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An update on Gabor deconvolution 

Gary F. Margrave, David C. Henley, Michael P. Lamoureux, Victor Iliescu, and 
Jeff P. Grossman 

ABSTRACT 
Gabor deconvolution has been updated and a new ProMAX module is released. The 

updates are: (1) a new method of spectral smoothing called hyperbolic smoothing; (2) a 
Gabor transform using compactly supported windows that improves run times by one to 
two orders of magnitude; and (3) a post-deconvolution time-variant bandpass filter whose 
maximum frequency tracks along a hyperbola in the time-frequency plane. We discuss 
the technical details of these improvements and present an overview of the new ProMAX 
module. 

INTRODUCTION 
Time-frequency analysis is a hot topic in applied mathematics with many new 

textbooks and monographs having appeared in recent years. Seismic data is particularly 
appropriate for this analysis because of its inherent nonstationarity, characterized by the 
progressive loss of high frequencies with increasing time. However, it is usually required 
to go beyond the simple analysis of nonstationarity and to actually process the data to 
render it more nearly stationary. Usually, this means performing some kind of an 
operation on the time-frequency decomposition (i.e. filtering) and then synthesizing a 
new signal by recombining the altered time-frequency components. Of the popular time-
frequency analysis techniques, the wavelet transform is probably most popular; however, 
there is a great deal of interest in windowed Fourier transforms that have become known 
as Gabor transforms (Gabor, 1946, Feichtinger and Strohmer, 1998, Mertins, 1999). One 
reason that the Gabor transform remains popular in spite of the many advantages of the 
wavelet transform is that the latter does not diagonalize a local convolution operator 
while the former does. 

Last year, we showed the fundamental concepts behind a new nonstationary 
deconvolution technique called Gabor deconvolution (Margrave and Lamoureux, 2001). 
As the name suggests, this method uses the Gabor transform to accomplish a time-
frequency decomposition of a seismic trace. This Gabor spectrum is then processed in 
such a way that the effects of anelastic attenuation and the source signature are 
approximately removed. In its simplest form, this involves smoothing the magnitude of 
the Gabor spectrum to estimate the Gabor magnitude spectrum of the propagating 
wavelet. This is then combined with a minimum phase spectrum, computed in the usual 
way with the Hilbert transform, to completely specify the propagating wavelet. Then the 
Gabor spectrum of the seismic signal is pointwise divided by the estimated Gabor 
spectrum of the propagating wavelet. If the signal were noiseless, then an inverse Gabor 
transform would complete the process. However, we have found it necessary to precede 
the inverse Gabor transform with a time-variant bandpass filter to limit the whitened 
spectrum to the supposed signal band. 
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This process is motivated by a simple model of the constant-Q attenuation process that 
allows the forward-Q filter to be written as a pseudodifferential operator applied to the 
seismic reflectivity. We have shown that the Gabor transform approximately factorizes 
this pseudodifferential operator into a product of the Gabor transform of the reflectivity, 
times the time-frequency attenuation function, times the Fourier transform of the source 
signature. 

In this paper we report on several new developments that improve the basic algorithm. 
First we describe a new method of smoothing the Gabor magnitude spectrum along 
hyperbolic paths (Iliescu and Margrave, 2001) that yields a more consistent estimate of 
the Gabor magnitude spectrum of the propagating wavelet. Then we describe an 
efficiency improvement to the Gabor transform in which we depart from Gaussian 
windows to smooth windows with compact support1. This brings a very large speedup to 
the Gabor transform with runtimes reducing by a factor between 10 and 100. We also 
discuss the use of both analysis and synthesis windows in this context. Also we describe a 
post-deconvolution bandpass filter whose magnitude spectrum follows hyperbolic 
contours in the time-frequency plane. Finally, we describe a new ProMAX module that 
incorporates these features. 

HYPERBOLIC SMOOTHING OF THE GABOR MAGNITUDE SPECTRUM 

Gabor factorization of a nonstationary trace model 
We use a trace model that includes the source signature and the nonstationary effects 

of dissipation as predicted by the constant-Q model though it does not explicitly model 
multiples or stratigraphic filtering. The effect of constant-Q can be modelled as 

 ( ) ( ) ( ) [ ]2, if t
Q Qs t f r e d dfπ τα τ τ τ

∞ ∞
−

−∞ −∞

= ∫ ∫ , (1) 

where ( )r τ  is the reflectivity sequence and the constant-Q transfer function is 

 ( ) ( )/ /, f Q iH f Q
Q f e π τ π τα τ − += , (2) 

where H  denotes the Hilbert transform over f  at constantτ . Equation (1) can be 
understood as a nonstationary convolution in the sense defined by Margrave (1998). 

As defined by equation (1), sQ models dissipation for an impulsive source. We apply a 
more general source signature with a stationary convolution and write our final 
nonstationary trace model as 

                                                 
1A function is said to have compact support if it is nonzero only within a finite close interval of the real 
line. 
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where �w  and �s  are the Fourier transforms of the source signature and the nonstationary 
seismic trace respectively. Equation (3) is a replacement for the familiar stationary 
convolution model. 

We have derived (Margrave and Lamoureux, 2001) an asymptotic result for the 
continuous Gabor transform of ( )s t , whose Fourier transform is given by equation (3), as 

 ( ) ( ) ( ) ( )�, , ,g Q gV s f w f f V r fτ α τ τ≈  (4) 

where the ≈  sign means that this is the leading term in an asymptotic series. In words, the 
continuous Gabor transform of our nonstationary trace is approximately equal to the 
product of the Fourier transform of the source signature, the constant Q transfer function, 
and the continuous Gabor transform of the reflectivity. Since, for fixedτ , the Gabor 
transform is just a Fourier transform, this is a temporally local convolutional model. It is 
a reasonable expectation that a similar relation holds for the discrete Gabor transform. 

In closing, we mention the simplest stationary trace model, the convolutional model, 
has the seismic signal created from the convolution of the wavelet with the reflectivity. 
Since all seismic data is nonstationary, this convolution can only be a local 
approximation and the term wavelet must be taken to mean the propagating wavelet as it 
has evolved from the source to the time zone of interest. That is the wavelet must be 
roughly the product, 

 ( ) ( ) ( )0� � ,prop Qw f w f fα τ≈ , (5) 

where 0τ  refers to the centre of the zone of interest. Then, if we take a single Gabor 
window that spans the entire zone of interest, the Gabor transform is simply the Fourier 
transform and we write equation (4) as 

 ( ) ( ) ( )� � �props f w f r f≈ . (6) 

Recalling the convolution theorem, we see that the inverse Fourier transform of equation 
(6) gives the elementary convolution model. So the stationary trace model is a special 
case of our nonstationary trace model. 

Hyperbolic smoothing 

In frequency-domain, stationary deconvolution it is assumed that the reflectivity 
spectrum is a much more rapidly varying function than the wavelet spectrum, and the 
ideal character of the reflectivity is said to be white. In practice, this has come to mean 
that if the Fourier magnitude spectrum of the reflectivity is smoothed, by convolving with 
a certain smoother, then the result will be a constant function. It is then argued that 
smoothing the Fourier magnitude spectrum of a seismic signal eliminates the contribution 
of the reflectivity and estimates the wavelet magnitude spectrum. The appropriate 
smoother, in both length and geometry, continues to be an empirical decision.  
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We follow this lead in Gabor deconvolution and assume that the reflectivity spectrum 
is more rapidly varying than any other component in the trace model. However, with 
reference to equation (4), there are now three terms in the trace model because the 
attenuation surface and the source signature are modelled separately. The simplest 
possible smoothing procedure is to convolve the Gabor magnitude spectrum of the 
seismic signal with a 2D boxcar, whose time and frequency dimensions must be chosen 
empirically. A major problem with this approach is that it has an amplitude equalization 
effect, much like an AGC, that tends to distort the estimated reflectivity. This is 
illustrated in Figure 1, where we have run a Gabor deconvolution on a synthetic signal 
whose underlying reflectivity contains a weak zone surrounded by two stronger zones. 
The reason that this happens is shown in Figure 2. The smoothed Gabor spectrum, that 
should be an estimate of the spectrum of the propagating wavelet, is clearly unphysical. A 
wavelet propagating in an attenuating medium cannot lose and then regain energy. 

A better approach is suggested by the form of the constant-Q operator in equation (2). 
The magnitude of this operator in the time-frequency plane is constant along curves of 

constantfτ = , which are hyperbolae. Thus we might expect that the average of the 
Gabor magnitude spectrum, taken along such hyperbolic paths, will estimate the 
attenuation surface (Iliescu and Margrave, 2001). Figure 3 shows the result of such a 
hyperbolic smoothing process. This is a much more physically plausible result than the 
previous one, although we regard this as estimating only the attenuation surface and not 
the source signature. To accomplish the latter, we divide the spectrum on the left of 
Figure 3 by the one on the right, thereby backing out the apparent attenuation and then 
average over all time and smooth slightly in frequency. The result is shown in Figure 4, 
while Figure 5 gives the resulting deconvolution. The hyperbolic smoother has 
suppressed the AGC effect and a better reflectivity estimate is the result. We have also 
experimented with least-squares fitting of the Q surface as reported in Grossman et al. 
(2002a). 

Hyperbolic smoothing can be implemented in a variety of ways. We simply divide the 
entire fτ  range into about 100 intervals and sum the input samples into these bins. After 
computing the average value of each bin, we have 100 points on a curve that is a model 
for the hyperbolic average. Then for each input point in the grid, we interpolate a value 
from this curve. 

A GABOR TRANSFORM WITH COMPACTLY SUPPORTED WINDOWS 

Formulation of the discrete Gabor transform 
We present a summary here. For more detail and greater rigour, see Grossman et al. 

(2002b). 

Though the discrete Gabor transform can be formulated for very general time-
frequency lattices (e.g. Feichtinger and Strohmer 1998), we choose a simpler approach 
because the more general approach can be computationally slow. Unlike the discrete 
Fourier transform that expands a signal into an orthonormal basis, the discrete Gabor 
transform expands into a more general construct called a frame. By choosing windows 
that form a partition of unity (POU), a simple Gabor frame, called a tight frame, can be 
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implemented (Grochenig, 2001, p118). Furthermore, most of the calculations can be done 
with an FFT so that numerical efficiency is fairly good. Let ( )w t  be a set of windows 
satisfying the property, 

 ( ) ( ) 1k
k k

w t k w tτ
∈ ∈

− ∆ ≡ =∑ ∑
! !

, (7) 

and let ( ) ( ) p
k kg t w t=  and ( ) ( )q

k kt w tγ =  with 1p q+ = . Then we define the forward 
discrete Gabor transform as 

 " ( ) ( ) ( ) ( ) ( ) ( );k k k ks f F s f s t s t g t= ⋅ ≡   , (8). 

where F is the (discrete) Fourier transform. We use the �hat� notation for the Fourier 
transform. Here notation shows the Gabor transform of ( )s t  is the Fourier transform of 
the Gabor slice ( )ks t . (For simplicity, we use a continuous notation for signal, window, 
and Fourier transform and a discrete index for window position. For fully discrete 
formulae, the normal notation for discrete signals is easily employed.) The signal is 
recovered by the inverse discrete Gabor transform given by: 

 ( ) ( ) " ( ) ( )1
k k

k
s t t F s tγ −

∈

 = ⋅ ∑
!

. (9) 

Substitution of equation (8) into (9) shows that the signal is recovered exactly due to the 
property of equation (7) and 1p q+ = . 

In our previous work (Margrave and Lamoureux, 2001) we took 1p =  and 0q =  and 
chose the set { ( )}kw t  to be Gaussian windows such that 

 ( ) 1k
k

w t
∈

≈∑
!

, (10) 

where 

 ( ) [ ]2t k T
kw t e

T
ττ

π
− − ∆∆

= , (11) 

with T  being the Gaussian (half) width. This approximate POU differs from 1 by an 
error term, dominated by 2exp( [ / ] )Tπ τ− ∆ , that can be made arbitrarily small by 
increasing the ratio /T τ∆ . For example, the maximum error is -150 decibels for 

/ 1.5T τ∆ =  and is negligible for most practical purposes. 

A new compactly supported window 

We have adopted the use of the window shown in Figure 6, which we call a 
Lamoureux window. The Lamoureux window reaches unity at a single central point and 
is a kth order spline on either flank. The flanks are chosen such that a point that is tδ  
from the beginning of the window has amplitude say a  and the point that is tδ  from the 
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central peak has amplitude 1 a− . This property allows an easy construction of a POU. 
The Lamoureux window is given by 
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In comparison with a Gaussian window of the same width, the Lamoureux window is 
much more localized. (The width of the Gaussian is defined as its 1/e point.) In the 
context of the theory of the previous section, if we choose 1/ 2p q= = , then we will 
actually window with the square root of the Lamoureux window in both analysis and 
synthesis. For this reason, a 4th order Lamoureux is a natural choice so that the window 
can approach zero as a 2nd order curve. In contrast, if we used the popular raised cosine 
window, then its square root approaches zero linearly and has a discontinuous slope at its 
endpoints. 

The use of compactly supported windows leads to great efficiencies in the Gabor 
transform. When using Gaussian windows, each windowed trace segment is as long as 
the original trace. So if n windows are required and the trace is of length, N, then the 
computation effort is proportional to 2lognN N . In contrast, if the compactly supported 
window is of length, M, where M is typically 0.1N or less, then the effort is 

2 2log .1 lognM M nN N≈ . So we expect at least an order of magnitude less effort. 

When using Gaussian windows, the window width and increment are essentially 
independent. Equation (11) is a normalization formula that allows the formation of an 
approximate POU for any choice of Gaussian width and increment. In contrast, to form a 
simple POU with Lamoureux windows, the window spacing is determined by the width 
because the adjacent windows must have their peaks over the endpoints of the window in 
Figure 6. This is a minimally redundant POU (redundancy of 2). However, we can 
overcome this apparent obstruction to more redundant representations by simply shifting 
the minimally redundant partition by, say, 1/2 a window width and summing it to its 
originally. By this scheme, we can achieve any integral redundancy. 

Figure 7 compares the Gabor transform using Gaussian windows to one using 
minimally redundant Lamoureux windows with the same nominal width. The Gaussian 
transform is very redundant (about 10-fold) and shows much higher resolution than the 
twice redundant Lamoureux window result. Nevertheless, both transforms can 
reconstruct the signal with high fidelity. In Figure 8, the Gaussian window transform is 
compared with a 6-fold redundant Lamoureux window transform. Now the Lamoureux 
window seems to give higher temporal resolution than the Gaussian but lower frequency 
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resolution. This is because the Lamoureux window is effectively shorter for the same 
width parameter. 

POST-DECONVOLUTION NONSTATIONARY FILTER 
Gabor deconvolution is a very aggressive tool that can whiten the Fourier spectrum 

out to the Nyquist frequency. Frequently, the result is simply too strongly whitened and, 
as in the stationary case, a post-deconvolution filter is desirable. The goal of such a filter 
is to bandlimit the whitened data to the frequencies where signal is sufficiently dominant 
(i.e. the signal band). 

The signal band of a seismic signal from an attenuating medium is necessarily time 
variant. In the constant-Q model described by equation (2), the attenuation function 
describes a constant signal strength reduction along the hyperbolae defined by 

constantfτ = . Under the assumption of a constant background noise level, the signal-to-
noise ratio should also be constant along these trajectories. Therefore, we have 
implemented a nonstationary bandpass filter whose high-frequency cutoff follows a 
hyperbolic trajectory as shown in Figure 7. At early times the trajectory is altered to 
constant as the hyperbolic path becomes very wide. 

GABOR DECONVOLUTION II�THE PROMAX MODULE 
The improvements to Gabor deconvolution described above have been incorporated 

into a new ProMAX module called Gabor deconvolution II. While the overall structure of 
the module is similar to the Gabor deconvolution released by CREWES in 2001, 
significant algorithm differences and new parameters require further explanation. The 
single most significant change is the switch from the use of Gaussian windows to 
Lamoureux windows in the new program. Because of this change, many of the 
computational arrays are much smaller (small fraction of a trace length instead of a whole 
trace length, as in the Gaussian windowing scheme). This results in a dramatic reduction 
in computation time for the new algorithm. Depending upon the length and sample 
interval of the input traces and the window length specified by the user, the new 
deconvolution module can be from one to two orders of magnitude faster than the old. 
Because the output from the two modules is so similar, there are only a few 
circumstances where the old (Gaussian) algorithm might be preferable. Figure 10 shows a 
shot gather from the Blackfoot survey which has been deconvolved with the old Gabor 
deconvolution algorithm, while Figure 11 shows the same gather after deconvolution 
with the new module, using parameters that are as comparable as possible. The most 
visible differences are variations in gain which can most likely be attributed to the 
difference between effective window widths for the two algorithms.  

Two new features which have been incorporated into both the new and the old 
algorithms since the 2001 release are the choice of �hyperbolic smoothing� described 
above, and the option of applying a post-deconvolution, time-varying bandpass filter. The 
latter feature, in particular, is a natural one to incorporate into Gabor deconvolution, since 
time variation is integral with the Gabor spectrum, and the filter array can be applied by 
multiplication before synthesizing the output trace from its Gabor spectrum. In practice, 
the filter response is combined with the Gabor deconvolution operator before application 
of the operator to the Gabor spectrum of the trace. 
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Rather than describe the function of each parameter in the Gabor deconvolution II 
module, the help file (internal documentation) for the module is attached to this chapter 
as an appendix. Because of the significantly different windowing scheme in Gabor 
deconvolution II, with windows much shorter than traces, there is the potential for 
generating artifacts at window boundaries if certain parameters are inappropriately 
chosen with respect to the input data characteristics. The pertinent parameters in Gabor 
deconvolution II will be discussed in this context. 

In the original Gabor deconvolution operation, the parameter associated with the half-
width of the window determines the width of the window between the central unity 
amplitude point and the 1/e amplitude point on the Gaussian curve. Much of the energy 
of a windowed seismic trace is admitted through the localised central portion of the 
window, but the non-localised tails of the Gaussian admit significant energy as well. 
Because of the length and smoothness of the Gaussian curve, good estimates can be 
obtained of frequency components as low as the fundamental whose period is the trace 
length. In Gabor deconvolution II, however, the half-width parameter determines the 
width of the Lamoureux window between its central value of unity and the zero point at 
its edge. Since the Lamoureux function has no tails, all the analysed energy from a 
seismic trace is admitted through the localised window, and good estimates cannot be 
obtained for frequency components whose period is longer than the window width. 
Consequently, if the seismic trace contains strong frequency components whose period 
exceeds the desired window width, poor amplitude and phase estimates for these 
components will lead to discontinuities at the edges of windows during the synthesis 
phase of the deconvolution. Figure 12 shows the same Blackfoot shot gather as Figures 
10 and 11, but with a window too narrow to handle the lowest frequency components of 
the ground roll in the central portion of the shot record. As can be seen in the 
deconvolved gather, when the amplitude of frequency components in the seismic signal 
becomes low (as a result of spherical divergence) with respect to the amplitude of the 
ground roll, discontinuities marking window edges can be seen. An obvious fix for this 
situation is either to apply a low-cut filter prior to deconvolution (as in Figure 13), or to 
lengthen the window. There are, however, other parameters which can be used to 
alleviate the problem. 

Since the difficulty is due to inaccurate spectral estimates, one solution might be to 
take more spectral estimates and average them. This is effectively what happens if the 
�window increment factor� is used to increase the number of windows and their overlap 
on the seismic trace. A factor of 2 doubles the estimates, 3 triples them, and so forth. 
While this tactic does smooth the window effects, the algorithm execution time is 
increased by a similar factor. 

The �slope exponent� parameter determines the exponent used in the Lamoureux 
window to form the symmetrical, smoothly varying window function. An exponent of 1 
forms a triangular window, while exponents of 2 or higher give smooth bell-shaped 
curves. The higher the exponent, however, the steeper the slope of the curve and the more 
the window resembles a �boxcar�. The steeper slope also shortens the effective transition 
zone between successive windows. The default for slope parameter is 4, so that the 
resulting windows have fairly steep slopes and relatively short transitions. Applying 
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windows with steep edges is known to contribute to edge effects, so one way of dealing 
with the window artifacts is to reduce the exponent of the window function. Figure 14 
shows the result of decreasing the window exponent from 4 to 2, effectively making 
�softer� windows with longer effective overlap. 

The theory outlined earlier described the process of using the �analysis window� for 
decomposing a seismic trace into its Gabor transform, and a �synthesis� window to 
recreate a seismic trace from its (modified) Gabor components. The analysis window and 
its corresponding synthesis window are prepared by taking a root of the values of the 
chosen Lamoureux window function before applying it to the input trace or using it to 
synthesize the output trace. To satisfy the theory, the sum of the fractional roots for 
corresponding analysis and synthesis windows must be unity, so that the product of 
analysis and synthesis windows forms the Lamoureux window �partition of unity�. The 
default choice of �application exponent� is the square root (0.5), but virtually any choice 
between 0 and 1 can be made. Choosing the application exponent to be zero effectively 
forces the analysis window values to unity, a �boxcar� function, while the synthesis 
windows then consist of �undiminished� Lamoureux window functions (no root). An 
application exponent of unity, however, applies the undiminished Lamoureux window 
function for analysis windows, while the synthesis windows become �boxcar� functions. 
It follows, then, that an exponent of 0.5 causes the application the square root of the 
Lamoureux function as both analysis and synthesis window functions. Because the 
application exponent directly affects the slope of the window functions applied both in 
analysis and synthesis, it has a direct influence on window edge effects, as well. To 
illustrate the effects of this parameter, Figure 15 shows the Blackfoot shot gather with the 
same deconvolution parameters as in Figure 11, except that the application exponent is 0 
(�boxcar� analysis windows, full Lamoureux synthesis windows), whereas the exponent 
for Figure 11 is 0.5. Figure 16, on the other hand, shows the effect of an exponent of 
unity (Lamoureux analysis windows, �boxcar� synthesis windows). It has been found 
empirically that for larger Lamoureux slope exponents (3 and larger), window edge 
effects can be minimised by choosing an application exponent equal to the reciprocal of 
the slope exponent. The reason for this is not fully understood. Figure 17 shows the 
Blackfoot shot gather with a slope exponent of 6 and an application exponent of 0.5. This 
should be compared with Figure 18, where an application exponent of 1/6 (0.167) has 
been used with the slope exponent of 6. This means that the analysis window values are 
the sixth root of the Lamoureux window function of slope 6 and the synthesis window 
values are the 5/6 power of the Lamoureux function. The analysis windows will have 
much �softer� edges and longer transition zones than the synthesis windows. From this 
and similar experiments with �slope exponent� and �application exponent� parameters, it 
appears that it is more important to have soft analysis window edges than soft synthesis 
window edges. The window function seems to have more influence on the analysis stage 
of deconvolution than on the trace synthesis stage after deconvolution. 

Gabor deconvolution tends to whiten seismic traces so much that post-deconvolution 
bandlimiting is usually required before display. While this may be done externally with a 
time-invariant filter, both versions of Gabor deconvolution now offer the option to apply 
a post-deconvolution time-varying filter. The important point to remember when 
selecting parameters for this internal filter application is that the bandlimits selected only 
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pertain to a time of one second (hard-wired). The bandwidth of all data above one second 
will increase beyond the specified bandlimits, up to a minimum time (specified by the 
user); and data below one second will have decreasing bandwidth down to a user-
specified maximum time. Figure 19 is an example of unfiltered deconvolution output, 
while Figure 20 is the same shot with time-varying bandpass applied. 

The only other parameter in Gabor deconvolution II that requires brief explanation is 
the �corridor width� for the hyperbolic smoothing option. This parameter essentially 
defines a hyperbolic strip whose width is defined at each time-frequency point in the 
Gabor spectrum. The hyperbolic smoothing option, as explained above, is the mechanism 
by which Gabor deconvolution constructs a gain function to be applied to the Gabor 
spectrum. This gain, or more properly �Q function�, varies with both frequency and time 
and is obtained by a running average over all time-frequency space in the Gabor 
transform domain, where the running average array shape is a hyperbolic strip centred on 
a constant time-frequency curve, with width determined at every point by the input 
parameter �corridor width�. 

CONCLUSIONS 

Gabor deconvolution is an effective nonstationary deconvolution that aggressively and 
robustly whitens seismic data. We presented several improvements to the previous 
algorithm. These are: (1) hyperbolic smoothing of the Gabor magnitude spectrum to 
estimate the attenuation surface; (2) compactly supported analysis and synthesis windows 
that provide a computational speedup of several orders of magnitude; (3) a post-
deconvolution nonstationary bandpass filter whose high frequency tracks along a 
hyperbola in the time frequency plane; and (4) a new ProMAX module that implements 
these features. 

FUTURE WORK 
We are preparing a Gabor deconvolution module for the Seismic Unix (SU) 

environment. 
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APPENDIX 
This appendix contains the help file (internal documentation) for the Gabor 

deconvolution II ProMAX operation. 

Gabor Deconvolution II 

This module applies a technique known as Gabor Deconvolution to a panel of seismic 
traces, either as an ensemble, or trace-by-trace. Gabor deconvolution is a time-varying 
deconvolution whose operator adapts to the characteristics of the particular data captured 
by a time-overlapped set of windows. Gabor deconvolution II differs from its predecessor 
in that the windows are "Lamoureux" window functions instead of time-shifted Gaussian 
windows as in the original. A deconvolution operator is constructed by smoothing the 
magnitudes of the Gabor Transform of a seismic trace, and computing the corresponding 
phase. A Gabor operator array can be constructed for each trace and applied to that trace 
or constructed from the summed Gabor magnitudes of a trace ensemble and applied to 
each trace in that ensemble. Gabor deconvolution II is an experimental procedure, with 
several parameters which may be varied to attempt to optimize performance. This version 
of Gabor deconvolution has a much faster run time than the original...perhaps as much as 
an order of magnitude, depending upon the parameter choice. 

Theory 

Gabor deconvolution is based on the Gabor Transform, which is a way to analyze a 
seismic trace for time-varying spectral characteristics. Because this transform explicitly 
captures the non-stationary behavior of a seismic trace, it constitutes a natural basis for its 
deconvolution. The deconvolution is applied in the frequency domain by performing a 
complex division of the Gabor Transform by the derived deconvolution operator. The 
time-dependency of the resulting array is removed by summing over the time-gate 
dimension of the array. 

Usage 

Gabor deconvolution is intended for use either on individual traces or ensembles of 
traces. The traces can be pre-stack or post-stack traces. Data most suited to this 
application are those on which time-varying phenomena are superimposed (various types 
of noise), or which show visible non-stationarity (isolated "bright" events, loss of 
bandwidth with time, etc.). Because there are many parameters to select, the default 
values have been chosen to allow reasonable results to be obtained from Gabor 
deconvolution with no intervention by the user. However, the performance can usually be 
considerably enhanced by experimenting with the parameters.  
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Choose single trace or ensemble mode  

This switch determines whether Gabor deconvolution is derived and applied one trace 
at a time, or whether the summed Gabor Transform of a whole ensemble of traces is used 
to derive an operator, which is then applied to each of the traces in the ensemble. The 
ensemble mode may not be appropriate for entire shot or receiver gathers with large 
offset ranges, but such gathers can be decomposed into smaller ensembles having limited 
offset ranges; and such ensembles may be appropriate for doing deconvolution on data 
which is non-stationary in both time and offset. 

Restore trace amplitude levels on output 

Each input data trace is automatically scaled by its average absolute amplitude to 
condition the data against arithmetic difficulties due to extremely large or small values. 
This switch parameter allows the user to choose whether or not to de-scale by the same 
value upon output from the algorithm. (This feature is currently disabled, 2Aug02, and is 
not displayed) 

Half-width of the analysis/synthesis window 

This is the half-width in seconds of the Lamoureux window functions used for 
analysis and synthesis of the data traces. Since the Lamoureux functions have a finite 
width between their zero amplitude points, the half-width is half the distance between the 
zero amplitude points, not the1/e amplitude points as in Gaussian functions. 

Window increment factor 

Lamoureux windows are properly overlapped and normalized if the start point (zero 
amplitude) of one window coincides with the centre of the preceding window, and the 
end point (also zero amplitude) coincides with the centre of the succeeding window. In 
order to keep this proper window normalization, the increment between windows may be 
decreased only by applying additional properly overlapped sets of windows, offset from 
the original windows by increments evenly divisible into the original window width. 
Hence an increment factor of 2 generates an additional overlapped set of windows, offset 
from the original set by one fourth of the window width; an increment factor of 3 
generates two additional overlapped sets of windows, the second and third offset from the 
first by 1/6 and 1/3 of the window width, respectively, and so forth. Proper normalization 
is maintained by dividing the windowed data by the window increment factor, which is 
equal to the total number of unity-normalized sets of overlapped windows used to sample 
the data. Using a value greater than one appears to stabilize the result, particularly on 
noisy data. 

Factor to extend window before FFT 

This factor is applied to the window length to determine the actual length of the FFT 
used to analyze the windowed trace segment. The trace segment is extended by this 
factor, then further extended to the next largest power of two prior to the FFT. 
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Pad input traces before windowing 

This is a switch parameter which determines whether or not the input traces are 
padded before windowing, to diminish end effects. If this switch is set to true, the 
following parameter is used to determine the length of pad to be added to both beginning 
and end of the traces. The pad values are random noise whose level is set to -300 dB of 
the rms amplitude level of the current trace, in order that windows never encounter an all-
zero trace segment. 

Fraction of window width for trace padding 

If the switch above is set to true, this parameter is used to determine the number of pad 
values to append to either end of the trace. The recommended value is more than half a 
window width, to move end effects off the visible seismic trace. 

Slope exponent for Lamoureux window function 

This integer is used as an exponent in the computation of the values of the Lamoureux 
window. Its default value of 4 is a relatively safe choice. Larger values can lead to 
window artifacts under conditions of high noise, low signal level, and small window 
overlap. 

Application exponent for analysis window 

Prior to being applied to the input trace, the values of the analysis window function are 
raised to this power (actually a root, since the value must be .LE. 1.0). The values of the 
synthesis window function are then raised to the complementary power (1.0 minus 
application exponent). A value of 0.5 applies a square root window to both analysis and 
synthesis; one applies a full strength analysis window and no synthesis window; zero 
applies no analysis window function and a full strength synthesis window. 

Choose type of spectrum for wavelet estimate 

This parameter chooses whether the Fourier Transform or the Burg algorithm is used 
to compute the spectral magnitudes used to construct the deconvolution operator. The 
Burg algorithm is somewhat slower than the FFT, if used with many coefficients. 

Number of coefficients for Burg spectrum 

This parameter only appears if Burg spectra are used in the decon operator. In general, 
the more coefficients, the more detail the Burg spectrum contains. Since the spectra are 
smoothed to obtain the decon operator, a small number of coefficients (3-5) will often be 
more effective than a larger number (10) and will run somewhat faster as well. Using a 
small coefficient number is similar to applying more smoothing, so the spectral 
smoothing parameters below can be smaller in this case. 

Choose minimum or zero phase deconvolution 

While a minimum phase decon would be the norm here, zero phase can be chosen, and 
it takes less time to construct the operator. 
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Choose hyperbolic time-frequency or 2-D boxcar smoothing 

This parameter is used to determine the wavelet estimation method. If hyperbolic 
smoothing is chosen, the input Gabor spectrum is smoothed along hyperbolae of constant 
time-frequency to yield a Q-factor spectrum, which is then removed from the Gabor 
spectrum before estimating the wavelet spectrum by 2-D boxcar smoothing. If boxcar 
smoothing is chosen the hyperbolic smoothing step is omitted, but a constant-Q pre-
whitening may be applied prior to wavelet estimation, instead. 

Choose corridor width of hyperbolic smoothing in Hz-sec 

This parameter determines how much smoothing occurs in the constant time-
frequency method. A wide corridor applies more smoothing, forcing more of the time-
dependency into the subsequent wavelet estimation. This parameter appears only if the 
above parameter selects for hyperbolic smoothing. 

Enter estimated Q for pre-conditioning 

Often, trace amplitudes are poorly conditioned...they have too large a dynamic range 
to be handled properly by spectral techniques without numerical instability. One way to 
alleviate the problem is to "pre-whiten" the data by applying a time and/or frequency 
dependent scale factor to reduce the dynamic range of a data array prior to spectral 
computations, then to remove the same scale factor after processing. In the Gabor 
algorithm, such a factor is applied, simulating the removal of inelastic absorption; the so-
called Q-filter. The parameter here is simply the estimated Q value for the data. In this 
case, the estimate can be a "guesstimate", since it's just a processing parameter. Values 
between 20 and 200 seem to be effective. The default is set to 1.0e06 so that the effect is 
NO application of pre-whitening. Care has been taken to apply the pre-whitening 
function only to the data values, NOT to the zones of the Gabor transform which contain 
random noise padding. This parameter is only shown if hyperbolic smoothing (and Q-
estimation) is NOT chosen above 

Choose number of passes of smoothing 

Smoothing is applied to the magnitude array in both the frequency and time directions. 
Since the smoothing operator is a uniform weight "boxcar", other types of weighting can 
be used by applying the boxcar more than once in succession (twice gives triangular 
weighting, for example). This parameter determines how many times the smoothing is 
applied in BOTH directions. 

Choose the type of boxcar smoothing to use 

The standard smoothing is simply the running mean, but the choice of the running 
median is also offered, for data expected to have isolated spectral peaks and notches to be 
smoothed. Use of median smoothing can lead to wrap-around artifacts in the output. 

Wavelet smoothing window length in seconds 

Determines the number of spectral magnitude points to be smoothed in time. 
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Choose whether to apply post-decon T-varying filter 

A time-varying bandpass may be applied to the deconvolved Gabor spectra prior to 
collapsing them to a seismic trace. This parameter allows this filter to be applied or not. 
Since the post-decon filter is time-varying, its bandlimit parameters are designated at one 
point in time (one second), then varied to fit the constant-Q model of seismic absorption, 
constrained by Nyquist limits and minimum bandwidth specifications. (The high 
frequency parameters are not allowed to exceed 75% Nyquist for the -3 dB point or 100% 
Nyquist for the -80 dB point. In addition, the -3 dB high frequency point is not allowed to 
be less than 3.0 times the low frequency -3 dB point, and the -80 dB high frequency point 
cannot be less than the -3 dB high frequency point plus a third of the -3 dB bandwidth.)  

Choose zero or minimum phase for filter 

The post-decon time-varying filter may be chosen to be either zero or minimum phase, 
using this parameter. 

Select low frequency -80 dB point at one second in Hz. 

This parameter is the low frequency point on a Gaussian curve that is -80 dB down 
from the maximum spectral amplitude. 

Select low frequency -3 dB point at one second in Hz. 

This parameter is the low frequency point on a Gaussian curve that is -3 dB down 
from the maximum spectral amplitude. 

Select high frequency -3 dB point at one second in Hz. 

This is the -3 dB frequency for the high frequency end of the post-decon time-varying 
bandpass (Gaussian curve). 

Select high frequency -80 dB point at one second in Hz. 

This is the -80 dB frequency for the high frequency end of the post-decon time-
varying bandpass (Gaussian curve). 

Begin time in seconds for Q estimation or time-varying bandpass 

This parameter determines the time before which estimated Q factor is constant, also 
the time before which time-varying bandpass parameters are held constant. 

End time in seconds for Q estimation or time-varying bandpass 

This parameter determines the time after which estimated Q factor is constant, also the 
time after which time-varying bandpass parameters are held constant. 

Stability factor for spectral division operations 

This parameter determines the fraction of the maximum spectral magnitude to be 
added to all spectral magnitudes to prevent any division by zero. The same factor is used 
as an additive to the Q-factor pre-whitening, and it is used in the minimum phase 
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computation for the post-decon time-varying bandpass filter. The default value is a safe 
option. 
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FIG. 1: A reflectivity series consisting of a quiet zone between two normal zones (top) has been 
modelled as a nonstationary signal and then deconvolved using boxcar smoothing. The result 
(second trace from bottom) as an AGC effect in that the quiet zone has been boosted to match 
the surrounding zones. 
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FIG. 2: On the left is the Gabor magnitude spectrum of the input trace of Figure 1. On the right is 
the result of smoothing the spectrum on the left with a boxcar (10 Hz by .5 sec). 
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FIG. 3: On the left is the Gabor magnitude spectrum of the input trace of Figure 1. On the right is 
the result of smoothing the spectrum on the left along hyperbolic trajectories of the form 

constantfτ = . 

 

FIG. 4: The Gabor magnitude spectrum of the propagating wavelet as estimated by boxcar 
smoothing (left) and by hyperbolic smoothing (right). 
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FIG. 5: Comparison of Gabor deconvolution with boxcar smoothing and with hyperbolic 
smoothing. 
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FIG. 6: Comparison of Lamoureux and Gaussian windows of the same �width�. The Lamoureux 
window vanishes outside its width while the Gaussian only drops to 1/e at its width. The 
Lamoureux window is of order 4. 
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Fig. 7: Comparison of Gabor spectra with Gaussian windows (left) and Lamoureux windows 
(right). 
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FIG. 8: Comparison of Gabor spectra with Gaussian windows (left) and Lamoureux windows 
(right). 

 

Fig. 9: The magnitude spectrum of a hyperbolic, nonstationary bandpass filter. 
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FIG. 10: Blackfoot shot gather showing application of Gabor deconvolution I, with Gaussian 
analysis windows, window half-width 0.2 seconds. 
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FIG. 11: Blackfoot shot gather showing application of Gabor deconvolution II, with Lamoureux 
analysis windows, window half-width 0.2 seconds. 
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FIG. 12: Artifacts caused by using an analysis window half-width too short for the low-frequency 
content of the noise on the shot gather. 
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FIG. 13: Window artefacts removed by pre-filtering shot gather with low-cut filter. 
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FIG. 14: Window artifacts diminished by reducing slope of window edges from exponent of 4 to 
exponent of 2. 
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FIG. 15: Shot gather showing the effects of applying boxcar analysis windows and Lamoureux 
synthesis windows. 
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FIG. 16: Shot gather showing the effects of applying Lamoureux analysis windows and boxcar 
synthesis windows. 
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FIG. 17: Shot gather showing application of Lamoureux windows with slope exponent of 6 and 
application exponent of ½. Steep window edges lead to artifacts. 
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FIG. 18: Shot gather showing application of Lamoureux windows with slope exponent 6 and 
application exponent 1/6. Application exponent (root) leads to less steep window edges and 
reduced window artifacts. 
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FIG. 19: Gabor deconvolution II with no post-deconvolution filter. Gabor deconvolution algorithm 
provides abundant whitening, and output must usually be filtered. 
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FIG. 20: Gabor deconvolution II with time-varying post-deconvolution bandpass filter applied. The 
time-varying frequency content of the result is quite evident. 


