding stationary-phase results, we present 3-D and 2-D formulae for the 
Kirchhoff equivalent operators for nonstationary phase-shift (NSPS), phase-shift plus 
interpolation (PSPI) and the Weyl-form extrapolator. Then follows an extended series 
of numerical examples in which we demonstrate that the 2-D Kirchhoff operators are 
nearly equivalent to the Fourier operators and we also show the importance of 
including the near-field term. Finally, we present a cost comparison of the Kirchhoff 
versus the Fourier approach. When used in a recursive wavefield extrapolation, the 
Kirchhoff extrapolators allow a migration algorithm that combines the best features 
of direct Kirchhoff methods and Fourier wavefield extrapolation with very attractive 
computation times. Bevc (1997) proposes recursive Kirchhoff extrapolation but does 
not make the link to Fourier techniques as we do here. 
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SPACE-FREQUENCY DOMAIN FORMULATIONS FOR FOURIER 
EXTRAPOLATORS 

Space-frequency domain, constant-velocity extrapolation 
Consider the equation for the 3-D f-k phase-shift extrapolator 

 
( ) ( )2

1, , , , , 0,
4

z x yik z ik x ik y
x y x yx y z k k z e dk dkψ ω ϕ ω

π

∞
− −

−∞

= =∫  (1) 

where ( ), , ,x y zψ ω  is a single-frequency component of a scalar wavefield at position 

(x,y,z), ( ), , 0,x yk k zϕ ω=  is the Fourier transform (over x and y) of the wavefield at 

position (x,y,z=0), ( ), ,x y zk k k  are components of the wavenumber vector, zk z  is the 
extrapolation phase-shift, and the integral performs a 2-D inverse Fourier transform 
from ( ) ( ), ,x yk k x y→ . It is assumed that ( ), , ,x y zψ ω  satisfies the constant-velocity 
Helmholtz equation and consists only of upward-travelling waves. The vertical 
component of the wavenumber vector, kz, in the phase-shift can be calculated from 
the other components and the frequency by 
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2 2

2z x yk k k
v
ω= − −

 (2) 

where v is the wave speed, and ( ), , 0,x yk k zϕ ω=  is 
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Insertion of equation (3) into equation (1) and interchanging the order of integration 
results in 
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where ( )ˆ ˆ,x y  has been used to denote the input lateral coordinates of equation (3). 
The integral in square brackets in equation (4) is the desired space-frequency domain 
extrapolator. If we define 
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then equation (4) can be written 
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( ) ( ) ( )3ˆ ˆ ˆ ˆ ˆ ˆ, , , , , 0, , , , ,Dx y z x y z W x x y y z v dxdyψ ω ψ ω ω

∞
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We call 3DW  the three-dimensional, space-frequency, wavefield-extrapolation 
operator and equation (6) shows that it is applied to the wavefield by a 2-D 
convolution over the lateral spatial coordinates. 

These arguments can be repeated for the 2-D case with the result that 2-D 
wavefield extrapolation is given by 

 
( ) ( ) ( )2ˆ ˆ ˆ, , , 0, , , ,Dx z x z W x x z v dxψ ω ψ ω ω

∞

−∞

= = −∫  (7) 

with 2DW  given by 

 
( )2

1, , ,
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π

∞
−
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= ∫ . (8) 

Rather than giving a separate equation for the 2D zk , we note that it is obtained from 
equation (2) by simply setting 0yk = . We do not use separate symbols for the 2-D 
and 3-D zk  because it is always clear from the context which one is needed. Like 3-D 
wavefield extrapolator, 2DW  is applied by spatial convolution, although in 1-D since 
there is only one lateral coordinate. 

Advanced phase-shift extrapolators 

The expressions for 3DW  (equation 5) and 2DW  (equation 8) were developed from 
the constant-velocity phase-shift extrapolator but they are easily modified to 
accommodate the various phase-shift operators that approximately accommodate 
lateral velocity variations. We list these here, in their 2-D forms, beginning with the 
PSPI operator 

 
( ) ( ) ( )1, , , 0,

2
z xik x z ik x
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π
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−∞
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where 

 
( )

( )
2

2
2z xk x k

v x
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Next, the NSPS operator 
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( ) ( ) ( )ˆ ˆ1 ˆ ˆ, , , 0,

2
z xik x z ik x

NSPS xk z x z e dxϕ ω ψ ω
π

∞
+
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where ( ), ,NSPS x zψ ω  is then recovered by an inverse Fourier transform over xk  and 

( )ˆzk x  is again given by equation (10). These two forms have been extensively 
studied in previous CREWES Reports and elsewhere (Margrave and Ferguson, 1999, 
Ferguson and Margrave, 2001) and their major distinction is that equation (9) assigns 
the lateral velocity variation to the output coordinate while equation (11) assigns it to 
the input coordinate. It is also known that equation (9) is a standard-form 
pseudodifferential operator of the Kohn-Nirenberg form while equation (11) is an 
adjoint-form Kohn-Nirenberg pseudodifferential operator (see Stein, 1993, for 
definitions). A third interesting form is a pseudodifferential operator of the Weyl 
form (Weyl, 1931 IV.14, Wong, 1998) that has the advantage of splitting the velocity 
dependence between the input and output locations. The Weyl-form phase-shift 
extrapolator is given by 

 
( ) ( ) ( ) [ ]ˆ ˆ.5 .51 ˆ, , , 0,

2
z xik x x z ik x x

Weyl xx z x z e dxdkψ ω ψ ω
π

∞
+ + −

−∞

= =∫  (12) 

where ( )ˆ.5 .5zk x x+  is still given by equation (10). 

All of these advanced phase-shift operators, equations (9), (11), and (12), are 
derivable from the constant velocity expression, equation (1) with 0yk = , by simply 

replacing v  with ( )v x  for PSPI, replacing v  with ( )ˆv x  for NSPS (after moving the 
phase-shift operator into the implied forward Fourier integral), and replacing v  with 

( )ˆ.5 .5v x x+  for the Weyl operator. This is significant in the present context because 
the forms for 3DW , equation (5), and 2DW , equation (8), are integrals over 
wavenumbers not spatial coordinates. Thus, once forms are given for the constant-
velocity extrapolators in space-frequency, the various laterally variable forms follow 
immediately by the simple velocity replacement rule just specified. Thus it is a simple 
matter to make the transition from constant-velocity space-frequency domain 
extrapolators to extrapolators that are appropriate for extreme heterogeneity. 
However, the same cannot be said for anisotropy because this effect generally 
requires that velocity also depend upon wavenumber. 

Analytic forms 
The analytic forms of equations (5) and (8) are well known and can be found in 

many papers and texts such as Berkhout (1985). It is also well known (e.g. Robinson 
and Silvia 1981, p371-373) that they are expressible via the z derivatives of the 
corresponding 3-D and 2-D Greens functions. That is, 3DW  is known to be given by 
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( ) ( )3 3, , , , 2 , , , ,D DW x y z v g x y z v

z
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∂  (13) 
where the 3-D Greens function is 
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with 2 2 2r x y z= + +  and /k vω= . Straightforward calculation then shows that 
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where cos / /z r r zθ = = ∂ ∂  is the cosine of the scattering angle. Equation (15) shows 
that 3DW  consists of two terms, one that goes as 1r−  and is called the far-field term 
and another that goes as 2r−  and is called the near-field term. 

When equation (15) is substituted into equation (6) the result can be written 

 
( ) ( ) /

2ˆ ˆ ˆ ˆ, , , , , 0, 1
2
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π ω
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where ( ) ( )2 2 2ˆ ˆr x x y y z= − + − +!  and cosθ  has been replaced by /z r! . Equation 
(16) is the space-frequency equivalent of the 3-D phase-shift expression (equation 1). 
It is a simple integral, over the input lateral coordinates, where the integrand is the 
product of the input wavefield, ( )ˆ ˆ, , 0,x y zψ ω= , an angle-dependent geometric 

factor, 2/z r! , a phase-shift operator, ( )exp /i r vω! , and a near-field modifier, 
1 /iv rω+ ! . Strictly speaking, the denominator of the geometric factor could be pulled 
outside the integral because it has no coordinate dependence, but we prefer to leave it 
because such a dependence will shortly be introduced.  

The phase-shift in equation (16) is precisely that required to give the time advance 
necessary to sum along a constant-velocity diffraction hyperboloid. Thus, the 
equation is a spatial convolution of the wavefield with an operator that achieves 
geometric scaling and summation along a diffraction hyperboloid. Accordingly, 
equation (16) is interpretable as a Kirchhoff-style wavefield-extrapolation operation 
in the space-frequency domain. 

Similarly, 2DW  is given by 

 
( ) ( )2 2, , , 2 , , ,D DW x z v g x z v

z
ω ω∂= −

∂  (17) 
where the 2-D Greens function is (Zauderer, 1989, p383) 



Recursive Kirchhoff wavefield extrapolation 

 CREWES Research Report — Volume 13 (2001) 623 
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and ( ) ( )1
0H u  is the zero-order Hankel function of the first kind. ( ) ( )1

0H u  has the 
following series representation (Gradshteyn and Ryzhik, 1980) 
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For large u, only the first term is needed, while for the present purposes the first two 
terms will be used. Using the approximation (19) in equation (17) predicts  
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Thus we have the interesting circumstance that 3DW  is given by a simple analytic 
form that is valid everywhere while 2DW  has an approximate form that cannot be 

expected to be valid at very small kρ . ( 2DW  is know exactly as ( ) ( )1
0 /

2
i H k zρ− ∂ ∂  

but its realization in terms of simple analytic functions is approximate.) 

A final form for a 2-D extrapolator can be developed by substituting equation (20) 
into equation (7) 
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where ( )2 2ˆx x zρ = − +!  and cosθ  has been replaced by /z ρ! . As in the 3-D case, 
this expression can be interpreted as a Kirchhoff operation; but this time, in 2-D. 

Stationary-phase considerations 
It is very common to employ the method of stationary phase to develop 

approximate forms for 3DW  and 2DW . The theory of stationary phase can be found in 
many texts (e.g. Murray, 1984, Bleistein and Handselman, 1986) and is a standard 
tool to deduce the leading order behaviour of oscillatory integrals like those of 
equations (5) and (8). The details of our stationary-phase calculations are 
straightforward and are not given here. The results are, for 3DW  
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where, as before, 2 2 2r x y z= + +  and cos /z rθ = . For  
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/ 4

2 cos
2

ik i
D
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Comparing equation (22) with equation (15) and also comparing equation (23) with 
equation (20) shows that the stationary-phase approximations do not include the near-
field terms from 3DW  and 2DW . In most Kirchhoff algorithms this is not considered 
to be a serious omission because they are formulated as direct estimation methods. 
This means that each point in the subsurface is imaged with a single large 
extrapolation step directly from the recording geometry. However, in the present case, 
we desire a recursive Kirchhoff application using many small steps, and in the next 
section we show that the near-field terms can be significant. 

Kirchhoff analogs to the advanced Fourier extrapolators 

The constant-velocity formulae for the application of 3DW  and 2DW  (equations 16 
and 21) can be directly modified to emulate the three different Fourier operators 
described previously. First, for PSPI we obtain the 3-D expression 
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with ( ) ( )2 2 2ˆ ˆr x x y y z= − + − +!  and in 2-D 
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with ( )2 2ˆx x zρ = − +! . Next, the NSPS expressions are, for 3-D, 
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and for 2-D 
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Finally, for the Weyl operator, in 3-D we have 
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where ( ) ( )ˆ / 2 and / 2x x x y y y= + = +! ! ! ; and in 2-D 
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A 2-D NUMERICAL IMPLEMENTATION 
We have implemented equations (25), (27), and (29) in a Matlab code to test our 

conclusions and compare the recursive Kirchhoff approach to the recursive Fourier 
methods. Figure 1 shows a comparison of the Kirchhoff and Fourier NSPS methods. 
As shown in Margrave and Ferguson (1999), NSPS has the property that diffraction 
hyperbolae track smoothly across velocity discontinuities; and both algorithms show 
this behaviour. The velocity model has a discontinuous step at its centre where it 
changes from 2000m/s to 3000m/s. The input wavefield consisted of two impulses at 
equal times on either side of the velocity discontinuity. A single 50m upward step 
was taken. The two algorithms have produced almost identical responses. In Figure 2, 
the f-k transforms of the results of Figure 1 are shown to demonstrate that they are 
similar at almost all spectral points. The most distinctive differences are near the 
spectral origin and these are likely due to the approximate nature of the near-field 
term in the Kirchhoff implementation. As well, the Kirchhoff spectrum shows a line 
of high amplitudes near the negative evanescent boundary that are not seen in the 
Fourier result. Whether this is due to a difference in the numerical implementation of 
a dip filter in the two algorithms or is a more inherent feature is under investigation. 

Figure 3 repeats the Kirchhoff result of Figure 1 and compares it with its own 
near-field term (in relative scale). Figure 4 displays the f-k transforms of these 
wavefields. The near-field term can be seen to contribute a small though significant 
part of the result. If a smaller depth-step were taken, the near-field term would be a 
more significant part of a diminished total response. 

Figures 5 and 6 repeat the experiment depicted in Figures 1 and 2, except that this 
time the PSPI algorithm is compared in its Kirchhoff and Fourier implementations. 
Again the new Kirchhoff method has a behaviour very similar to the Fourier approach 
and both show the characteristic wavefield discontinuity at the velocity boundary. As 
with the previous example, the f-k spectra show that the Kirchhoff method is distinct 
in that it has more energy near the negative evanescent boundary than the Fourier 
result. 

Figures 7 and 8 are again a repeat of the same experiment except that this time the 
Weyl operator has been used. The results are, in some sense, intermediate to the PSPI 
and NSPS results. As discussed in Margrave and Ferguson (1998), there are many 
such symmetric combinations of NSPS and PSPI and most have subtle advantages. 
Again, the f-k spectrum indicates that the Kirchhoff method has more energy near the 
evanescent boundaries than the Fourier result. This is possibly a shortcoming of the 
Kirchhoff method, although its precise cause is presently unclear. 

In a second test, we consider the extrapolation of a test wavefield through the 
“fault” model of Figure 9. The input wavefield (Figure 10) was a series of eight 
impulses and was extrapolated 150m upward through the model of the previous 
figure. The extrapolation was done with 15 steps of 10 metres using the Fourier NSPS 
algorithm of equation (11). The resulting extrapolated wavefield is shown in Figure 
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11 and its f-k spectrum is in Figure 12. Each impulse has spread into a diffraction 
response characterized by the velocity structure above the impulse. The ensemble of 
diffraction responses forms a composite event that tilts up to the right. The f-k 
spectrum shows three dominant lines that tilt to the left. The success of a downward 
extrapolation of this wavefield can be judged both by how well the impulses are 
focused and by how well these spectral lines are shifted to the vertical. 

The sequence of Figures 13-18 show a series of extrapolation tests that all used 5 
steps of 30 metres to reconstruct the input wavefield (Figure 9) from the test 
wavefield of Figure 11. The use of a coarser set of downward steps than upward steps 
means that the downward reconstructions will be of lower accuracy. Figures 13 and 
14 show the wavefield and its f-k spectrum that result from a downward extrapolation 
of the test wavefield using the Fourier PSPI algorithm (equation 9). The PSPI 
algorithm is an excellent inverse for NSPS and this image is a superior benchmark for 
comparison with Kirchhoff results. Figures 15 and 16 are the wavefield and its f-k 
spectrum that result from a downward extrapolation using the Kirchhoff PSPI 
algorithm of equation (25) using the approximate near-field term of 3 / 8iv ωρ  (times 
the far-field term). The Kirchhoff reconstruction is very good and nearly identical to 
the Fourier result. Finally, Figures 17 and 18 repeat the Kirchhoff PSPI result except 
that the near-field term has been omitted. Though there is still good focusing, there is 
a clear degradation of the result including a noticeable phase distortion of the focal 
points. The f-k spectrum shows a slight loss of power at low frequencies near zero 
wavenumber. 

Figures 19-25 are a second suite of downward extrapolations all conducted with 15 
steps of 10 metres, just as was the upward extrapolation. In Figures 19 and 20 is the 
wavefield and its f-k spectrum that result from the Fourier PSPI algorithm. This is 
about as good a reconstruction as is possible without something like least-squares. 
Figures 21 and 22 show the result of the Kirchhoff PSPI algorithm without the 
approximate near-field term. This time, compared with Figures 17 and 18, there is a 
very pronounced phase and amplitude distortion in the image and a strong loss of 
power in the f-k spectrum. In Figures 23 and 24, the approximate near-field term is 
included and the result, although better, is still far from the excellent image of the 
Fourier PSPI. The f-k spectrum in Figure 24 shows that the lost power around zero 
wavenumber at low frequencies has been restored but, in fact, too strongly. This 
indicates that the approximate near-field correction developed in equation (20) is not 
sufficient and the next term is probably needed. In Figures 25 and 26 is another 
Kirchhoff PSPI but with the near-field term of 3 / 8iv ωρ  scaled by 80% (determined 
empirically). The result is clearly improved. These experiments support the general 
conclusion that the near-field term is essential in recursive wavefield extrapolation, 
becoming increasingly important as the step size decreases. 

COMPUTATIONAL EFFORT AND OTHER ALGORITHMIC 
CHARACTERISTICS 

Both the Kirchhoff and Fourier versions of NSPS and PSPI scale as 2N  
algorithms, meaning that computation costs go up as the square of the number of 
traces. This can be demonstrated either by analysis or by experiment: Figures 27-29 
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document the latter approach. Shown in these figures are the results of timing tests in 
a controlled experiment where only the number of traces was varied. The Fourier 
version of NSPS was compared with several different dip-limitations in the Kirchhoff 
version. PSPI costs the same and is not shown. In Figure 27, the CPU times are 
plotted versus the number of traces and it is quite apparent that the Fourier algorithm 
requires much more time. In Figure 28, the logarithms of time and number of traces 
are plotted with each line having a slope of about 2, indicating an 2N  process. 
Finally, in Figure 29, the ratio of the Fourier time to the Kirchhoff time is shown and 
it can be seen that the relative increase in speed ranges from about a factor of six for 
the 90-degree Kirchhoff algorithm to over 100 for the 30-degree algorithm. 

The improvements in computation speed, while impressive, require clarification. 
First, the Fourier algorithm runs at a speed that is strongly dependent on the 
complexity of the velocity structure and independent of any dip limitation. 
Conversely, the Kirchhoff approach is independent of the velocity complexity (as 
long as straight raypaths are used) but strongly dependent upon the dip limitation. In 
these comparisons, we chose to use the direct Fourier method that implements either 
of equations (9) or (11) as a matrix-vector multiplication. This approach is quite 
general and can handle any velocity complexity but is relatively slow. For simple 
velocity distributions, a number of improvements can be made in the Fourier methods 
that can dramatically improve the computation speed. For example, in constant 
velocity media, the phase-shift method can be used and a huge speed increase will 
result while the Kirchhoff methods will run at the same speed as before. 

The need for the Fourier algorithm to have zero-valued traces padded onto the 
sides of the data, for protection against wraparound and for improvement in FFT 
speed, is also a factor. The Kirchhoff methods do not require this and, especially in 3-
D, this can be a huge advantage. (The “number of traces” used as the axes in Figures 
27-29 is the number before any padding and so is the same for both approaches.) 

Generally, the Fourier methods are more sensitive to irregularities in data 
geometry than the Kirchhoff algorithms. Such irregularities usually only slow down 
the first step in an extrapolation process as a regular output geometry can generally be 
synthesized regardless of the input. It is a simpler matter to modify the Kirchhoff 
algorithms to accommodate unusual data gathers, such as common-offset sections, 
than for the Fourier approaches. This is a popular approach to prestack 3D migrations 
that can lead to very significant economies. 

Though we call our approach a Kirchhoff method, we emphasize that, unlike most 
other Kirchhoff methods including that of Bevc (1997), our approach does not require 
raytracing. In this respect, it is like phase-shift methods where traveltimes are 
computed geometrically assuming straight raypaths. As with other recursive methods, 
the cascade of many steps of wavefield extrapolation, each using local straight 
raypaths, simulates propagation along all possible paths. 

CONCLUSIONS 
Space-frequency domain expressions for the major phase-shift operators have been 

presented and shown to correspond to local Kirchhoff summation operators. These 
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operators are easily adapted to accommodate strong velocity heterogeneity, although 
the extension to anisotropy is anticipated to require more research. Formulae for the 
Kirchhoff equivalent of the Fourier methods of NSPS, PSPI, and Weyl extrapolation 
were given in 3-D and 2-D. 

Numerical experiments were presented in 2-D to compare the Fourier and 
Kirchhoff method. The Kirchhoff approach was shown to give very similar results to 
the Fourier techniques and the importance of including the near-field term was 
demonstrated. Cost comparisons were shown that suggest that considerable 
efficiencies can be gained by the Kirchhoff approach. Since the cost of recursive 
Kirchhoff is essentially independent of the velocity complexity, it is a good candidate 
algorithm for depth migration in complex media. 

RESEARCH PLANS 
In the coming year we intend to implement and test a 3D prestack depth migration 

code using the recursive Kirchhoff approach. This will be done on a parallel system 
of workstations using a Fortran code. 
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FIGURES 

2000 m/s 3000 m/s 2000 m/s 3000 m/s

Kirchhoff NSPS Fourier NSPS

2000 m/s 3000 m/s2000 m/s 3000 m/s 2000 m/s 3000 m/s2000 m/s 3000 m/s

Kirchhoff NSPS Fourier NSPS

 

FIG. 1. The Kirchhoff NSPS algorithm is compared with its Fourier counterpart. A single 
upward step of 50m was taken through a bimodal velocity model. The dashed line separates 
a 2000m/s medium from a 3000m/s medium. The input wavefield contained two isolated 
impulses, one in each medium. 
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Kirchhoff NSPS Fourier NSPS

 

FIG. 2. The f-k amplitude spectra of the wavefields of Figure 1. 
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Kirchhoff NSPS Near field only

 

FIG. 3. On the left is a repeat of the left side of Figure 1 while the right side contains the near-
field term only. The near-field is quite small compared with the total field. 
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Kirchhoff NSPS Near field only

 

FIG. 4. The f-k amplitude spectra of the wavefields of Figure 3. 
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FIG. 5. This is a repeat of the example of Figure 1 except that the PSPI algorithm has been 
used. 
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Kirchhoff PSPI Fourier PSPI

 

FIG. 6. The f-k amplitude spectra of the wavefield of Figure 5 are shown. 

2000 m/s 3000 m/s 2000 m/s 3000 m/s
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2000 m/s 3000 m/s2000 m/s 3000 m/s 2000 m/s 3000 m/s2000 m/s 3000 m/s
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FIG. 7. The experiment of Figures 1 and 5 has been repeated using the Weyl operator. This 
averages the behaviour of the previous two operators. 
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Kirchhoff WEYL Fourier WEYL

 

FIG. 8. The f-k amplitude spectra of the wavefields of Figure 7 are shown. 

2000 m/s

4000 m/s

 

FIG. 9. A “fault” velocity model. 
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FIG. 10. The input wavefield to a series of wavefield extrapolation experiments. 
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FIG. 11. The result of the upward extrapolation of the wavefield of Figure 10 through the 
velocity model of Figure 9. Fifteen upward steps of ten metres each were taken with the 
Fourier NSPS algorithm. 
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FIG. 12. The f-k magnitude spectrum of the wavefield of Figure 11. Note the tilt of the spectral 
lines to the left. 

 

FIG. 13. The result of a downward extrapolation of the wavefield of Figure 11 with the Fourier 
PSPI algorithm using 5-30m steps. 
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FIG. 14. The f-k magnitude spectrum of the wavefield of Figure 13. 

 

FIG. 15. A downward extrapolation with Kirchhoff PSPI, including the near-field term, using 5-
30m steps of the wavefield of Figure 11. 
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FIG. 16. The f-k magnitude spectrum of the wavefield of Figure 15. 

 

FIG. 17. A Kirchhoff NSPS extrapolation of the wavefield of Figure 11, identical in all respects 
to the extrapolation of Figure 15 except that the near-field term was omitted. 
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FIG. 18. The f-k spectrum of the wavefield of Figure 17. 

 

FIG. 19. The downward extrapolation, using Fourier PSPI and 15-10m depth steps, of the 
wavefield of Figure 11. 
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FIG. 20. The f-k spectrum of the wavefield of Figure 19. 

 

FIG. 21. The result of 15-10m steps with Kirchhoff PSPI, without the near-field term, of the 
wavefield of Figure 11. 
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FIG. 22. The f-k spectrum of the wavefield of Figure 21. 

 

FIG 23. The result of 15-10m steps of Kirchoff NSPS, including the near-field term, of the 
wavefield of Figure 11. 
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FIG. 24. The f-k spectrum of the wavefield of Figure 23. 

 

FIG. 25. A repeat of the experiment of Figure 21 except that only 80% of the near-field term 
was included. 
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FIG. 26. The f-k spectrum of the wavefield of Figure 25. 

 

FIG. 27. The result of run-time testing for the Fourier NSPS algorithm and its Kirchhoff 
equivalent using three different dip limits. Four experiments were run using 64,128, 256, and 
512 traces each. 
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FIG. 28. The data of Figure 27 have been plotted with logarithmic scales on both axes. All 
methods have a slope of about 2 indicating that they scale as the square of the number of 
traces. 
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FIG. 29. The data of Figure 27 are displayed as the ratio of the Fourier time to the Kirchhoff 
time. The 30-degree algorithm is as much as 100 times faster while the 90-degree algorithm 
is about 6 times faster. 


