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Dual-algorithm wavefield extrapolation applied to depth 
imaging 

Yanpeng Mi and Gary F. Margrave 

ABSTRACT 
The dual-extrapolation algorithm using large-step nonstationary wavefield 

extrapolators and vertical wavefield interpolation for depth imaging is reviewed. The 
PSPI dual-algorithm is applied to complex-structure prestack depth imaging from 
both flat and topographic recording surfaces. The imaging results are compared with 
images produced by other authors using different algorithms. It is shown that the 
dual-algorithm is capable of imaging very complicated structures. 

INTRODUCTION 
Complex geology requires increasing the number of reference velocities in 

Gazdag’s PSPI (Gazdag and Sguazzero, 1984) and the number of spatial windows for 
the windowed split-step Fourier algorithm, which significantly increases the amount 
of computing time. The recursive nonstationary integral algorithms (PSPI, NSPS and 
SNPS) are accurate however too slow for many purposes. With small vertical and 
lateral velocity gradients, large extrapolation steps can be taken without causing 
noticeable errors. Ng (1994) demonstrated that large time steps could be used in 
Gazdag’s PSPI; however he did not recognize that different velocities should be used 
for the static phase-shift and the focusing phase-shift. The dual extrapolation 
algorithm (Mi and Margrave, 2000) splits the total phase-shift in complex media into 
a static phase-shift, which is computed with the time-average velocity in the ( )x,ω  
domain, and a focusing phase-shift, which is computed with the depth-average 
velocity using the nonstationary integrals. High accuracy is achieved when the 
extrapolation step is not too large and the velocity gradients are reasonably small. 
This significantly reduces the run time of the recursive integral wavefield 
extrapolators. The dual algorithm can be conveniently applied to the flat datum 
imaging problem and extended to the topographic imaging problem with minor 
modifications to the theory. 

THE DUAL-EXTRAPOLATION ALGORITHM FOR PRESTACK DEPTH 
IMAGING  

In media of constant velocity, considering downward extrapolation only, the 
phase-shift that carries the wavefield from 0 to z can be split into a static phase shift 
in the ( )x,ω  domain and a focusing phase-shift in the ( )xk,ω  domain  
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where staticΦ  is applied in the ( )x,ω  domain, and the focusing term focusΦ  is applied 
in the ( )xk,ω  domain.  

Equation (1) is exact for homogeneous media. It is also approximately applicable 
for )(zv  media by replacing the focusing velocity with a root-mean-square (RMS) 
velocity. Applied recursively, this is equivalent to a WKBJ solution to the scalar 
wave equation. Equation (1) can be generalized to media with weak lateral-velocity 
variation. Both the static and the focusing phase-shift become functions of spatial 
location x 
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Similar to the case of constant velocity, the static phase-shift staticx)(Φ  is applied 
in ( )x,ω  domain, which corresponds to a spatially varying vertical traveltime. The 
focusing phase-shift focusx)(Φ  is applied as a nonstationary filter in ( )xk,ω  domain, 
which corresponds to the energy propagating in all possible angles. 

Substitution of equation (1) into the nonstationary wavefield extrapolator gives a 
split nonstationary operator 
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The PSPI and NSPS integral extrapolation can then be written as  
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and  
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respectively. ( )ωα ,kx' x ,z,  is now the nonstationary focusing operator 

 
( ) 












−−−

=
1

)(
1

)(
x

2

22

,kx' ω
ω

ωα
xvk

xv
zi x

e,z,
. (6) 

Equations (4) and (5) can be written in the form of a matrix-vector multiplication 
with the ( )x,ω  domain static phase shift term applied before (for NSPS) and after (for 
PSPI) application of the nonstationary focusing term. 

For )(zv  media, both the static and focusing phase-shift become independent of x 
and they can be accumulated over depth. The accumulated static phase-shift can be 
written as 

 )(
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The accumulated focusing term can be written as 
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Equation (7) together with (8) gives a WKBJ solution for v(z) media. For media 
with lateral-velocity variation, equation (7) remains valid, however equation (8) does 
not since the PSPI and NSPS integrals don’t perform exact inverse- or forward-spatial 
Fourier transforms. PSPI and NSPS thus become local integral operators that don’t 
directly accumulate over depth. However, for weak lateral velocity variation, the 
focusing term approximately accumulates and equation (8) can be generalized to 
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The static phase-shift still accumulates exactly 
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Expanding the square-root term in equation (9) with binomial expansion leads to, 
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Note the ( )∫
z

dz'x,z'v
z 0

1  is exactly the depth-average velocity (mean velocity) defined 

as  
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This suggests that the equation (11) can be approximated by  
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Expanding the equation (13) with power series and then subtracting equation (11) 

leads to the error term of the focusing phase-shift 
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  (14) 
This error can generally be ignored when 1) propagation angle is small or 2) the depth 
step z is small or 3) the lateral velocity gradient is small. 

For large-step extrapolation, equations (4) and (5) become  
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and  
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where ( )ωα ,kx' x ,z,mean  is now the mean nonstationary focusing operator 
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Similar to the natural combination of the recursive NSPS and PSPI (Ferguson and 
Margrave, 1999b), equations (15) and (16) can also be combined naturally to form a 
symmetric wavefield extrapolator. The symmetric large-step extrapolation from depth 
0 to z can be easily formulated as 
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and symbols ( )2/0 z→  and ( )zz →2/  denote the depth interval from 0 to z/2 and 
z/2 to z. 

Equations (15) and (16) require the same amount of computation effort as the 
recursive PSPI and NSPS integral as described before; however, they allow a larger 
extrapolation step. The maximum allowable depth-step under the condition of limited 
phase-error is dependent on the complexity of the velocity field and the maximum 
angle to be imaged. 

The large-step extrapolation algorithm can be used to compute the reference 
wavefields at a depth grid coarser than the imaging depth grid. A linear interpolation 
between these reference wavefields, after proper vertical traveltime correction, can 
then be used for produce intermediate wavefields to produce the depth image. The 
intermediate wavefields are correct in terms of vertical traveltime; however, are 
slightly mis-focused. Figure 1 shows a schematic drawing of the dual algorithm. 

 
FIG. 1. The dual algorithm uses a accurate algorithm to produce and relatively accurate 
reference wavefields at a depth grid coarser than the imaging depth grid. Intermediate 
wavefields can then be computed by fast interpolation. 
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Consider two ( )x,ω  domain mono-frequency reference wavefields at z1 and z2, 
( )ωψ ,,x 1z , ( )ωψ ,,x 2z , which are computed by the large-step PSPI integral 

extrapolator. An intermediate wavefield between z1 and z2, ( )ωψ ,,x z , can be 
computed by either forward extrapolation from the wavefield at z1 or by inverse 
extrapolation from the wavefield at z2. However, computation of the focusing term 
with laterally varying velocity is time-consuming. Since the velocity variation and 
distance between the upper and lower reference wavefields are small, the upper 
reference wavefield becomes an under-focused version of the intermediate wavefield 
and the lower reference wavefield becomes an over-focused version of the 
intermediate wavefield after vertical traveltime correction. The error in focusing 
terms can roughly cancel if appropriate weighting factors are applied.  

Vertical traveltime correction to the upper and lower reference wavefields 
produces two approximations to the intermediate wavefield ( )ωψ ,,x z . They can be 
written as  
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where vave1 and vave2 are average velocities from z1 to z and z to z2.  

Equations (20) and (21) are vertical time corrections. Another slightly slower 
approach is to use single-reference-velocity split-step Fourier algorithm to 
approximately correct for the focusing error.  

Wavefield weighting can be done by linear interpolation between ( )ωψ ,,x'
1 z  and 

( )ωψ ,,x'
2 z  roughly cancels the focusing error if the difference between vave1 and vave2 

is small 
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For a larger difference between vave1 and vave2, correction for the focusing term is 
required. A single-reference- velocity split-step Fourier algorithm improves the high-
dipping-angle events without slowing down the dual algorithm much.  

APPLICATION TO THE MARMOUSI SYNTHETIC DATA 
Figure 2 show two imaging tests with a 40m dual PSPI algorithm. Each large-step 

includes 10 imaging steps at 4m interval. Both vertical static-phase-shift and the 
single-reference-velocity split-step phase corrections are tested and the results are 
shown in Figure 2a and Figure 2b. As a result of the focusing phase error introduced 



Dual-algorithm wavefield extrapolation 

 CREWES Research Report — Volume 13 (2001) 679 

by the vertical traveltime correction, the events on the middle left of the image of 
Figure 2a, as marked with ‘poor image’, are discontinuous, while the split-step 
correction produces a much better image. The quality of the image produced with the 
16m dual-algorithm (Figure 3) is quite comparable with that generated by recursive 
integral SNPS algorithm (Figure 4), which is much slower than the dual algorithm. It 
took about 3 minutes to migrate a shot gather on a single-CPU Alpha XP1000 
workstation when the 16m dual-algorithm is used. 

 
(a) 

 
(b) 

FIG. 2. Marmousi CIG image computed with a 40-m dual-algorithm by (a) linear interpolation 
of static phase-shift corrected wavefield and (b) linear interpolation of wavefields corrected 
with the single-reference-velocity split-step algorithm. Note the phase error generated by the 
large-step extrapolation on high-dip reflections in (a) and the improvement in (b).  
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FIG. 3. Marmousi CIG image computed with a 16m dual-algorithm. 

 

FIG. 4. Marmousi CIG image computed with recursive SNPS integral algorithm. 

WAVEFIELD EXTRAPOLATION FROM TOPOGRAPHY WITH LARGE-
STEP PSPI AND NSPS 

Conventional statics correction is based on the assumption that wave propagates 
vertically near surface due the presence of low velocity layer. It fails when near-
surface velocity is high. Wave equation redatuming that lets waves propagate at all 
possible angles is required. Figure 5 shows the basic idea of wave equation 
redatuming. For a complex velocity model, Fourier domain redatuming requires 
recursive wavefield extrapolation, continuous muting of unnecessary extrapolated 
wavefield, and inclusion of the wavefield recorded at current depth level until 
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reaching a flat datum that is typically equal or deeper than the lowest point of the 
topography. 

For less complex media and relatively small topographic variation, recursive 
wavefield extrapolation can be approximately replaced by a single-step nonstationary 
wavefield extrapolation with not only laterally varying velocities, but also laterally 
varying extrapolation step size (Margrave and Yao, 2000) (Figure 6). For example, a 
PSPI nonstationary redatuming algorithm can be formulated as, 
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with the nonstationary wavefield extrapolator ( )ωα ,kx x ,z,  written as 
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Note both the velocity and the extrapolation step size are now x-dependent. Plus and 
minus signs denote backward and forward extrapolation. 

 

FIG. 5. Wave equation redatuming allows the energy at each receiver location to propagate 
along non-vertical ray-paths. Grey grid lines are depth steps. 

Equation (23) is a large-step algorithm, however different from that previously 
discussed. Average velocity is used for both static phase-shift and the focusing phase-
shift terms. According to the large-step extrapolation algorithm defined before, 
equation (24) can be split into a static phase-shift and a focusing phase-shift term. 
The extrapolation can then be written as 
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where staticΦ is the static phase-shift defined as 
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The nonstationary focusing phase-shift operator can be written as 
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where both the average and the mean velocities are computed from the topographic 
function to a flat datum. Note only the forward extrapolation is considered. 

 
FIG. 6. Single-step Fourier domain redatuming with nonstationary wavefield extrapolator. 
Both the extrapolation step size and the velocity are functions of spatial location.  

For more severe topographic variation and stronger lateral-velocity gradient, an 
accurate large-angle propagator is desired. Equation (25) can be applied recursively 
with the x-dependent depth step function being a slice of the overall topography z(x) 
in each step; however, a spatial mute function must be applied to eliminate the 
extrapolated wavefield where the topography is below the extrapolation depth. Data 
recorded at current depth step is then included for the next step extrapolation. For a 
large-step PSPI implementation, the thinner the slice is, the more accurate the 
algorithm is. For a PSPI implementation, each step of extrapolation can be written as, 
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where PSPI denote the PSPI integral algorithm. ( )ωϕ ,,k 0x z  and ( )ωψ ,,x 0 zz ∆+  
denotes the (ω,kx) domain wavefield at depth z0 and the (ω,x) domain wavefield at 
depth zz ∆+0 , respectively. W(x,z0) denotes the spatial windowing function, which is 
defined as 
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)( xzψ  denotes the wavefield recorded on the topography z(x). The extrapolation 
depth-step function in the nonstationary phase-shift operator is now defined as  
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where h1(x) and h2(x) are the x dependent depths functions at 0z  and zz ∆+0 , defined 
as 
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and z(x) is now the topography. 

Figure 7 shows a zero-offset forward extrapolation of 11 impulses through a 
complex velocity model. The impulses are placed uniformly at the bottom of the 
model and receivers are placed at each x-location on the topography. Forward 
modelling is done by recursive application of the PSPI integral extrapolator with a 
step size of 4 m. The velocity model has a maximum of 100% lateral velocity 
variation and roughly 110m topographic relief within a 750m distance. Comparison 
of the downward extrapolation with large-step PSPI extrapolation algorithm with the 
recursive PSPI integral algorithm shows how robust the large-step algorithm is. 
Figure 8 shows the inverse extrapolation with the recursive 4m step PSPI integral and 
large-step algorithm with various step sizes. Note that the quality of the focal points 
only degrades slightly when the step size is increased to 80m.  

The NSPS counterparts of equation (23) can be written as 
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with the nonstationary wavefield extrapolator ( )ωα ,kx x ,z,  expressed in equation 
(24). Similarly, the NSPS counterpart of equation (25) can be written as, 
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where staticΦ is the static phase shift defined the same as equation (26) and the focusing 
phase-shift ( )ωα ,kx' x ,z,  is defined the same as equation (27). For multi-step 
extrapolation through topography, the extrapolated process involves similar muting of 
the extrapolated wavefield above topography and addition of recorded data at proper 
depth level. 

The spatial Fourier transform requires the seismic data be recorded on a flat 
datum. Both of equations (23) and (25) requires that the wavefield recorded on a non-
flat datum be transformed from x coordinate to kx coordinate before they can be 
applied. PSPI extrapolation from topography obviously violates this assumption. The 
same problem exists for equation (28) since a simultaneous inverse transform has the 
same assumption. Equation (33) has an advantage that the wavefield is first vertically 
shifted to a flat datum with an average interval velocity, which is equivalent to a 
statics correction and then extrapolated and forward transformed to the kx domain.  
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(a) 

 
 

 
(b) 

 

 
(c) 

FIG. 7. Zero-offset forward extrapolation with recursive PSPI integral of 4-m step size. (a) 
The velocity model, (b) the 11 impulses, (c) the zero-offset synthetic. 
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(a) 

 
 

(b) 
 

 
(c) 

 

 
 

(d) 
FIG. 8. Accuracy comparison of inverse extrapolation. (a) Recursive PSPI integral 
extrapolator with 4m step size, (b) inverse extrapolation with 20m PSPI integral extrapolator, 
(c) inverse extrapolation with 80m PSPI integral extrapolator, (d) inverse extrapolation with 
120m integral extrapolator. 

Figure 9 shows NSPS forward and inverse extrapolation test similar to that shown 
in Figure 8. The difference between the modelled data with PSPI integral and the 
NSPS integral is minor, however the energy of the events around x=750m, 
corresponding to the highest point of the topography and greatest lateral velocity 
contrast, is more complete and stronger. Figure 9b-d shows large-step inverse 
extrapolation of Figure 9a with 80m, 120m and 160m NSPS integral extrapolation. 
The source impulse at x=750m is missing in the PSPI extrapolation test due to severe 
topographic variation and high lateral velocity contrast. However NSPS is able to 
recover the source impulse very well even when the extrapolation step size is 
increased to 160m.  
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For depth imaging, the wavefield at each depth-step within the topography can be 
computed by either recursive extrapolation or the dual algorithm, with the spatial 
muting function W applied and field data recorded at current depth level added.  

 

 
 

(a) 

 

 
(b) 

 

 
 

(c) 

 

 
(d) 

FIG. 9. Zero-offset extrapolation test with large-step NSPS. (a) Recursive NSPS with 4m step 
size, (b) inverse extrapolation with a 80m NSPS, (c) inverse extrapolation with a 120m NSPS 
and (d) inverse extrapolation with a 160m NSPS. 

APPLICATION OF PSPI DUAL-ALGORITHM TO THE FOOTHILLS 
SYNTHETIC DATA SET  

We now show results from a finite-difference synthetic 2-D seismic line that 
models the extreme topography and velocity variation of the Canadian Rocky 
Mountains. This model was provided by Sam Gray (then of AMOCO) (Gray and 
Marfurt, 1995) and thanks are also due to BP for allowing its use. Figure 10 shows a 
geologic cross-section representative of northeastern British Columbia, where large 
topography variation and high-angle thrust faults are common. The model contains a 
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number of faults and folded layers, as well as roughly 1600m of elevation relief that 
is typical in Canadian Rocky regions. The model is 25km long. The highest 
topography is about 2km above sea level and the deepest part is about 8km below sea 
level. The model has P wave velocity variation from 3600m/s near the surface and 
5900m/s near the bottom. The depth model sample rate is 10m. A total of 278 2-D 
synthetic shot gathers were computed with finite-difference modelling. The data were 
recorded to 5s by a split spread of 480 receivers with offsets ranging from 15m to 
3600m on both sides of the shot points. The shot spacing was 90m and the original 
time sample rate is 4ms. The 2-D cylindrical spreading loss is proportional to t-1/2. A 
geometrical spreading correction should be applied before imaging. 

The dominant frequency content of the original synthetic data is from 5Hz to 
40Hz. It allows resampling to 6ms rate to reduce the amount of computation. Each 
shot gather was padded to 7.5s to accommodate the energy wrapped around by the 
extrapolation and Fourier transform, which becomes noise when it is not handled 
properly. A more efficient approach is to only pad small amount of time to the traces 
and mute the padded region after each large-step extrapolation or after several steps 
of extrapolation, as long as the vertical traveltime shift in the extrapolation does not 
exceed the padded time. Each shot gather was padded to 512 traces with the source 
located in the middle, so that there are 15 padded traces (225m) on both sides to 
accommodate the energy wrapped around by extrapolation and spatial Fourier 
transforms. The padded traces are muted after each large-step extrapolation. For a 
step size of 50m, the padding can handle a design dip of 78 degrees. This is often 
good enough for most complex geology settings. 

Figure 11 shows a shot gather located in the middle of the model. Rapid 
topography variation, high near-surface velocity and complex structures present a 
great challenge to depth imaging algorithms.  

A PSPI dual-algorithm was implemented on the MACI cluster workstations. A 
total of 14 computing nodes were used and it took about 8 hours to migrate all the 
whole data set. Figure 12 shows the shot gather in Figure 11 after migration and 
Figure 13 shows a CIG at the middle of the line. Figure 14 show a) the CIG stack and 
two images produced by other authors, b) a prestack Kirchhoff migration (Gray and 
Marfurt, 1995) and c) a 75-degree finite-difference prestack migration by H. Lu in the 
CREWES Project with the prestack finite-difference depth migration module in 
ProMAX. The result produced by the large-step PSPI integral algorithm has several 
advantages over other algorithms, not only in term of the near-surface events, but also 
in term of migration noise level and vertical image resolution. The Kirchhoff 
algorithm fails to recover both of the flanks of the syncline that is located in the 
middle of model and at depth from 7000m to 8000m. The major near-surface events 
are clear, however the migration noise is very disturbing. Figure 15 shows a zoomed 
version of the upper-left corner of the images Figure 14. Improvement is obvious. 
The 75-degree finite-difference algorithm produced a less noisy image, however the 
image depth is slightly incorrect. This is apparent that the left end of the basement 
reflection should be at 10000m instead of 10300m. The quality of the dominant fault 
plane on the right of the section, as well as the strata on both sides, tells the 
algorithms’ capability in imaging high-dip events. Apparently the large-step PSPI 
integral algorithm produced the best result. 
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FIG. 10. A velocity/depth model representative of northeastern British Columbia (after Gray 
and Marfurt, 1995). 

COMPARISON OF SPEED AND LIMITATIONS OF WAVEFIELD 
EXTRAPOLATION ALGORITHMS 

The NSP, PSPI and SNPS are NsNzN3 algorithms. The order of other Fourier-
domain prestack-depth-imaging methods can be computed in a similar way. For a 
single-reference velocity, split-step Fourier methods (or phase-screen method), 
ignoring the computation time for vertical travel time correction since computing the 
focusing term consume the most computer time, the computational cost function can 
be written as NsNzN2logN. For a windowed split-step approach, the computer time 
cost function can therefore be written as NsNzNwN2logN, where Nw is the number of 
lateral windows. Gazdag’s PSPI approach roughly is of the same order as a windowed 
split-step Fourier method. Its computing cost function can be written as 
NsNzNvN2logN, where Nv is the number of reference velocities. For the dual algorithm, 
the cost function can be written as NsNzN3/NL, where NL is the number of intermediate 
steps in a large-step extrapolation. When the condition NvlogN > N/NL is satisfied, the 
dual algorithm becomes faster than the windowed split-step Fourier method and 
Gazdag’s PSPI approach. Table 1 shows the relative performance of different Fourier 
domain wavefield extrapolators. This is only a rough estimation and can only be 
viewed in a relative sense.  
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FIG. 11. A shot gather located in the middle of the model.  

 

 

FIG. 12. Shot gather of Figure 11 after migration from topography with the dual algorithm. 
The extrapolation step is 50m. 
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FIG. 13. A CIG located in the middle of the model. 

 

 
(a) 

 
FIG. 14. (Text overleaf) 
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(b) 

 
(c) 

 

FIG. 14. (a)The depth image computed with the PSPI dual algorithm; (b) the depth image 
computed with Kirchhoff migration from topography and (c) the depth image computed with 
75-degree finite-difference algorithm. 
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(a ) 

 
(b) 

FIG. 15. (Text overleaf) 
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(c) 

FIG. 15. Zoom of the upper-left portions of the images in Figure 14. (a) Zoom of Figure 14a; 
(b) Zoom of Figure 14b; (c) zoom of Figure 14c; (d) zoom of Figure 14d.  

 

Algorithms Ability to Handle 
Large Lateral Velocity 

Gradient  

Order of Algorithm Relative Speed 

NSPS, PSPI and 
SNPS Integrals 

Strong NsNzN3
  Slow. 

Dual Algorithm Strong NsNzN3/NL Very fast. 

Split-step / Phase-
screen 

Weak NsNzN2logN  Very fast. 

Windowed Split-
step / Phase-
screen  

Strong when sufficient 
numbers of windows 

are used. 

NsNzNwN2logN  Slow when the 
number of 

windows exceeds 
N/logN. 

Gazdag’s PSPI Strong when sufficient 
number of reference 

velocities is used. 

NsNzNvN2logN  Slow when 
number of 
reference 
velocities 

exceeds N/logN. 

 

Table 1. Performance summary of established Fourier domain imaging techniques. 
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CONCLUSIONS 
The large-step nonstationary integral wavefield extrapolators prove to be accurate 

and effective for prestack depth imaging. It dramatically reduced the run-time of the 
nonstationary integral wavefield extrapolators and suitable for regions of complex 
geology. This is demonstrated by applying the PSPI dual-algorithm to the Marmousi 
synthetic dataset. The dual-algorithms are also very adaptive to regions of large 
topographic variation superimposed with high surface velocity and high velocity 
contrast. This is demonstrated with prestack depth migration of the Foothills synthetic 
data and comparison with images produced by previous authors.  
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