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ABSTRACT 
Traditionally, AVO is performed on NMO-corrected gathers. However, NMO 

correction is principally a kinematic correction that distorts the amplitude and character 
in an offset dependent fashion. This leads to bias and error in subsequent AVO 
reflectivity estimates. This paper develops a simultaneous AVO-NMO inversion 
methodology thereby avoiding these distortions. Since the inversion problem is ill-
conditioned, frequency data and a priori reflectivity constraints are introduced to improve 
the condition number of the problem.  

The methodology is demonstrated on a synthetic and real data example. The synthetic 
example shows that the AVO-NMO methodology introduces less bias and error into the 
reflectivity estimates. Further, the frequency bandwidth and signal-to-noise of the AVO-
NMO synthetic results are better than the AVO estimates after NMO correction. The data 
example also shows that the AVO-NMO reflectivity estimates have higher frequency and 
better signal-to-noise ratios.  

INTRODUCTION 
The input to AVO inversion, such as Fatti et al. (1994), Shuey (1985), Smith and 

Gidlow (1987), for most land seismic is NMO-corrected CDP gathers. The convolutional 
model is assumed to apply after NMO correction so that the AVO inversion can be 
performed on a time-sample by time-sample basis. We call this the �traditional 
methodology�. There are a number of issues with the traditional methodology that lead to 
bias and error in the AVO estimates. 

NMO correction is a kinematic correction. It is more concerned with the positioning 
rather than the amplitudes of the events. Claerbout (1992) points out that NMO correction 
is a conjugate operation, not an inverse operation. As such it introduces amplitude and 
character distortions. NMO stretch is one of the most familiar forms of this. For two 
isolated reflectors, Dunkin and Levin (1973) describe NMO stretch analytically with the 
expression 
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where Sx is the spectrum before NMO correction, xS~  is the spectrum after NMO 
correction, f is frequency and xα  is the compression factor or the ratio of the time 
difference between the two events after and before NMO. The compression factor is 
always less than one, so the frequency spectrum will be shifted to lower frequencies and 
amplified as shown in Figure 1.  
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FIG. 1. Amplitude spectrum before and after NMO correction (equation 1). The NMO correction 
(NMO stretch) shifts the spectrum to lower frequencies and amplifies the values.  

The compression factor, xα , becomes smaller for larger offsets thus the shape of the 
wavelet changes in an offset dependent fashion. Figure 2, for example, shows a gather 
after NMO correction for incident angles from 0 to 45 degrees. The model generating this 
is a single reflector or spike that is convolved with a 5/10-60/70 Hz band-pass filter. For 
this to match the assumptions of the traditional methodology, the reflector after NMO 
must have constant waveform and amplitude. It does not. The far offsets are noticeably 
lower frequency than the near offsets and the overall character changes as a function of 
offset. 

 

FIG. 2. Synthetic gather of a single spike after NMO and band-pass filter 10/14-60/70 Hz for 
incident angles from 0 to 45 degrees. Note how NMO stretch lowers the frequency on the far 
offsets and changes the wavelet character. 
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This biases the AVO inversion and introduces error. For this example, this can 
intuitively be understood by calculating the intercept and gradient. The intercept of the 
zero crossing at 0.39 seconds is zero. The gradient at this same time is positive since the 
wavelet broadens as a function of offset due to NMO stretch. However, if there was no 
NMO stretch both the intercept and gradient would be zero. Likewise, the estimates of 
other AVO reflectivity attributes such as the P- and S-impedance reflectivity (Fatti et al., 
1994) are biased. Both cases result in scatter in the cross-plot space. This blurs anomalies 
and potentially obscures small anomalies in the background trend. Figures 6 and 9 shows 
the bias and scatter introduced by the NMO correction in cross-plot space for the 
synthetic example that is to be examined in this paper.  

These errors become more pronounced as the maximum angle used for the AVO 
inversion is increased. In contrast, the uncertainty of AVO reflectivity estimates due to 
random noise decreases as the range of angles used for the inversion increases (Downton 
and Lines, 2001a) suggesting the need to trade off the two concerns. Further, three term 
AVO inversions, inverting for density, require gathers with large-incidence angles for 
accurate results. There would be an advantage if we could keep larger offsets but 
minimize distortions introduced in doing so.  

The fact NMO stretch introduces this error raises the question why don�t we use 
equation (1) to back out the effects of NMO stretch? Equation 1 is an approximation so 
we would be better off asking, �why don�t we use the exact inverse for the NMO operator 
rather than the conjugate operator?� Unfortunately, offset-dependent tuning introduces 
notches into the frequency spectrum or null spaces so that the inversion in both cases is 
underdetermined and ill-conditioned. Conceptually, this can be understood by noting that 
the reflectivity of the �far-offset trace� is time delayed and squeezed into a smaller time 
window relative to that of the �zero-offset trace�. If both the zero-offset and the far-offset 
reflectivity data are high-cut filtered, the far-offset data will contain less information after 
filtering than the near-offset data. It is the combination of the high-cut filter and the NMO 
operator that introduces the null space.  

To address these issues, there have been a variety of methodologies proposed in the 
literature. Ursin and Ekren (1995) suggested flattening the CDP gather on a particular 
event rather that performing NMO and then performing AVO. This avoids NMO stretch, 
but does not deal with the offset dependent tuning. In a subsequent paper, Bakke and 
Ursin (1998) suggested a way to correct for offset dependent tuning. However, in 
deriving this, there are too many restrictive assumptions to apply in a general fashion. 
Swan (1997) suggests a wavelet processing approach to correct the gradient. The 
approach restricts one to an intercept, gradient AVO analysis and does not consider the 
third term. Castoro et al. (2001) suggested inverting Equation 1 to remove the NMO 
stretch and smoothing to deal with the null space issues.  

In contrast, this paper advocates solving the NMO and AVO inverse problems 
simultaneously. By setting up the problem this way, the offset-dependent tuning is built 
into the model and NMO stretch is not an issue since it is never performed. This approach 
models the earth more precisely than the preceding literature. The problem is ill-posed, 
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but constraints similar to Downton and Lines (2001b) can be incorporated through a 
Bayesian framework to stabilize the problem. This paper argues that by doing AVO and 
NMO inversions simultaneously, better estimates of the AVO reflectivity attributes are 
achieved, leading to more correct trends and tighter clusters in the cross-plot domain. 
This is true even for events showing significant offset-dependent tuning.  

In the first section of this paper, the theory of this simultaneous AVO-NMO inversion 
is developed. First, the convolutional AVO-NMO model is introduced, then Bayes 
theorem is used to incorporate constraints derived from rock physics relationships and 
local well-control, and finally a nonlinear optimization algorithm and uncertainty analysis 
is developed. The methodology is demonstrated on synthetic and real data examples. The 
synthetic example demonstrates that the new methodology avoids the bias and error that 
are present following the traditional methodology. The approach is then demonstrated on 
seismic data from British Columbia, Canada. The new methodology, with the addition of 
constraints, inverts for a higher-frequency S-impedance reflectivity with better signal-to-
noise characteristics and more consistent character than the traditional methodology. 

THEORY 

Convolutional model 

The convolutional model is used as the basis for this AVO-NMO inversion scheme. 
This model assumes the earth is composed of a series of flat, homogenous, isotropic 
layers. Plane waves are assumed, so a linear approximation to the Zoeppritz equations 
may be used to model how the reflectivity changes as a function of offset. Ray tracing is 
done to map the relationship between the angle of incidence and offset. Transmission 
losses, converted waves, and multiples are not incorporated in this model and so must be 
addressed through prior processing. In theory, gain corrections such as spherical 
divergence, absorption, directivity, and array corrections can be incorporated into this 
model, but are not considered in this paper for brevity and simplicity.  

Any linear approximation of the Zoeppritz equations may be used as the starting point 
for this derivation including a three-term model. However, for simplicity, this paper will 
use the two-term Fatti approximation (Fatti et al. 1994, equation 4):  

 ( ) ( ) ,sin8tan1 2

2

2
s

p

s
p R

V
V

Rx
























−+= θθθ  (2) 

where θ is the average angle of incidence across the interface, x(θ) is the offset dependent 
reflectivity, VP and Vs are the P- and S-wave average velocity across the interface, RP and 
RS are the P- and S-impedance reflectivity respectively. If it is assumed that the 
background VP/Vs ratio and relationship between angle of incidence and offset is known, 
then equation (2) may be written in matrix form. For example, consider the case when 
there are two offsets, a near-offset x1 and a far-offset x2, then 
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where ,tan1 2 θ+=nf  θ222 sin/8 PSn VVg =  and the subscript indicates the offset. 

Typically equation (2) is solved on an interface-by-interface basis, where each 
interface corresponds to a time sample. This ignores the band-limited nature of the 
seismic data. To address this, equation (3) can be modified to solve for multiple time 
samples simultaneously. To illustrate this, consider the case with two interfaces: equation 
(3) becomes  
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where the superscript has been introduced to notate the interface number. Rearranging 
equation (4) so that the vectors are ordered along common offsets rather than common 
time samples results in 
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which is further simplified by writing equation (4) as the partitioned matrix  
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In equation (6) the vector xn is the data for offset n, rp and rs are the P- and S-impedance 
reflectivity vectors, and the block matrices Fn and Gn are diagonal matrices.  

AVO NMO 

NMO can be written as a linear operator (Claerbout, 1992). A reflectivity sequence 
referenced to zero-offset time xn can be transformed to offset-dependent traveltime dn by 
the linear operator Nn so that  

 nnn xNd =  (7) 

The matrix Nn can be constructed using whatever offset traveltime relationship one 
desires. In order to invert data at large angles of incidence, it is important to correctly 
position the event without introducing residual NMO. In this case, we use a higher order 
correction following Castle (1994). This has the advantage of introducing high-order 
terms without introducing the theoretical complications of intrinsic anisotropy. 
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Combining equations (6) and (7) results in the set of linear equations that may be used 
to solve NMO and AVO simultaneously.  
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Equation (8) may be generalized for more offsets and interfaces. Ultimately J/2 interfaces 
are solved based on K observations. Note that N, F, and G are sparse matrices that can be 
quickly calculated. 

Prestack Processing 

After processing, the prestack seismic data is typically filtered and muted thus the 
model needs to incorporate these processes. It is desirable that the forward model has the 
same wavelet as the seismic. Once this wavelet is found, it may be applied as a matrix 
operator, W, to both the right- and left-hand sides of equation (8).  

The two-term Fatti et al. (1994) approximation (equation 2) is a truncated polynomial 
of a linear approximation of the Zoeppritz equation. It is only valid for subcritical angles 
becoming less accurate as the angle of incidence approaches critical θc. For this reason, 
the data is typically inverted only over some predefined angle range from θL to θH. Thus 
the elements of the Fn and Gn operators are zeroed outside this prescribed angle range or 
for supercritical reflections, thus: 
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For the seismic data to match the model, it is necessary to mute the seismic in a similar 
fashion. Lastly, if the seismic data has been muted to suppress coherent noise, this must 
also be incorporated. Applying the wavelet, W, and mute, M, matrix operators in series 
results in: 
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where seismic data, dn, is written with a tilda to indicate it is filtered and muted. In a 
similar fashion, matrix operators could be introduced to account for spherical divergence, 
absorption, free surface, directivity, and array corrections. 

Due to the band-pass filtering applied to the prestack seismic processing prior to 
inversion, there exists a null space corresponding to certain frequencies in the solution. 
To make the problem better conditioned, frequency constraints may be introduced. For 
frequencies where there is no information, the solution is defined to be zero, thus making 
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the solution smoother in the time domain than if these frequencies where left 
unconstrained. The constraints are implemented by creating a modified Fourier kernel 
matrix operator, U, that transforms the solution from the time domain to the frequency 
domain over the frequency range that contributes no information and equates these 
frequencies to zero, thus Ur=0. With the addition of these constraints, equation (11) 
becomes 
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To simplify further analysis, equation (12) is rewritten as the simple linear equation 

 d=Lm,  (13) 

where the linear operator, L, represents the matrix operator in equation (12): d, the data 
vector in equation (12): and, m, the unknown parameter vectors describing the band-
passed P- and S- impedance reflectivity. 

Still, solving for these unknown reflectivity vectors is an ill-posed problem. To 
understand this, note that the AVO problem is typically overdetermined, while the NMO 
problem is underdetermined for the reasons outlined in the introduction. This means that 
linear operator in equation (13) is mixed-determined and its inverse will be ill-
conditioned. To make the problem better-conditioned, constraints can be introduced using 
a Bayesian framework.  

Bayesian Inversion 

Bayes� theorem provides a theoretical framework to make probabilistic estimates of 
the unknown parameters m from uncertain data and a priori information. The resulting 
probabilistic parameter estimates are called the Posterior Probability Distribution 
function (PDF). The PDF, written as P(m|d,I) symbolically indicates the probability of 
the parameter vector, m, given the data vector, d, and information, I. Bayes� theorem,  

      ,
)|(
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IPIPIP
d
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calculates the PDF from the likelihood function P(d|m,I) and a priori probability 
function P(m|I). The denominator P(d|I) is a normalization function which may be 
ignored if only the shape of the PDF is of interest 

      ).|(),(),( IPIPIP mm|dd|m ∝   (15) 

The most likely estimate occurs at the maximum of the PDF. The uncertainty of the 
parameter estimate is proportional to the width of the PDF.  
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If uncorrelated Gaussian noise is assumed, then the likelihood function may be written 
as (Sivia, 1996): 
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where σk
2 is the variance of the noise for the kth observation. For AVO inversion of a 

single interface, it is possible to visualize the PDF since there are only two parameters. 
The PDF is a bivariate Gaussian function and the equiprobable solution is an ellipse. For 
the general case of solving the band-passed P- and S-impedance reflectivity for multiple 
interfaces the PDF is a multivariate Gaussian function.  

A priori constraints 

One way to reduce the uncertainty is to impose constraints on the solution. For 
example, non-physical solutions, such as reflectivity values greater than 1, can be 
excluded from the solution space. This can be written in terms of a uniform probability 
distribution where physical solutions are equiprobable and the non-physical solutions are 
given zero probability.  

It is not necessarily desirable to assign uniform probabilities over the range of 
physically valid reflectivity. The stratigraphic sequence is a result of cyclic geologic 
processes that should result in some reflectivity values being more probable than others. 
Todoeschuck et al. (1990) shows that over a window where the geology is relatively 
consistent, the reflectivity statistics can be modeled using a Gaussian distribution. Other 
probability functions may be used if more appropriate, but this paper assumes Gaussian 
statistics to derive its results. The joint probability distribution for the P- and S-
impedance reflectivity is the bivariate Gaussian distribution,  
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that is parameterized by a covariance matrix 

 Cm =












σ σ
σ σ

r r

r r

p ps

ps s

2

2 .     (18) 

The diagonal elements of this covariance matrix are the variances of the P- and S-
impedance reflectivity, σ rp

2 andσ rs

2 . The off-diagonal element, σ rps
, describes how 

correlated the P- and S-impedance reflectivity are.  

This parameter covariance matrix can be constructed from empirical rock physics 
relationships. The mudrock relationship (Castagna et al., 1985) is a linear relationship, 
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,baVV sp +=  linking the P- and S-velocity for mudrocks. From this, Smith and Gidlow 
(1986) derived the fluid stack showing that for water-saturated mudstones the P and S- 
velocity reflectivity, rVp, and, rVs, are related by ( ) VspsVp rVVar /≈ . In a similar fashion, 
Fatti et al. (1994) showed that P- and S-impedance reflectivity are related by 

 ( ) spsp rVVar /≈ .  (19) 

The degree to which this relationship holds is described by the correlation coefficient, R, 
where 

  R Rps

r rp s

=
σ

σ σ
.   (20) 

Other lithologies may be modeled by linear or simple polynomial relationships linking 
the P- and S- velocity but with different coefficients. (Castagna et al., 1993). These 
coefficients should ideally be calibrated based on local well-control. If the lithology is 
poorly understood a linear model can still be used but the correlation coefficient will 
probably be much lower.  

With prior knowledge of the geology and the above relationships, it is possible to 
calculate the covariance matrix (equation 18) and thus the a priori probability distribution 
(equation 17). If we know the lithology, hence the mudrock slope, a, the P-impedance 
reflectivity variance, σ rp

2 ,  and having previously assumed we know the background 

Vp/Vs ratio, then one can predict the S-impedance reflectivity variance, σ rs

2 ,  using 
equation (19). The covariance, ,

psrσ  may be calculated using equation (20) from the 
correlation coefficient, and the P- and S- impedance variances.  

However, we are not just solving the reflectivity for one interface, we are solving it for 
J/2 interfaces and hence for J parameters. The joint probability distribution for the P- and 
S-impedance reflectivity becomes the multi-variate Gaussian distribution,  

 ( ) [ ] ,
2
1exp|




















−∝ −

s

p1
mspsp r

r
Crrr,r IP  (21) 

where the covariance matrix is now J by J. If the typical assumption made in 
deconvolution, that each reflection coefficient is statistically independent, is held then the 
covariances between reflection coefficients of different time samples are all zero. Under 
this assumption, the covariance matrix (equation 18) describing a single interface can be 
used to construct the covariance matrix, 
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 (22) 

used in equation (21). In calculating this covariance matrix, Cm, values for the P-
impedance reflectivity variance, σ rp

2 ,  and the correlation coefficient, R, can be 
determined by studying local well logs.  

Alternatively, depending on the availability and quality of well log information in an 
area, it might be simpler to calculate the covariance matrix (equation 22) directly from 
the sample statistics of the well logs.  

Nonlinear inversion 

The Likelihood function (equation 16) may be combined with the a priori probability 
function (equation 21) using Bayes� theorem equation (15). The frequency- and time-
domain data constraints will have different variances, each of which is assumed to be 
uniform. The variance of the frequency constraint misfit can be set arbitrarily to some 
small number so as to force the frequency constraints to be honored. There is no explicit 
interest in the variance of the time-domain constraints so it is marginalized (Sivia, 1996). 
The most likely solution can then be found by finding where the PDF is stationary. This 
involves taking the partial derivatives with respect to each parameter, setting the result to 
zero, and solving the set of simultaneous equations. This results in the nonlinear equation 
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where ε=Lm-d and mCm 1−= m
TQ . The equation is weakly nonlinear and can be solved 

in an iterative fashion using Newton-Raphson or conjugate gradient. The term εTε is an 
estimate of the RMS energy of the noise, and Q, the 1−

mC  norm of the signal. The ratio is 
therefore an estimate of the N/S ratio. The ratio acts as a weighting factor determining 
how much the prior constraints influence the solution. If the S/N is large, then the 
weighting factor is small and the constraints add little to the solution and vice versa. 

Uncertainty analysis 

The uncertainty of the parameter estimate is related to the width of the distribution. 
This can be calculated from the second derivative evaluated at the parameter estimate. 
Assuming uniform, uncorrelated, Gaussian noise, the parameter covariance matrix, 



AVO NMO 

 CREWES Research Report � Volume 14 (2002) 11 

  ( ) ,
1

2
1

1
−

−








−

+= m

T

d QK
CεεLLC T   (24) 

describes the uncertainty. The diagonal of the covariance matrix represents the variance 
of each parameter estimate. The off-diagonal element represents the degree of correlation 
between the errors. 

RESULTS 

Synthetic example  

The synthetic model is based on Swan�s, (1997) Table 1, shown in Figure 3. The 
synthetic gather (Figure 10a) was generated using the Zoeppritz equation, raytracing a 
10/14-60/70 Hz wavelet with random noise introduced to give a 10-to-1 S/N ratio. The 
top and base of each reflector complex tunes in an offset-dependent fashion. Swan 
demonstrates that this tuning introduces a bias to the gradient and hence, in our case, a 
distortion to the S-impedance reflectivity.  

 

FIG. 3. Velocity and density input to synthetic model following Swan�s (1997) Table 1. 

Figure 4 demonstrates the distortions that are introduced by applying the traditional 
methodology of first applying NMO and then doing the AVO analysis.  
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FIG. 4. The left panel (a) shows a synthetic gather generated by the Zoeppritz equation and ray-
tracing followed by a 10/14-60/70 Hz band-pass filter and NMO correction. Random noise is 
introduced to give a 10-to-1 S/N ration. The middle panel (b) shows the estimate of the data after 
performing AVO inversion on NMO corrected input gathers. The right panel (c) shows 5X the 
difference between the input gather and estimated data. Note the high-frequency harmonic noise 
that has been introduced by the NMO correction.  

 

FIG. 5. The P- and S-impedance reflectivity estimated by the AVO inversion (dotted line) are 
compared to the reference zero-offset P- and S-impedance reflectivity (solid line). Both are shown 
with 10/14 � 60/70 Hz. band-limits. The harmonic noise in Figure 4c causes the estimate of the S-
impedance reflectivity to be poor. 
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Figure 4b shows the estimated data, ,�d  after estimating the P- and S-impedance 
reflectivity, $m , on a sample-by-sample basis using the NMO-corrected gather (Figure 
4a) as the input to the AVO inversion. The estimated data is described mathematically as 

,�� mGd =  where G is the linear operator describing equation (2). The difference (Figure 
4c) between the input and the estimated data shows high-frequency harmonic noise. This 
noise adversely biases the S-impedance reflectivity estimate (Figure 5) where the noise 
constructively interferes with itself.  

The noise is introduced by the NMO correction.  As the offsets increase, more NMO 
stretch is introduced, lowering the dominant frequency and changing the character of the 
wavelet. For the time-sample by time-sample AVO inversion, this leads to biased 
reflectivity estimates. Further, it cannot model these character changes so theoretical 
noise is introduced, as observed in Figure 4b. 

 

 

 

 

 

 

 

FIG. 6. Cross-plot of the results of the band-pass filtered P- and S-impedance zero-offset 
reflectivity (Figure 5).   

 

 

 

 

 

 

 

FIG. 7. Cross-plot of the results of NMO corrected AVO inversion. The input is the 10/14-60/70 
Hz band-pass filtered P- and S-impedance reflectivity (Figure 5). Note that the harmonic noise 
introduced by the NMO correction distorts the cross-plot compared to the reference cross-plot in 
Figure 6. The dominant trend line has a different slope and there is much more scatter.  
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This noise leads to scatter and bias in the cross-plot domain. Ideally the cross-plotted 
P- and S- impedance reflectivity (Figure 6) should form a line whose slope is defined by 
the Fluid-stack relationship (equation 19). Instead the cross-plot (Figure 7) of the AVO 
inversion after NMO displays quite a bit of scatter and the dominant cluster has a 
different slope than that of the ideal case.  

 

FIG. 8. The P- and S-impedance reflectivity estimated by the AVO inversion (dotted line) are 
compared with the reference zero-offset P- and S-impedance reflectivity (solid line). Both are 
shown with 10/14�50/60 Hz band-limits. By reducing the high-cut of the filter compared to Figure 
5, the harmonic noise is reduced, resulting in a better S-impedance reflectivity estimate. 

 

 

 

 

 

 

 

FIG. 9. Cross-plot of the results of NMO corrected AVO inversion. The input is the 10/14-50/60 
Hz. band-pass filtered P- and S-impedance reflectivity (Figure 8). By reducing the high-cut filter, 
the scatter in the cross-plot has been reduced compared to Figure 7. However the trend line still 
has a different slope when compared to the reference cross-plot (Figure 6).  

The effects of the NMO distortions can be abated somewhat by performing the AVO 
analysis at a lower frequency than what the data was modeled with. If the data is high-cut 
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filtered with a 50/60 Hz filter prior to the AVO analysis, the character is more consistent 
in an offset-dependent fashion leading to less theoretical noise. The S-impedance 
estimate (Figure 8) has a better character match to the ideal S-impedance though it is 
poorly scaled. This means that in the cross-plot domain (Figure 9), the band-passed P- 
and S-impedance reflectivity forms a tighter linear cluster more similar to the ideal, but 
with the wrong slope.  

 

FIG. 10. The left panel (a) shows a synthetic gather generated by the Zoeppritz equation and ray- 
tracing followed by a 10/14-60/70 Hz band-pass filter. Random noise is introduced to give a 10-
to-1 S/N ratio. The middle panel (b) shows the estimate of the data after performing AVO-NMO 
inversion on the input gathers. The right panel (c) shows 5X the difference between the input 
gather and estimated data. Note that we are no longer introducing the high-frequency harmonic 
noise that was evident in Figure 4.  

Figures 10, 11, and 12 show the corresponding results following the methodology 
advocated by this paper. Figure 10 shows the difference display between the input and 
reconstructed model similar to Figure 4. Using the AVO-NMO methodology there is 
little theoretical noise introduced. The difference display (Figure 10c) mostly just 
identifies the random background noise that was introduced into the model.  The 
estimated band-passed P- and S-impedance reflectivity (Figure 11) from the simultaneous 
AVO-NMO algorithm almost perfectly predicts the ideal reflectivity. This is confirmed 
by comparing the cross-plot of the estimated reflectivity (Figure 12) with the ideal 
(Figure 6).  
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FIG. 11. The P- and S-impedance reflectivity estimated by the AVO-NMO inversion are shown 
with a dotted line. For reference the zero-offset P- and S-impedance reflectivity are shown with 
solid line. Both are shown with 10/14 � 60/70 Hz band-limits. The estimate almost is exactly the 
same as the reference.  

 
 

 

 

 

 

 

 

FIG. 12. Cross-plot of the results of AVO-NMO inversion. The input is the 10/14-60/70 Hz band-
pass filtered P- and S-impedance reflectivity (Figure 11). The trend line and scatter are similar to 
the reference cross-plot (Figure 6). 

Data Example 
The data example is a seismic line shot to explore the Halfway sand in British 

Columbia, Canada. There are two bright spots on the line, one coming from a producing 
gas field and the other from an uneconomic gas field. The data has good signal-to-noise 
characteristics for incident angles up to 45 degrees. However, there is some dipping, 
coherent shot-related noise associated with ground conditions between CDP 1700 to 
2300.  The Prestack data was band-passed filtered with 10/14-110/130 Hz and had a flat 
frequency spectrum over the inner frequency range. By tying synthetic seismic from 
well-data, it was determined the seismic data was zero-phase.   
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FIG. 13. Results of the traditional AVO inversion. Both the P-impedance reflectivity section (a) 
and the S-impedance reflectivity section (b) are shown with a 10/14-110/130 Hz filter. Note the 
bright spots at 0.72 seconds under the well control. 

 

FIG. 14. Results of the AVO-NMO inversion. Both the P-impedance reflectivity section, (a), and 
the S-impedance reflectivity section, (b), are shown with a 10/14-110/130 Hz filter. Note the 
improvement in the coherency and S/N ratio of the S-impedance reflectivity inversion particularly 
over the interval from 0.65 to 0.75 sec. compared to the traditional AVO methodology (Figure 13). 
The frequency is also higher as evidenced by the clear doublet imaged at 0.68 seconds. 
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The data was originally processed as part of an AVO attribute study (Downton and 
Tonn, 1997).  A robust AVO inversion using L1 statistics gave the best result at the time 
and is shown in Figure 13. Note the ends of the lines were muted to exclude seismic data 
where the maximum incidence angle was less than 17 degrees.  This data was judged 
unreliable because of the limited range of angles available for the AVO inversion. Figure 
14 shows this same line inverted using the methodology outlined in this paper. Note the 
increase in frequency on the S-impedance reflectivity section, particularly evident on the 
event at 0.67 seconds. Also, the coherency and the S/N ratio appear to be superior, 
particularly around the source-related noise between CDP 1700 to 2300. 

DISCUSSION 

These improvements come at a significant computational cost. Instead of solving N 
inverse problems, each with 2 parameters, the simultaneous AVO-NMO inversion solves 
for 2*N parameters. Solving equation (23) using Newton-Raphson involves inverting a 
large matrix that is time-consuming. The advantage of doing this is the calculation can 
also be used in the uncertainty analysis. It is possible to solve the problem more quickly, 
but without an uncertainty analysis, using conjugate gradient. 

 Two types of constraints have been introduced, the frequency-data constraints, and 
the a priori reflectivity constraints. The algorithm will work adequately with just one. 
The implementation of the frequency-data constraints tends to add to the diagonal of the 
matrix LTL. This makes the problem better conditioned. It was found that if the range of 
frequencies kept were sufficiently less than the input model, then the matrix LTL could 
safely be inverted for without the a priori reflectivity constraints. The a priori reflectivity 
estimates were important in order to get higher frequency reflectivity estimates.  The 
frequency data constraints, by making the problem better conditioned, reduce the 
uncertainty in the reflectivity estimates. 

CONCLUSIONS 

By inverting for both the AVO and NMO problem simultaneously using constraints, 
better estimates of reflectivity are obtained than if the AVO inversion is performed on 
NMO corrected gathers. The synthetic example showed that in cross-plot space, the 
AVO-NMO reflectivity estimate trends correspond more closely to the ideal, with less 
spurious scatter, than the traditional methodology. Further, both the synthetic and real 
data examples showed that the AVO-NMO reflectivity estimates have higher frequency 
than the traditional methodology. This is largely due to the fact that, in the traditional 
methodology, the data had to be restrictively filtered after NMO so as to stabilize the 
wavelet with offset prior to AVO inversion.  This lowers the frequency content of the 
traditional AVO methodology reflectivity estimates. In the synthetic example, input data 
frequencies were recovered from the AVO-NMO reflectivity estimates.  

The data example shows improvement in the coherence of events and the S/N ratio. 
This is due to both the constraints used to stabilize the problem. The frequency 
constraints add smoothness to the solution that is absent in a time-sample by time-sample 
inversion.  The a priori reflectivity constraints can exclude certain non-physical or non-
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probable solutions, thus de-emphasizing the influence of noise. This is evident in the 
superior AVO-NMO S-impedance reflectivity estimate through the portion of the data 
example with source-generated noise.  

The parameters inverted for can be quite general. Any linear approximation of the 
Zoeppritz equations may be used instead of equation (2) and solved for.  This basic 
methodology has been used to invert for three parameters including density as well.   
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