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ABSTRACT 
In investigating the variation of nonstationary wavelets in a medium with 

attenuation, we apply the 45-degree wave equation to wavefield upward continuation 
with a constant-Q  model. The amplitude variation and phase property of the 
propagating wavelet are simulated and then validated by the spectral ratio and spiking 
deconvolution approach. The synthetic data are also compared to the forward-Q -
filtered trace which is generated by another method. The estimated Q  value from 
synthetic data by the spectral ratio method is quite close to the Q  value given in the 
model. The result of spiking deconvolution shows the wavelet in the synthetic data is 
effectively minimum phase. A layered-Q  model is also tested. The average Q  
estimated by spectral ratio method is reliable for the noise free data.  

INTRODUCTION 
The attenuation of seismic energy by the earth and the resulting nonstationary 

recorded data traces are fundamental issues in seismic data processing and 
interpretation. There are two separate approaches to seismic pulse propagation and 
dispersion in attenuating media. The first assumes Q  depends on frequency (Ricker, 
1953, Kolsky, 1955, Aki and Richards, 1980). The second approach assumes Q  is 
independent of frequency, that is the constant-Q  model. Q  is then used to calculate 
pulse broadening and dispersion (Futterman, 1962; Carpenter, 1966; Kjartansson, 
1979). Futterman derived a theoretical dispersion relation for materials with a 
constant-Q . Wuenschel (1965) experimentally showed Plexiglas and shale to exhibit 
a similar dispersion relation. Earth materials have been shown to have a nearly 
constant-Q  over the seismic frequency range (Spencer, 1981). So the constant-Q  
model has gained greater acceptability in seismology.  

The relationship between the attenuation and dispersion provides an important way 
to include the effects of attenuation into seismic synthetic data. The basic dispersion 
relation used in generation of seismograms and inverse-Q  filtering is derived by 
Kjartansson (1979). He developed practical techniques for incorporating the effect of 
attenuation on wave propagation in a medium where Q  varies with depth but not with 
frequency. He also provided a convolution operator by which the effect of attenuation 
can be easily included in synthetic seismograms. The dispersion relation given by 
Futterman can be derived from Kjartansson�s equation and may be used in wave 
propagation too. A good example using Futterman�s equation in inverse-Q  filtering is 
provided by Hargreaves and Calvert (1991). They consider the process of inverse-Q  
filtering as a migration with the phase-shift method. 

There are many methods for determining the Q  value. Among these, the spectral 
ratio approach is more accurate than others if the data is noise free (Tonn, 1991). 
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Synthetic data is a good candidate for this method. So all the estimated Q  values in 
this project are calculated using spectral ratio approach. 

The purpose of this paper is to describe the behaviour of a constant-Q  model by 
acoustic-wave equation modelling in the frequency-space domain, based on an 
understanding of the relationship between attenuation and dispersion. The frequency-
space domain wavefield continuation was chosen in favour of other methods because 
the dispersion relation can be easily included in the wave equation and Q  value can 
vary in both vertical and horizontal directions.  

ATTENUATION, DISPERSION, AND CONSTANT-Q MODEL 
Here we provide a review of the fundamental concepts associated with this 

research. Seismic attenuation can be caused by many factors such as absorption, 
geometric spreading, transmission, mode-conversion, and intrabed multiples and 
scattering (Schoepp, 1998). Anelastic attenuation is the process by which rocks 
convert compressional and shear waves into heat. This process causes a loss of high-
frequency energy with increasing arrival time and also a time-varying distortion of 
wavelet phase. This process can be measured by a dimensionless value, Q , given by 
equation (Aki and Richards, 1980) 

 
E
E

Q πω 2)(
1 ∆

−= , (1) 

where E  is the peak (or average) strain energy stored in a volume of material; E∆−  
is the energy lost in each cycle because of imperfections in the elasticity of the 
material; and ( )ωQ  is a quality factor which characterizes this energy loss within a 
cycle. 

Constant Q  means the Q  value is independent of frequency but can vary in the 
space and time. Under the assumptions of linearity and causality, the effect of the 
constant-Q attenuation can be represented with the equation (Appendix A) given by 
Margrave (1998) 
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where H  represents the Hilbert transform, f  is the frequency and t , the traveltime. 
Space ( )ftQ ,α  is an impulse response in the time-frequency domain. It is equivalent 
to a forward-Q filter, including both attenuation and dispersion effects.  

Dispersion, the variation of seismic velocity versus frequency, is a consequence of 
the requirement that wave propagation in an absorbing medium must be causal (Aki 
and Richards, 1980). A constant-Q attenuation medium disperses propagating 
mechanical waves. Otherwise, the wave propagation will violate elementary notions 
of causality. So, this requirement also implies that the phase spectrum of the 
attenuated response to an impulse is the Hilbert transform of log of its amplitude 
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spectrum (Aki and Richards, 1980). If the phase spectrum of a pulse can be computed 
by the Hilbert transform of the log of its amplitude spectrum, we call the pulse a 
minimum-phase wavelet (Margrave, 2001). Equation (2) is also a minimum-phase 
filter. When a minimum-phase source signature experiences an attenuation, this 
process is equivalent to convolving the signature with a attenuated response to an 
impulse. The output of the convolution maintains the minimum-phase characteristic. 

CONTINUATION USING A FINITE-DIFFERENCE SOLUTION 

In a 2D medium, the wave equation for compressional waves in space-frequency 
domain can be written as  

 P
vx

P
z
P

2

2

2

2

2

2 ω
−

∂
∂

−=
∂
∂ , (3) 

where ),,( ωzxPP = represents the pressure wavefield; ),( zxvv =  is the velocity, and 
ω  is angular frequency. Equation (3) is a two-way wave equation. If we directly use 
it in wavefield continuation, multiples will be generated when the velocity is not a 
continuous function of space. So, a one-way equation is useful if multiples are not 
wanted. The square root equation can be directly derived from equation (3); that is 
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where the plus sign on the right side of the equation represents the upcoming wave 
and the minus sign the downgoing wave, while the minus sign convention in forward 
Fourier transform is chosen. Based on the exploding reflector concept, the zero-offset 
reflected wave recorded at the surface can be simulated by upward continuation of the 
exploding reflector using a half velocity from certain depth. So we chose the minus 
sign in equation (4). 

To approximate equation (4) with a finite-difference equation, it needs to be 
approximated first by the continued fraction method (Lee and Suh, 1985): 
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and nY  is the nth order approximation of Y . 0Y  is zero. The 2nd order approximation 
of equation (4) for the downgoing wavefield then can be written as a conventional 45-
degree equation (Lee and Suh, 1985): 
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Substituting equation (6) and (9) into equation (8), then equation (8) can be 
expressed as: 
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The wavefield P  is related to time-shifted wavefield 'P (Yilmaz, 1987): 
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where 
v
z  is the retarded time at depth z. The derivative of P over z is  
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Substituting equation (11) and (12) into equation (10) means it can be written as: 
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If the horizontal velocity variation can be ignored, vv ≈ , equation (13) can be 

expressed as 
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After getting the solution ( )ω,,' zxP  from equation (14), then we use equation (11) 

to shift the wavefield from depth z  to surface and finish the wavefield extrapolation 
at depth z. The synthetic data is ),0,( tzxP =  , which is the inverse Fourier transform 
of the final solution from equation (11). 
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Now we need to include the effect of the constant-Q attenuation in equations (11) 
and (14). The constant-Q theory of Kjartansson and others is the simplest attenuation 
theory. It can be easily incorporated in the wavefield continuation. The relationship 
between the dispersion and constant-Q attenuation given by Kjartansson (1979) is 
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where 
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Q  is the quality factor, )(ωv is the complex phase velocity, )( 0ωv  is the phase 
velocity at reference frequency 0ω . Here we replace the real velocity, v , in equation 
(11) and (14) for ( )ωv . That is: 
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where )( 0ωv is chosen to be the real velocity given in the model. Then we change the 
elastic wave equation to the anelastic wave equation and incorporate the attenuation 
effect on the wavefield continuation scheme (Aki and Richards, 1980). 

Using the Crank-Nicolson difference method and replacing v  for ( )ωv , the 
solution for equation (14) can be represented with the finite-difference equation 
(appendix A ): 
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with the notations of: 
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where β is the factor in second order derivative: 
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The computing process includes several steps:  

1. Given a model in ),( zx  domain as well as a source signature, 
( )0,,' =tzxP . 

2. From maximum depth level, for each depth step, solve the equation (16) to 
get the monochromatic wavefield at a given depth and then shift the 
wavefield upward to surface. 

3. At depth 0=z , transfer the wavefield ( )ω,0, =zxP  to time domain. 

4. Finally get the synthetic data ( )tzxP ,0, =  by inverse Fourier transform. 

ANALYSIS OF UPWARD CONTINUATION 
Figure 1(a) is the model used to generate the synthetic data. There are three scatter 

points in the model. Velocity is equal to 1000 m/sec and Q  is a constant. Figure 1(b) 
displays a minimum-phase source signature and its amplitude spectrum. The 
dominant frequency in the spectrum is 80 Hz. This signature is used for all the tests in 
the paper. The synthetic time sections created from the model given in Figure 1 are 
displayed from Figure 2 corresponding to three Q  values, 50, 100, and 200 
respectively. There are three diffractions on the zero-offset sections. We chose only 
25 traces and 256 samples for each trace in the synthetic data so as to speed up the 
calculation. 

The synthetic data then are validated to verify the method used in simulating the 
constant-Q  attenuation procedure. There are three methods being applied to check 
the phase property, amplitude and waveform of the propagating pulse.  

At first, the phase property of the propagating wavelet is tested. We have discussed 
that, when a minimum-phase source signature travels through a medium with 
constant-Q  attenuation, the output is still minimum-phase. Spiking deconvolution 
can be used to test the phase characteristics of the synthetic data. According to the 
minimum-phase assumption in spiking deconvolution, if a wavelet is minimum-phase 
it will be compressed into an impulse after deconvolution. Otherwise, it cannot be an 
impulse. So spiking deconvolution can validate whether the propagating wavelet is 
minimum-phase or not. Figure 3 shows a synthetic trace generated with a minimum-
phase source signature and the result of spiking deconvolution. The Q  value is 50. As 
shown in the trace after deconvolution, the pulse is approximately an impulse. Figure 
4 displays the similar result with Q  equal to 100. The results shown in both figures 
are consistent with the theory we discussed before. Then we can say the reflected 
pulse is minimum-phase. Figure 5 shows a propagating wavelet reflected from three 
subsurface and then deconvolution with a stationary wavelet. It is interesting that 



Propagating wavelet simulation 

 CREWES Research Report � Volume 14 (2002) 7 

although they all become the spike but with different width. Comparing Figures 3 and 
4, we can infer that for the seismic data from an attenuating medium, nonstationary 
deconvolution should be used to improve the resolution in both shallow and deep 
areas. 

An important verification for the approach used to simulate waves in a constant-Q  
attenuation media is that the estimated Q  from a reflected pulse at some time should 
approximate the given Q  at the corresponding reflector in the model. 

The spectral ratio method is the most commonly used method of Q estimation. In 
this method, Q  is estimated from the log ratio of the amplitude spectra of a wave at 
two different times (White, 1992). The amplitude spectrum of a pulse experiencing a 
constant-Q  attenuation can be given by (Aki and Richards, 1980): 

 /
0| ( , ) | | ( ) | ft QA t f A f e π−=  , (20) 

 
where t  is the traveltime of the pulse, ( )0A f  is the amplitude spectrum of the 
source signature of the pulse and |),(| ftA  is the attenuated amplitude spectrum of 
the pulse. Equation (20) at some time, 2t , is divided by the same equation at an early 
time, 1t : 
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After taking the natural logarithm, equation (22) is converted into  
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In equation (22), Q  is calculated from the slope of the least-square regression against 
frequency of the log spectral ratio. This equation is accurate for noise-free data 
(Tonn, 1991). Figure 6 shows a group of traces which are generated with different Q  
attenuation on the same model. Figure 7 shows the amplitude spectra of reflection 
waves from third subsurface, corresponding to each trace in Figure 6. With Q  
decreasing, the high-frequency components are attenuated gradually and the dominant 
frequency shifts toward lower frequency. Figure 8 is the log of the amplitude 
spectrum ratio of the shallow and deep pulse in Figure 6. For each Q , the log curve is 
a straight line. For a given time difference, 2 1t t− , if the term on the left of the 
equation (22) is linearly proportional to frequency, the Q  is independent of 
frequency. Figure 9 shows the estimated Q  on the Figure 8 with spectral ratio 
method. The given Q  and estimated values are also listed in Table 1. Because the 
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error in the arrival time and frequency can be negligible in this case, so the error in 
estimating Q  can be attributed to the error in calculating amplitude spectrum ratio, 
and to the notches in the spectra caused by the ghost or multiple. If the two pulses 
used in estimating Q  are too close, the accuracy of calculation of both their 
amplitude spectra and Q  will decrease. 

Table 1. Given Q  in the model and estimated Q  by spectral ratio methods. 

 

The calculated Q  value is reliable if the data is noise-free (Tonn, 1991). 
Otherwise, this method can be inaccurate. The amplitude spectra of two noisy 
synthetic traces with signal-to-noise ratio equal to 5 and their log ratio are displayed 
in Figures 10 and 11. The Q  value given in the model is 50. An estimated value 
greatly departing from the given value means the noise suppression is very important 
for spectral ratio method. 

Finally, the synthetic trace is compared with a constant-Q  filtered trace. The filter 
used in this comparison is designed by Margrave (1996) using constant-Q  theory of 
Kjartansson (1979). In the constant-Q  and dispersive material, the Fourier transform 
of the impulse response can be represented by (Kjartansson, 1979): 
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, nyq
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Q fQB t f e e
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If we do an inverse Fourier transform on equation (24), we get 

 [ ]),(),( ftBIFTtb =τ ,  (24) 

where IFT is the inverse Fourier transform, nyqf is Nyquist frequency, and t  is the 
arrival time of waves from source to some locations. Equation (23) and (24) are 
nonstationary forward-Q  filters represented in frequency and time domain 
respectively. The array, ),( τtb , is also called the Q  matrix that is shown in Figure 12 
with two different Q  values. The comparison process includes several steps: at first, 
use the same source signature as one in the wavefield continuation to convolve with 

),( τitb where time, it , is arrival time calculated at the depth of the corresponding 
reflector. Then add all the results from convolution at different arrival times to get a 
Q -filtered trace. Finally display the filtered trace together with synthetic trace. In 
Figure 13 we compare the attenuated traces from wavefield continuation and Q  
matrix respectively. The results are very close each other.  

given Q  value 10 20 30 40 50 60 70 80 90 100 

estimated Q  10.6 20.52 30.63 40.74 50.92 60.9 71.3 81.6 91.5 102.1 
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The validation shows that the modelling with wavefield continuation in constant-
Q  attenuation medium is reasonable and useful.  

A LAYERED-Q MODEL 
The mechanism of attenuation in the real earth is better modelled by layers with 

different Q  values. This variation is caused mainly by rock type, saturation state, 
pressure and amplitude of the acoustic wave (Toksoz, 1981). It may be possible to 
deduce these properties by variation in Q  value, especially for the existence of the 
gas or fluid in the earth. So it may be reasonable to consider the effect of the local Q  
value variation on the average Q  of a layered system. Like the concepts describing 
the velocity, we can call the Q  value corresponding to a layer the interval Q  value 
which is a constant within the layer. The summed effect of the different interval Q  
values is called the average Q  value in this project. Suppose there is a layered model 
(with layers ni ,1= ) with interval Q  equal to iQ  for thi  layer and arrival time of 
wave from thi  reflector equal to it . From equation (21), the amplitude spectrum of a 
wave from the bottom boundaries of the first layer can be written as: 

 11 /
01 |)(||),(| QftefAftA π−= . (25) 

The amplitude spectrum of a wave from the second reflector is 
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Then average Q can be defined as 

 
∑∆

= n

ii
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Qt
nQ

1
/
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where τ is the arrival time of the wave from thi reflector, it∆  is the time difference 
between the thi  and thi )1( −  reflectors, and aveQ is the average Q. Equation (28) 
shows that aveQ  is bounded by minimum and maximum iQ . When all the layers have 
a same iQ , it is equal to aveQ . The layer with the smallest iQ  can obviously decrease 

aveQ  when other two parameters have a gentle variation. This is a useful indicator in 
the identification of the gas or fluid layer. Limited by seismic resolution, sometimes 
we cannot delineate the target layer or get iQ . By comparing aveQ  from different 
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depth, we can get some useful information relating to iQ . To show the effect of the 

iQ on aveQ  in the layered system, first we generate a set of synthetic data and then 
calculate the aveQ  using the spectral ratio method. The estimated aveQ  and given iQ  
are displayed in Figure 14. aveQ  from two approaches is also shown in Table 2. In 
Table 2, 1Q , 2Q , and 3Q  represent the given Q  values for three layers. estaveQ −  and 

eqnaveQ −  are the average Q  values of the 2nd and 3rd layers from the spectral ratio and 
equation (28) respectively. The curve in Figure 14 is calculated from the data listed 
on Table 2. We see that the estaveQ −  is a good approximation of the eqnaveQ − . But they 
are not exactly same. Figure 14 also shows that the layer with a lower Q  value 
dominates the average Q estimation for a two-layered model. The smaller the interval 
Q , the more closely the average Q approximates it. 

 
Table 2. Model parameter for average Q analysis 

2Q  3Q  estaveQ − eqnaveQ − Velocity (m/sec) Depth (m) 
100 10 26 21 V1=1500 D1=24 
100 20 41 37 V2=1500 D2=60 
100 30 53 50 V3=2000 D3=96 
100 40 64 61   
100 50 73 70   
100 60 81 78   
100 70 87 85   
100 80 92 90   
100 90 96 95   
100 100 102 100   

501 =Q       
 

From the above discussion we know that the spectral ratio method can be used for 
determining the average Q  in a layered-Q  model. 

CONCLUSION 

Space-frequency domain wavefield continuation can be used in both forward- and 
inverse-Q  filtering. The Q  value estimated by spectral ratio method on the synthetic 
data is close to the given Q . This means the relative amplitude in the synthetic data is 
correct and energy attenuation of the wavefield based on the constant-Q  model is 
reasonable. The deconvolved trace shows that the pulses in synthetic data are 
minimum phase, which is the result of the dispersive model. Comparison of the 
synthetic data and the forward-Q  filtered trace shows that the difference between 
them is mainly caused by time advancement in attenuated synthetic trace and low-
pass effect of the wavefield continuation method. This problem needs to be further 
investigated. The spectral ratio method is also verified. It is accurate for the noise-free 
data, but it fails for a noise-contaminated trace. It can be used to estimate both 
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interval and average Q  for a layered-Q  model. In a layered-Q  system, a layer with 
very low interval Q  can obviously affect average Q .  
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APPENDIX A 

Equation (2) can be derived as follows: 

A stationary source signature should be a causal wavelet. That is 

 ),0( txu = =0, for 0<t   (A-1) 

At 0>x , each Fourier component of u can be factored as: 



Dong and Margrave 

12 CREWES Research Report � Volume 14 (2002)  

 ikxeuxu ),0(),( ωω = , (A-2) 

where 
v

k ω
=  is the wavenumber and ω  is the angular frequency. Attenuation can be 

introduced into this model by allowing either k  or ω  to be complex. Dispersion can 
also be added in the model by allowing velocity to depend on frequency. Let k  be 
complex and velocity be a function of the frequency result in 
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and ( )ωα  is the attenuation coefficient. With the assumption of the linear 
superposition, the wave at ),( tx  is 
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which is equivalent to the convolution of ),0( tu  with  

 ∫
∞

∞−

−= ω
π

detxp wtkxi )(

2
1),(

,  (A-6) 

where ),( txp is the attenuated response to an impulse. Requiring this response to be 
causal, that is 

 0),( =txp , for 0<t , (A-7) 

 
implies (Aki and Richards, 1980): 

 ))((
)(

ωα
ω
ω H
v

= ,  (A-8) 

 
where ))(( ωαH is the Hilbert transform of the attenuation coefficient. Then we 
introduce the constant-Q attenuation coefficient (A-4) and get an attenuated response 
in the frequency domain  
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)()

)(2
(

)(2
(

Q
ftiH

Q
ftx

Qv
iH

Qv ee
ππ

ω
ω

ω
ω

+−+−

= ,  (A-9) 

 
where ( )ωv  is the complex phase velocity. 

 

APPENDIX B 

 
For the equation (14), 

 

 024
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∂
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ωω ,  (B-1) 

let 

 ( )nn PP
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P '
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'
' 1
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∂
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δ

,  (B-2) 
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1 '
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'
22
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nn PP
T

T
xx

P θθ
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−+
+

=
∂
∂

+ ,  (B-3) 

and ( )1,2,1 −=T . Substitute (B-2) and (B-3) into (B-1) and replace v  for ( )ωv , then 
(B-1) can be written as 

( ) ( ) ( ) ( ) ( )( ) 01
1

2
1

114 '
1

''
1

'
2

'
1

'
2

2

=−+
+

+−
+

+− +++ nnnnnn PP
T

T
v
iPP

T
T

xz
PP

zv
θθ

βω
ω

βδδδω
ω

(B-4) 

Note that when substituting (B-3) for the second term on the left side of equation (B-
1), the θ  equals to zero and for the third term θ  is 0.5. Now we divide equation (B-4) 
by Tβ+1  and use operator T . Then we get a finite-difference approximation for 
equation (B-1) 

 nmnmnmnmnmnm cPdPcPaPbPaP ,1
'

,
'

,1
'

1,1
'

1,
'

1,1
'

+−++++− ++=++ ,  (B-5) 

 
with the notations of: 
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FIG. 1(a): A constant-Q model with three scatterpoints 
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FIG. 1(b): The source signature and its amplitude spectrum 
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FIG. 2: Synthetic diffraction with different Q values. 
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FIG. 3: Synthetic signal with Q  equal to 50 and the deconvolved result. 
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FIG. 4: Synthetic signal with Q equal to 100 and the deconvolved result. 

 
 

 
 

FIG. 5: Synthetic trace and deconvolved trace with Q =100. 
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FIG. 6. Traces with different Q  attenuation. 

 
 

  

FIG. 7: Amplitude spectra corresponding to the first (left) and the third (right) pulse for each 
trace in Figure 6. 
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FIG. 8: Log ratios of the amplitude spectra. 

 

FIG. 9: Estimated Q values by the spectral ratio method. 
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FIG. 10: Amplitude spectra of two traces with signal-to-noise ratio = 5. 

 
 

 

 

FIG. 11: Q  estimate from Figure 10. Given Q  value is 50. 
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FIG. 12: Impulse responses of Q  filters at different times. 

 

 

FIG. 13: Comparison of attenuated wavelets from wavefield methods and Q  matrix with Q  
equal to 50. 
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FIG.14: A layered model (Top) with a uniform thickness for each layer and average Q  values 
estimated by spectral ratio methods from the synthetic data and those calculated by the 
equation (29) from model parameters.  
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