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ABSTRACT

In this paper, we use the radial basis function neural network, or RBFN, to predict
reservoir log properties from seismic attributes. We also compare the results of this
approach with the use of the generalized regression neural network, GRNN, for the same
problem, as proposed by Hampson et al (2001). We discuss both the theory behind these
methods and the methodology involved in applying neural networks to seismic attributes.
We then illustrate the method using the Blackfoot 3D seismic volume, a channel sand
example from Alberta.

INTRODUCTION

The prediction of reservoir parameters from seismic data has traditionally been done
using deterministic methods, in which we assume a mathematical model that relates our
observed seismic data to the reservoir parameter of interest, and apply an inverse
transform to our seismic data based on this model. Such methods include deconvolution,
post-stack trace inversion, and linearized pre-stack trace inversion, or AVO. These
methods are limited by a number of factors, including noise in the seismic data, incorrect
scaling of the seismic data, and limiting assumptions in the model (for example, we often
ignore the fact the seismic wavelet is time-varying). There is also a fundamental
ambiguity in the derivation of the long period component of the earth properties if we use
the seismic data alone. To try to avoid the last problem, we may use inversion methods
which are model-based, in that they use an initial model of the earth computed from more
detailed well log measurements, and then perturb this model to fit the seismic
observations.

In more recent approaches, a statistical, rather than deterministic, method is used to
look for a relationship between the seismic data and the reservoir parameters. These
methods are based on traditional multi-regression, or on neural networks. For example,
Ronen et al. (1994) proposed the use of the radial basis function neural network (RBFN)
for the seismic-guided estimation of log properties. They applied the RBFN to averaged
intervals from log data and the corresponding averaged intervals from the 3D seismic
data volumes which were tied by these logs. In more recent work (Hampson et al, 2001),
neural networks were used to predict reservoir log properties from the complete 3D
seismic volume, using each log sample over the zone of interest in the training phase. In
this latter approach, the generalized regression neural network, or GRNN, was used for
the prediction of log properties, although this method was referred to in this paper as the
probabilistic neural network, or PNN. (As we will see in the following theory section the
PNN approach is a classification technique which is the basis upon which the GRNN
method is built). In this paper, we extend the RBFN method to the computation of log
properties from the full 3D seismic volume, and show the relationship between the RBFN
and GRNN methods. Although both methods are based on the application of Gaussian
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weighting functions to distances measured in multiple seismic attribute space, they are
quite distinct in their calculation of the final result.

Following a discussion of the theory behind the neural network techniques used here,
we will discuss the methodology for applying the methods to seismic data and then
illustrate the methods with a channel sand case study from Alberta.

INTRODUCTION TO NEURAL NETWORKS

First of all, what is a neural network? The simplest answer is that a neural network is
a mathematical algorithm that can be trained to solve a problem that would normally
require human intervention. Although there are many different types of neural networks,
there are two ways in which they are categorized: by the type of problem that they can
solve and by their type of learning.

Neural network applications in seismic data analysis generally fall into one of two
categories: the classification problem, or the prediction problem. In the classification
problem, we assign an input sample to one of several output classes, such as sand, shale,
limestone etc, whereas in the prediction problem we assign a specific value to the output
sample, such as a porosity value. A companion paper in this volume (Russell et al, 2002)
discusses the application of two different neural networks, the multi-layer perceptron
(MLP) and the radial basis function neural network (RBFN) to a straightforward AVO
classification problem. In this paper, we will be concerned with the prediction problem,
specifically the prediction of P-wave velocity from seismic attributes.

Neural networks can also be classified by the way they are trained, using either
supervised or unsupervised learning. In supervised learning the neural network starts
with a training dataset for which we know both the input and output values. The neural
network algorithm then “learns” the relationship between the input and output from this
training dataset, and finally applies the “learned” relationship to a larger dataset for which
we do not know the output values. Examples of the supervised learning approach are the
MLP, the PNN, the GRNN, and the RBFN, of which the latter three methods will be used
today. In unsupervised learning, we present the neural network with a series of inputs and
let the neural network look for patterns itself. That is, the specific outputs are not
required. The advantage of this approach is that we do not need to know the answer in
advance. This disadvantage is that it is often difficult to interpret the output. An example
of this type of unsupervised technique is the Kohonen Self Organizing Map (KSOM)
(Kohonen, 2001).

THEORY

As mentioned in the last section, in this paper we will be using neural networks to
perform the supervised prediction of reservoir parameters. Our training dataset will
consist of a set of N known training samples ¢, which in our case will be some well log
derived reservoir parameter such as Vp, SP, Sy, etc. Each training sample, which is a
scalar quantity, is in turn dependant on a vector of L seismic attribute values, correlated
in time with the training samples. (The issues of which seismic attributes to use and how
to optimize the correlation between the training samples and the seismic data are
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themselves difficult problems, and will be dealt with in the next section.) These seismic
attribute vectors can be written s; = (5;;, Si2, ..., siL)T, i =12, .., N. The objective of our
neural network is to find some function y such that:

y(sl-) =1, i :], 2,..., N (1)

Once this function has been found, it can be applied to an arbitrary set of M seismic
attribute vectors xi, k=1, 2, ..., M, where the attributes in the x; vectors are identical to
those in the s; vectors. This is illustrated in Figure 1 for two arbitrary training samples and
a single application sample. The key point to note is that we know the output sample for
the training vectors, but are predicting an output sample for the application vectors. (We
have chosen to use a different letter to represent the training and application data vectors
to emphasize the fundamental difference between them, and also to later clarify the
difference between RBFN and GRNN methods. In most textbooks this is handled simply
by varying the subscripts on the data vectors.)
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FIG. 1: A schematic illustration of the differences between the training vectors, s; and s;, in which
the output samples f; and {; are known and are used in the training process, and the application
vector xi, in which the output sample yy is not known.

Before discussing the RBFN and GRNN algorithms, we will first discuss the simpler
PNN algorithm. The PNN algorithm is based on the concept of “distance” in attribute
space. To better understand this concept, consider Figure 2, in which we have drawn, in
graphical form, the three arbitrary two-dimensional seismic attribute vectors shown in
Figure 1. Note that “distance” on these graphs is attribute amplitude rather than Cartesian
distance. Recall that two of these vectors are from the training dataset (s; and s;) and one
is from the application dataset (x;).
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FIG. 2: A schematic graph of the vectors, s;, s;, and xi, from Figure 1, where the coordinate axes
represent attribute amplitude rather than Cartesian distance.

We can define the three possible distances between these vectors, as displayed in
Figure 2. These are given by

d;‘/ :‘Si _S_j‘:\/(sil _Sj1)2 +(s,, _Sj2)2 >

2 2
dy :|Si _xk|:\/sil =X ) (S, —%,)

and

2 2
djk :‘sj _xk‘ :\/(Sj] —X;;) +(SA/2 —x,)" -

It is important to distinguish two fundamentally different types of attribute distance in
the above equations. The dj; distance can be called the inter-training distance and the dj
and dj distances can be called application distances. (Note that this terminology is unique
to this paper, since we feel that this concept is crucial to the understanding of the three
methods of PNN, GRNN, and RBFN.)

A second important concept is that it is not the distances themselves that will be used

in our neural network applications, but some function of the distances, ¢(d), called a
basis function. Although there have been a number of forms proposed for the basis
function (Bishop, 1995), the most common form, and the one we will be using in this
paper, is the Gaussian function, which can be written as

o(d) = exp[— d—z} , @)
o

where G is a smoothness parameter. Notice that ¢ can also be interpreted as the variance
of a Gaussian distribution centered on d. Thus, as we decrease ©, the width of the
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distribution becomes narrower. The PNN is then defined for each of the x4 points as the
sum over all the possiblep(d,; ) functions, or

p(x, )= Zexp ‘ ‘ Z% =1,2,...M 3)

If we use all the points in the training dataset, PNN will result in a single number,
which will be used later as a normalizing factor in the GRNN method, but does not on its
own give us a very useful discrimination technique. However, if we break the training
points into a number of classes, PNN becomes a very good classification method. In fact,
it can be thought of as an implementation of Bayes’ Theorem. Let’s consider the simplest
case, that of two classes. If we have class C; with N; points, and class C, with N, points,
where N; + N, = N, then we can define

pi(x.)= Z(okj: 4)
and [
py(x, )= Z(ﬂkj . (5)

The p; values can be interpreted as the probability of membership in a class. That is, if
pi(xr) > pa(xy), then xi is a member of class Cy, or, if p;(xi) < pa(xi), then x; is a member
of class C>. This can be generalized to any number of classes.

Next, we will see how the GRNN can be thought of as an extension of PNN. A well
known result from statistical theory is that the conditional expectation of a continuous
scalar variable y given a continuous vector x can be written as

nyw (x,y)dy
EY\X (x)== (6)
[ faw (.3 )y

Transforming the continuous form seen in equation (6) to the discrete form of the
probability function that we are using here (Masters, 1995), gives

ﬁ:t, exp |xk ;ZS,| Zt exp |xk % |
j=1
¥(x,)=- == , k=12,...M> (7)
N |xk sj| p(x;)

Equation (7) is known in statistical estimation theory as the Nadaraya-Watson
estimator (Nadaraya, 1964; Watson, 1964), and was re-discovered in the context of
neural networks by Specht (1990) and named the generalized regression neural network,
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or GRNN. This name is due to the fact that the training values themselves are weight
values and thus this is indeed a type of generalized regression. Note that the
normalization factor in the denominator of equation (7) is the PNN estimate of the
complete training dataset. We can also observe how well this equation works on the
training data by re-writing equation (7) using the training data, or
2

v s

; s exp =
v(s,;)= , i=12,...,N. (8)

p(s;)

2
|Si —si|

Notice that the fit will be quite good since, when i = j, exp| ———"— | =exp[-0]=1.
o

2

Another way to check the effectiveness of this method is by cross-validation, where
we leave each well in turn out of the prediction, predict its values “blindly”, and then
compute the error with the known values. This will be discussed more fully in the next
section.

Equation (8) also gives us a starting point for understanding the RBFN approach,
which was originally developed as a method for performing exact interpolation of a set of
data points in multi-dimensional space (Powell, 1987). In this method, we also use
Gaussian basis functions. However, instead of calculating the weighting values “on the
fly” using the training samples, we compute the weights initially from the training data
using the equation

2
N ‘Si — sj‘ N )
t(sl.)zzW].exp B ZZW‘/(pU, i=12,...,N. 9)
j=1

J=1

Equation (9) can be derived from basic principles using the theory of regularization,
which also involves the introduction of pseudo-differential operators (Poggio and Girosi,
1990), but will not be derived here. To solve equation (9), notice that it can be written as
a set of N equations in N unknowns, or

=W 0, tW0, ...t wy

Ly =W 0y T W0, t...+ W,y

(10)
Ly =W, 0y, W05, +...+Wwyy,
Equation (10) can be written more compactly as the matrix equation:
t=Dw, (11)
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t w; TR J1Y

where t=| : || w=| : || and D@ =

Iy Wy Oy Py

The solution to equation (12) is simply the matrix inverse
w=[@+M]"t, (12)

where A is a pre-whitening factor and / is the identity matrix. This equation can be solved
efficiently by noting that the matrix is symmetric. Once the weights have been computed,
they are applied to the application dataset using

2
x. =)
o

N
yx )=y wexpl ' ——"- k=12 ..M. (13)
j=1

Note that equation (13) can be thought of as the general form of both RBFN and
GRNN if we rewrite the weights in the GRNN case as

t. t.
w, = : =—71. (14)

J 2
Lo s
$ e
=1

2
o

This observation will allow us to examine the relationship between RBFN and

GRNN. If we assume that the scaling factors ¢ are the same in both methods and that
p(xx) = 1, then, to equate the two methods, we simply need to look at the relationship
between ¢ and w; . By expanding equation (12), we get

-1

w; QA D15 DN L Wi Wi ot Wiy | G
w, _ D @yt A 23N l, _ Yo Wi 0 Yoy | L (15)
Wy Pni Pn> gy A Iy Wi Vo 0 W | Iy
2
—‘Si — Sj‘

where ¢, =exp) 5 ,
o

and v is an element of the inverted matrix. Thus, we find that:

(GRS A P S 0 S PO VNI o (16)
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In other words, w; is a weighted sum of all the training values. If the inverted matrix
consisted only of values along the main diagonal, we could rewrite the above equation as

Wi =Wl (17)

If this is the case,® would consist only of the values ¢, along the main diagonal.

But note that
2
5,5

0y =exp| = —5—|=1

Thus, @ = I, the identity matrix, and & = Jalso. Therefore, for this trivial case, the
RBFN and GRNN methods are identical to a scale factor. This would occur in two
situations:

(1) ‘si —sj|z 0, for all i and j, and
2)oc—0

In he more general case, the off-diagonal elements in the covariance matrix are all
non-zero. Indeed, they will only be equal to zero for the case in which the seismic
attributes are statistically independent. Thus, we can think of the GRNN method as a
subset of the RBFN method for the case of statistical independence of the attributes. We
would therefore expect the RBFN method to give a more high resolution result than the
GRNN method, since the off-diagonal covariance elements are being used. As we shall
see in our case study, this is indeed the case.

METHODOLOGY

The methodology for reservoir prediction using multiple seismic attributes has been
extensively covered by Hampson et al (2001) and will only be briefly reviewed here. The
two key problems in the analysis can be summarized as follows: which attributes should
we use, and which of these attributes are statistically significant?

To start the process, we compute as many attributes as possible. These attributes can
be the classical instantaneous attributes of Taner et al. (1974), frequency and absorption
attributes based on windowed estimates along the seismic trace, integrated seismic
amplitudes, model-based trace inversion, or AVO intercept and gradient. Once these
attributes have been computed and stored, we measure a goodness of fit between the
attributes and the training samples from the logs. Using the notation of the previous
section, we can compute this goodness of fit by minimizing the least-squares error given

by
, 1& 2
E :ﬁzai_W()_WJSN_-"_WLSLI‘) : (18)
i=1

Note that the weights can also be convolutional, as discussed by Hampson et al.
(2001), which is equivalent to introducing a new set of time-shifted attributes. The
attributes to use in the neural network computations, and their order is then found by a
technique called stepwise regression, which consists of the following steps:
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(1) Find the best attribute by an exhaustive search of all the attributes, using
equation (1) to compute the prediction error for each attribute (i.e. L = /) and
choosing the attribute with the lowest error.

(2) Find the best pair of attributes from all combinations of the first attribute and
one other. Again, the best pair is the pair that has the lowest prediction error
from equation (18), with L = 2.

3) Find the best triplet, using the pair from step (2) and combining them with
each other attribute.

4) Continue the process as long as desired.

This will give us a set of attributes that is guaranteed to reduce the total error as the
number of attributes goes up. So, when do we stop? This is done using a technique called
cross-validation, in which we leave out a training sample and then predict it from the
other samples. We then re-compute the error using equation (18), but this time from the
training sample that was left out. We repeat this procedure for all the training samples,
and average the error, giving us a total validation error. This computation is done as a
function of the number of attributes, and the resulting graph usually shows an increase in
validation error past some small number of attributes such as five or six. In actual fact,
we do not perform this procedure for all samples, but rather on a well by well basis. The
next section will give an illustration of this procedure.

One final point to discuss is the optimization of the sigma values. The first point to
observe is that, in genera, the optimum sigma value for the GRNN method will be
different than the optimum value for the RBFN method. A second important point is that,
for the GRNN method, we also determine a different sigma value for each attribute. This

could be introduced in equation (3) or (7) by changing the ¢; term to

2 2 2
(o, =5, ) (o =s,) (e —5,,)
_ k1 Jjl1 k2 j2 kL JL
¢, = exp B + B tooot—F
0, 0, O

where L is equal to the number of attributes.

The optimization technique used for GRNN is described by Masters (1995).

A CHANNEL SAND CASE STUDY

We will now illustrate our methodology using a channel sand case study from Alberta,
as discussed earlier by Russell et al. (2001). This study involved the prediction of
porosity in the Blackfoot field of central Alberta. A 3C-3D seismic survey was recorded
in October 1995, with the primary target being the Glauconitic member of the Mannville
group. The reservoir occurs at a depth of around 1550 m, where Glauconitic sand and
shale fill valleys incised into the regional Mannville stratigraphy. The objectives of the
survey were to delineate the channel and distinguish between sand-fill and shale-fill. The
well log input consisted of twelve wells, each with sonic, density, and calculated porosity
logs, shown in Figure 3.
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FIG 3: The figure above shows the distribution of wells within the 3D seismic survey, as well as
seismic inline 95, shown in Figure 4.

One of the lines from the 3D survey, inline 95, is indicated on Figure 3, and
shown in Figure 4. Figure 4(a) shows the stacked seismic data itself, and Figure 4(b)
shows the inverted impedance, which was inverted using a model-based inversion
approach. The P-wave sonic log from well 08-08 has been inserted at cross-line 25,
and shows the extra resolution present in a well log. We are going to use the P-wave
sonic as our target on which to train the seismic attributes.

This dataset was also used by Hampson et al. (2001) to illustrate their approach to
multi-attribute prediction using the GRNN neural network. They obtained excellent
results using all twelve wells in their analysis. However, in this study, we wish to also see
how the use of a subset of the total number of wells will affect the final result.

We will start by using all the wells in the training, as well as a convolutional operator
length of seven points and seven possible attributes. The results of the training are shown
in Figure 5, where Figure 5(a) shows the attributes that were selected by the training
procedure. Note that, as we would expect, the inversion attribute has the best correlation.
Figure 5(b) then shows the results of cross-validation. This tells us that only the first 4
attributes are statistically significant.
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FIG. 4: The figure above shows inline 95 from the 3D seismic survey, with the P-wave sonic from
well 08-08 overlain at cross-line 25 (see Figure 3), where (a) shows the final CDP stack, and (b)
shows the inverted impedance inversion.
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| R I Target I Final Attribute I Training Errar I Walidation Ermror
1 P-wave 1/ [ Impedance ] 27375780 277.993052
2 P-wave Filter 15/20-25/30 262.804828 2E9.560418
3 P-wave Filter 35/40-45/50 254.896370 2BE.008951
4 P-wave Filter 45/50-565/60 280.332306 263.010201
5 P-wave Integrate 246, 732756 263650108
B Pwave Amplitude Envelope 243622703 264115512
7 P-wave Apparent Polarity 240.093510 262228332
(a)
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FIG 5: The figure above shows the result of training the multi-attribute algorithm using all twelve
wells, where (a) shows the best seven attributes, as chosen by step-wise regression, and (b)
shows the result of cross-validation, which indicates that only the first four attributes are
statistically significant.

Next, we will use the GRNN and RBFN algorithms to predict the P-wave velocity.
Figure 6 shows the result of applying the GRNN algorithm the prediction of P-wave
velocity, using all twelve wells in the training. From the analysis shown in Figure 5; this
involved using the first four attributes from the table in Figure 5(a). In Figure 6, which
shows only four of the twelve wells, notice that we see an excellent fit between the
original and modeled logs. As seen at the top of the figure, we get an excellent correlation
coefficient of 0.869 and an average error of 179 m/s. Figure 7 then shows the result of
applying the RBFN algorithm to the same set of four attributes used in the GRNN
approach, again using all twelve wells in the training. The result is close to that seen in
Figure 6, although the fit is not quite as good, either visually or in terms of the correlation
coefficient (0.8236) or the average error (196 m/s).
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FIG. 6: Application of the GRNN algorithm to four of the P-wave sonic logs in the twelve log
suite, where all the training samples are used in the prediction.
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FIG. 7: Application of the RBFN algorithm to four of the P-wave sonic logs in the twelve log
suite, where all the training samples are used in the prediction.

Next, we look at the cross-validation plots, in which we will leave the predicted well

out of the training. This is shown in Figure 8 for the GRNN algorithm and in Figure 9 for
the RBFN algorithm. In both plots, the fit is not as good as it was when we used all the
wells in the training, as we would expect. Again, we also see a slightly better result for
the GRNN algorithm, both visually and analytically. Note that correlation coefficient for
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GRNN is 0.5935, compared with a value of 0.535 for RBFN, and the average error is 273
m/s compared with 290 m/s.

Corelation = 0.533538
Average Ermor = 273,229 [m/s]

Tirnelnz]
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2000 B000 2000 600D 2000 6000 2000 6000
4 I 2
Pwave
Legend

todelled Logs

Original Logs Analysis Windows

FIG. 8: Validation of the four P-wave sonic logs from Figure 6 using the GRNN algorithm,
where the predicted well has been left out of the training.
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FIG. 9: Validation of the four P-wave sonic logs from Figure 7 using the RBFN algorithm,
where the predicted well has been left out of the training.

Although it would appear that GRNN has done a slightly better job than RBFN form
our analysis of the prediction of the well logs, let’s see how the algorithms compare when
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we look at the application to real seismic data. This is shown in Figures 10 and 11, where
Figure 10 shows the application of the GRNN algorithm and Figure 11 shows the
application of the RBFN algorithm. It is clear from these figures that the RBFN approach
has introduced a lot more frequency content into the final result than the GRNN
approach. And this high frequency content appears to be realistic, since there is lateral
continuity to the extra events that appear on the section.
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FIG. 10: Application of the GRNN algorithm to line 95 of the 3D volume, after training using
all the wells.
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FIG. 11: Application of the RBFN algorithm to line 95 of the 3D volume, after training with all
the wells.

Next, let us repeat the same analysis, but using fewer wells in the training. Figure 12
shows the results of the training, where Figure 12(a) shows the best five attributes chosen
by the step-wise regression algorithm discussed earlier, and Figure 12(b) shows that only
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the first four attributes are statistically significant, based on cross-validation. What is
interesting to note in Figure 12(b) is that the error on the last attribute shoots up almost
vertically. It is therefore important to only use the first four attributes.

| X I Target I Final &ttribute I Training Error I Yalidation Emor
1 P-wave Integrate 177.065432 223.717443
2 P-wave Filter 15/20-25/30 140.606754 162306769
3 P-wave Amplitude Weighted Phaze 134.536481 146.315146
4 F-wave Amplitude ‘Weighted Frequency 130.807254 140102127
B P-wave Integrated Abzolute Amplitude 127647020 4205, 358509
(a)

Awerage Error for All wWellz
Operator Length: 1
Elack Dot: Analysiz Using Al Wells
Red Dot: Analysiz Leaving Out Target Well
Average Emor [mds]

200

100

1 2 3 4 5
Mumber of Attributes

Legend
—l- All'well Emor —l- “alidation Ermor

(b)

FIG. 12: The figure above shows the result of training the multi-attribute algorithm using only
three wells, where (a) shows the best five attributes, as chosen by step-wise regression, and
(b) shows the result of cross-validation, which indicates that only the first four attributes are
statistically significant.

We will now look at the results of applying the training from all three wells to the
wells themselves, which is shown in Figure 13 for the GRNN algorithm and in Figure 14
for the RBFN algorithm. Note that the visual match is almost the same for both methods,
as are the correlation coefficients and average error. IN actual fact, RBFN has done
slightly better than GRNN in the average error (230.7 m/s vs 234.21 m/s) and slightly
worse for the correlation coefficient (0.760 vs 0.763). However, when we look at the
validation results in Figures 15 and 16, RBFN has definitely done better than GRNN,
with an average error of 259.58 m/s against 263.89, and a correlation coefficient of 0.681
against 0.667 for GRNN.

16 CREWES Research Report — Volume 14 (2002)



Application of the RBFN

Carrelation = 0.763508
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FIG. 13: Application of the GRNN algorithm to the three P-wave sonic logs used in the
training, where all the training samples are used in the prediction.
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FIG. 14: Application of the RBFN algorithm to the three P-wave sonic logs used in the
training, where all the training samples are used in the prediction.
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FIG. 15: Validation of the GRNN algorithm to the three P-wave sonic logs used in the training,
where the each log has been left out of the training.
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FIG. 16: Validation of the RBFN algorithm to the three P-wave sonic logs used in the training,
where the each log has been left out of the training.

Finally, we will apply the results of the training to the 3D seismic dataset itself.
Figure 17 shows the application of the GRNN method to the seismic data. Notice that the
frequency content of the result is very low. However, when we apply the RBFN method,
as shown in Figure 18, much more high frequency detail has come through. We would
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therefore conclude that, as the number of wells in our training dataset goes down, the
RBFN algorithm becomes preferable to the GRNN algorithm
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FIG. 17: Application of the GRNN algorithm to line 95 of the 3D volume, after training using
only three of the wells.
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FIG. 18: Application of the RBFN algorithm to line 95 of the 3D volume, after training using
only three of the wells.

CONCLUSIONS

In this paper, we have compared several neural network approaches for the prediction
of log properties using multiple seismic attributes. These methods consisted of the
generalized regression neural network, or GRNN, and the radial basis function neural
network, or RBFN. In the theory section, we showed how both of these methods are
based on Gaussian basis functions of distance in attribute space, and both can be
developed from the probabilistic neural network, or PNN. The key difference between
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GRNN and RBFN is that the GRNN prediction is a weighted sum of the basis functions
and the training values, whereas in the RBFN the weights are pre-computed using a
generalized matrix inversion of the basis functions weighted by the training values.

After a discussion of the methodology used in finding the best set of attributes, and
those attributes that are statistically significant, we applied the two methods to a channel
sand case study from Alberta. We first did the training using all twelve wells in the study
area. The results of the training showed the GRNN was marginally better than RBFN in
predicting the well log values, both using all the training wells and in the cross-validation
tests. This was quantified by looking at the training error and correlation coefficient
values. However, when we applied the training to the seismic dataset, the RBFN method
produced high frequency results than the GRNN method, with good lateral continuity.

We then applied the methods using only three of the wells in the training phase, the
results were different. In this case, the RBFN method was quantitatively better than the
GRNN method, for both the full application and cross-validation results. That is, the
training error was smaller and correlation coefficient larger. The effect on the seismic
data was even more dramatic. The application of the RBFN method displayed much
higher frequency content on the seismic data than the application of the GRNN method.

Our conclusion is therefore that, as the number of wells in the training dataset goes
down, RBFN provides a better technique for predicting log properties from seismic
attributes, both in the fit at the training wells and in the application to the seismic. As the
number of wells increases, the two methods produce fairly consistent results, with GRNN
doing a slightly better job of predicting the training wells, and RBFN doing a better job
of brining out the high frequencies in the seismic data.

FUTURE WORK

Future work will involve research into alternate forms of neural networks that can be
applied to this problem, and a search for a faster algorithm to solve for the optimum
sigma value in the RBFN method.
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