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Influence of a thin layered viscoelastic surface zone on seismic 
traces recorded at the earth’s surface  
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ABSTRACT 
The influence of a thin layered viscoelastic surface zone on the reflected SH wavefield 

in a simple model consisting of a single layer over a halfspace is investigated. This thin 
weathering zone is generally assumed to be composed of any number of layers as long as 
the “thin” assumption is retained. The free surface vacuum – solid interface is replaced 
by this zone of finite thickness, which is assumed small when compared with the 
predominant wavelength which is defined in terms of the predominant frequency of the 
band limited wavelet employed and the near surface velocity. A ray-reflectivity analogue 
of the surface conversion coefficient is derived and comparisons of synthetic traces 
computed for an elastic and viscoelastic thin surface zone are made. For surface receiver 
seismology the effect of the viscoelastic versus elastic response detected by the receivers 
should be examined in that all deeper reflections within the structure must pass through 
this layer before being recorded at the geophones and all are consequently affected in 
some manner. 

The seismic velocity of the surface layer is very often the lowest when compared with 
the velocities in the underlying geological structure and it is not uncommon for the 
impedance contrast of the weathering layer and the subsequent layer to be relatively high. 
As matrix methods are employed to obtain an analogous expression for the traditional 
surface coefficient, the full seismic response of the thin layered zone is inherent in the 
expression. Combining this with a high impedance contrast and the frequency, incident 
angle and zone thickness dependence of the surface conversion coefficient analogue 
could possibly lead to a ringing event being recorded at the surface. There could also be 
gaps in the frequency amplitude spectrum due to so-called “tuning” effects. 

SH wave propagation is used to explore this problem due to its simpler nature when 
compared with the coupled P SV−  problem. As might be expected there is a trade off in 
that the effects of introducing this concept into the P SV−  case can be much more 
pronounced than those for the SH  case. However, it is necessary to introduce 
displacement potentials in the P SV−  case to determine the thin layer propagator 
matrices, introducing added complication into an already complex problem. In the SH  
derivation this step is bypassed, after a fashion, as the results obtained using potentials 
are the same as those using displacements.  
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INTRODUCTION 
A practical consideration that should be addressed in realistic geological models is the 

presence of a thin layered surface zone or weathering layer. In seismic modeling 
programs this zone is often either omitted or assigned the status of a thick layer. This is 
done even though it may be classified as thin when compared with the predominant 
wavelength, which is related to the predominant frequency of the source wavelet being 
used. 

It is also usually assumed that the total layered structure is elastic, which is fairly 
idealistic in general, but even to a greater extent for a thin layered surface zone where it 
has generally been accepted to be viscoelastic to some degree. For receivers located at the 
surface all arrivals reflected from interfaces deeper within the medium are affected by the 
passage of seismic energy associated with each of these individual events through the 
thin layered structure. 

The propagation of SH  seismic waves for this type of geological structure will be 
examined in what follows. In particular, analogues of the reflection coefficient from the 
thin layered zone (reflectivity) and the corresponding surface conversion coefficient will 
be derived with the solid – vacuum boundary at the surface replaced with a thin layered, 
viscoelastic, finite thickness structure. Viscoelasticity will be introduced in this thin 
layered zone by using complex velocities, which may be frequency dependent. 

The free surface zone is developed using the ray-reflectivity method (Daley and Hron, 
1982), which although based on the reflectivity method, differs in that what is sought is 
the continuity of the particle displacement – stress vector through a thin layered structure 
between what can be generally be termed as two halfspaces. This is similar to what is 
done at a free surface interface to determine reflection and surface conversion 
coefficients. 

The mathematical mechanism to introduce viscoelasticity into a medium based on the 
earlier works of Futterman (1962) and Azimi et al. (1968) and presented more recently in 
the literature by Muller��  (1983) and Zharadnik et al. (2002) was used here as the basis of 
introducing a frequency dependent quality factor, ( )Q ω , into the numerical 
computations. The mathematical analysis is somewhat biased by this formulation but can, 
in general, be taken as valid for any frequency dependent quality factor specification. 

BASIC ASYMPTOTIC RAY THEORY 

Consider a plane layered half space ( )0z ≥  with a thin viscoelastic layered surface 
zone of total thickness H overlying an elastic thick layer of thickness h and an elastic 
halfspace. The thick layer and halfspace are assumed to be in welded contact and are both 
isotropic and homogeneous. The shear wave velocities in the thick layer and halfspace 
will be denoted Iβ  and Bβ , respectively with Iρ  and Bρ  being the densities. The Lame′  
coefficient is defined as 2µ ρβ= , with appropriate subscripts. The velocities 
( ), 1, , nβ =A A …  of the thin layers comprising the surface layer are in general complex 
and frequency dependent with the corresponding densities, ρA , being real quantities. 
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FIG. 1. Schematic of the model used for the method presented in this paper. 

A point torque source is located at the origin just below the surface zone 
( )0,r z H= =  and the receivers are positioned on the surface ( )0z = , (Figure (1)). The 

Fourier time transform of the particle displacement, ( ), ,u r z ω , of a multiply reflected SH 
ray with 2k ray segments in the thick layer for this geometry is given, at the surface, in 
cylindrical coordinates with radial symmetry (Aki and Richards, 1980, Daley and Hron, 
1982 and 1990) by 

 ( ) ( ),0, ,0,r u rφ φω ω=u e  (1) 

with 

 ( ) ( ) ( ) ( ) ( ) [ ]
2 2

1
1,0, , exp 2

2 I
I

i L p dpu r R p H pr i khφ

ω ω
ω ω ω ω η

ηΩ

= ∫  (2) 

where 

• p – horizontal slowness and integration parameter which must initially be 
assumed to be complex, 

• ω  - circular frequency ( )2 fπ , f being frequency, 
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• ( ) ( )0

2
i tAL g t e dtωω

π

−

−∞

= ∫  - Fourier transform of the time dependence of the 

source wavelet, ( )g t , 

• 0A  - a proportionality constant dependent on the elastic parameters of the medium 
surrounding the point torque soure, 

• ( )1/ 22 2
j j pη β −= − ,  ( ) [ ]Im 0, ,j j I Bη ≥ = , 

• ( ),R p ω  - the product of the k (frequency independent) reflection coefficients 
from the layer – halfspace boundary, the 1k −  reflection coefficients from the thin 
layered surface zone and the surface conversion coefficient, which are both 
frequency dependent. The surface layer reflection coefficient and surface 
conversion coefficient are analogues of the similar free surface quantities and are 
discussed in a subsequent section. 

• ( ) ( )1
1H prω  - the Hankel function of order 1 and type 1, whose asymptotic 

expansion for large argument is [ ]
1/ 2

2 exp 3 4i pr i
pr

ω π
πω
 

− 
 

, 

• r – source receiver offset, 

• Ω  - a suitable steepest descents contour for the zero order saddle point 
approximation of the integral in equation (2). 

• φe  - a unit vector perpendicular to the plane of incidence (SH polarization vector). 

A change of the integration variable, from the complex p to a real variable y is 
introduced to transform the contour of integration from the real p axis to one more 
suitable for a steepest descent approximation to the reflected wave. This parameterization 
is given as (Cerveny and Ravindra, 1970) 

 ( ) ( )1/ 2 1/ 22 2 2 2 / 4
0 ,i

I Ip p ye yπβ β− − −− = − − −∞ < < ∞  (3) 

The quantity 0p  is the saddle point associated with the reflected arrival from the layer 
– halfspace interface and located on the real p axis. Only this set of reflected arrivals will 
be considered here. 

Introducing the variable change given by equation (3) and employing standard steepest 
descent methods, the zero order saddle point approximation to the integral in equation 
(2), which is the expression for the reflected arrival is found to be (Daley and Hron, 
1990) 
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 ( ) ( ) ( )0
0,0, , Rii p L

u r R p eφ
ωτω ω

ω ω=
ℜ

 (4) 

where ℜ  is the geometrical spreading (spherical divergence) of the ray in the thick layer 
and ( )0 ,R p ω  is the product of reflection coefficients and the frequency dependent 
surface conversion coefficient. In the reflectivity method of producing synthetic traces 
the total seismic wavefield, consisting of all possible rays in the n layer surface layer, is 
implicitly contained in the surface conversion coefficient. For multiple reflections within 
the thick layer, the same is true of the free surface frequency dependent reflectivity 
coefficient. The saddle point, 0p , is the solution of  

 [ ]
0

2 0I p
d rp mh
dp

η+ = , (5) 

with 2m being the number of SH ray segments in the thick layer. 

The reflected travel time for the path which the ray traverses in the thick layer is 
obtained from equation (5) and given by 

 0
0

2 ˆ, cos
cosR I I

I

mhτ θ β η
β θ

= =  (6) 

with ˆIη  being the value of Iη  at the saddle point and 0θ  is the acute angle that the ray 
makes with the vertical (z) axis. Minor travel time corrections for the surface layer zone 
are automatically contained in the free surface reflection coefficient and surface 
conversion coefficient analogues. 

In the next section these analogues will be discussed in a brief manner but with 
enough background material to hopefully provide proper insight into the problem. The 
use of the coupled VP S−  problem for this purpose introduces unnecessary complexity 
and the SH treatment should be sufficient to introduce the concepts involved. 

 

REFLECTIVITY AND SURFACE CONVERSION COEFFICIENT AT A THIN  

LAYERED SURFACE STRUCTURE 
A homogeneous system of first order linear differential equations with constant 

coefficients describing the propagation of SH waves in a homogeneous space can be 
written as  

 d
dz

=
f Af  (7) 

with A  being a matrix and f  a column vector, generally known as the displacement-
stress vector. It is composed of the time and radial spatial coordinate transformed particle 
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displacement component, uφ , and shear stress, rθσ , so that ,
T

ruφ θσ =  f , with " "T  
indicating the transpose. 

The above system of first order differential equations may be subject to boundary 
conditions of some form on f . For the problem being investigated in this section, it will 
be convenient to specify these conditions at the lower boundary of the thin layered 
surface bed, as incidence from the thick layer is what is of interest. This leads to 
boundary conditions of the form 

 ( )
n nz z z= =f f . (8) 

When considering the equation of motion for SH waves in a homogeneous halfspace 
with radial symmetry and the vertical ( )z  axis chosen positive downwards, the above 
system arises after applying a time transform and a Hankel transform of order 1 with 
respect to the radial coordinate ( )r . (Aki and Richards, 1980). 

In particular if ω  is the circular frequency, p the generally complex and frequency 
dependent ray parameter (horizontal component of the slowness vector), µ , Lame 's′  
parameter, ρ , the volume density, and β , the generally complex and frequency 
dependent shear wave velocity, related to Lame 's′  coefficient as 2µ ρβ= , one obtains  

 [ ], Tu σ=f , (9) 

again " "T  indicating the transpose and the subscripts on andu σ  have been dropped. 

The matrix A  is given by 

 ( )
1

2 2

0

0p

µ

ω µ ρ

− 
=  

−  
A . (10) 

It was earlier stated that the viscoelasticity of the medium is introduced by some 
mechanism that allows the velocity and hence the Lame 's′  coefficient to be complex and 
frequency dependent. 

The method of solution of this coupled first order differential equation problem may 
be found in most advanced texts on differential equations or linear algebra (Gantmacher, 
1959, Hildebrandt, 1952) and will not be repeated here. What is of importance in this 
solution for what follows is the determination of the eigenvalues of the matrix A  and the 
corresponding matrix composed of the two distinct eigenvectors. These eigenvectors are 
associated with the upgoing ( )−  and downgoing ( )+  waves are given as 
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 [ ] ( )1/ 22 21, , withT pωµη η β −
± = ± = −y . (11) 

If ( )zF  is a matrix solution of equation (7) whose columns are obtained from equation 
(11), then a propagator matrix (matrizant) is defined as (Aki and Richards, 1980)  

 ( ) ( ) ( )1:n nz z z z−=P F F , (12) 

such that ( ):n nz zP  is the identity matrix I . The superscript " 1"−  on any matrix 
indicates the inverse. For the problem under consideration nz  corresponds to the 
reference depth, z H= ; the depth from the earth’s surface to the bottom of the thin 
layered bed. 

With the knowledge that for the problem being considered 

 ( )
( )

( )

1 1 0

0

n

n

i z z

i z z

e
z

i i e

ωη

ωηωµη ωµη

−

− −

  
 = = −     

F EΛ  (13) 

it may be determined that 

 ( )1 1

1
2 2
1
2 2

n

i

z
i

ωµη

ωµη

− −

 
 
 = =

− 
 
 

F E . (14) 

After matrix multiplication the propagator matrix may be computed to be 

 ( ) ( ) ( )

( ) ( )

1

sin
cos

:
sin cos

n
n

n

n n

z z
z z

z z
z z z z

ωη
ωη

ωµη
ωµη ωη ωη

−

 −  −   = = 
 − − −       

P EΛE . (15) 

It should be recalled at this time that equations (11) – (15) relate the value of the 
displacement-stress vector, f , between two depth locations, z  and nz , in a homogeneous 
medium. If a similar relation is to be obtained between 0z , the free surface, and nz , the 
bottom of the thin layered surface layer, a requirement for continuity across the n 
intervening plane boundaries must be invoked. With the aid of equation (12) this leads to 
the product of n  propagator matrices, , 1,j j n=P " . Each of the jP  characterizes the 

total SH wavefield within the thj  layer in the stack of n  layers. Utilizing the properties 
of the propagator matrix, (Gantmacher, 1959, Aki and Richards, 1980) the following 
relationship is obtained 
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( )

( ) ( ) ( ) ( )
1 1 1

1 1 1 2 1 1 0 0 0: : :
n n n n

n n n n n n

z

z z z z z z z
+ + +

− − − −

=

=

f E w

P P P f"
 (16) 

where in general 

 1−=w E f  (17) 

and specifically 

 ( ) ( ) ( ) ( ) ( )1
1 1 1 1 1,

T

n n n n n n n n n nz A z A z z z+ − −
+ + + + + = = w E f  (18) 

where 1nA+
+  and 1nA−

+  are respectively, the amplitudes of the waves reflected from, and 
impinging on, the bottom of the stack of thin layers at nz z=  (Figure (2)). The schematic 
shown in Figure (2) is the surface zone shown in Figure (1) with some minor notation 
changes to facilitate a more compact form of solution. 

 

FIG. 2. Plane wave incidence from below on a stack of thin layers at a free surface. For the SH 
case the unknowns to be solved for are the reflectivity ( )1, 1n nR + + from the bottom of the zone and 

the conversion coefficient analogue ( )SHC at the surface ( )0 0z z= = . The quantities 

andj jµ ρ  are Lame 's′  coefficients and densities in the individual layers. 
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Equations (17) and (18) emphasize the weighting characteristic of the amplitude 
(coefficient) vector w  whose components in each layer are comprised of the 
displacement amplitudes of the downgoing and upgoing waves within a given layer. 

Assuming a unit amplitude for the upgoing wave incident from the thick layer at the 
bottom of the stack of thin surface layers, 1 1nA−

+ = , and normalizing 1nA+
+  to this unit 

incident amplitude, the following notation change may be introduced: 1 1, 1n n nA R+
+ + += . so 

that  

 1 1, 1 ,1
T

n n nR+ + + =  w . (19) 

Equation (16) provides the necessary relationship between the wave motion in the thick 
layer and the free surface so that the boundary condition at 0z z=  may be written as 

 ( ) [ ]0 ,0 T
SHz C=f  (20) 

with SHC  being the vector component 0A+  of 0w , normalized to the incident unit 
amplitude 1nA−

+  from the underlying thick layer. SHC  is the analogue of the surface 
conversion coefficient while 1, 1n nR + +  is the reflectivity from the bottom of the stack of the 
thin layered surface zone. 

After some manipulation of equations (16) and (17) one obtains 

 1, 11

0 1
SH n nC R + +−   

=   
   

D  (21) 

where the matrix D  and its inverse 1−D  are defined as follows 

 1
1 1 1n n n

−
+ −=D E P P P" . (22.a) 

 1 1 1 1 1
1 2 2 1n n

− − − − −
+=D P P P P E"  (22.b) 

Equation (21) may now be written in terms of the subscripted matrix of 1−D , 
( ), 1,2ijD i j =  or D , ( )D , 1,2ij i j =  

 
[ ]

11 12 22 121, 1 1, 1

21 22 21 11

D -D1
-D D0 1 1det

SH n n n nD DC R R
D D

+ + + +        
= =        

        D
. (23) 

The solution of equation (23) yields the reflectivity, 1, 1n nR + + , and the surface conversion 

coefficient analogue, SHC , in terms of the matrix elements of 1−D  or D  as 
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 22 11
1, 1

21 21

D
Dn n

DR
D+ + = − =  (24) 

 
1

21 21

det 1
DSHC

D

−  = − =
D

 (25) 

Returning to equation (4), the product of the reflection coefficients from the thick layer – 
halfspace boundary is given by 

 ( ) I I B B
SH

I I B B

R p µ η µ η
µ η µ η

−
=

+
 (26) 

(taken to the appropriate power of k) together with the free surface reflectivity, 

( ) 1
1, 1

m
n nR

−

+ +  and the analogue of the free surface conversion coefficient, SHC , which 

make up the quantity ( ),R p ω  in equation (4) have now all been determined. The latter 
two have been derived for a generally viscoelastic thin zone surface structure. Numerical 
examples, which require the use of these derived formulae, will be presented in the next 
section. 

 NUMERICAL RESULTS 
The models chosen for the computation of numerical results are variations on a 

medium consisting of a single thin low velocity layer of varying thickness and degree of 
viscoelasticity overlying a 1000 m layer and a halfspace. The shear wave velocities in the 
isotropic homogeneous elastic thick layer and halfspace are 2500 m/s and 3500 m/s, 
respectively, with their volume densities being 1.9 3g cm  and 2.0 3g cm . The critical 
offset corresponding to the layer – halfspace velocity contrast is approximately 2040 m. 

Defining the quality factor ( )Q ω  in terms of the complex Lame′  coefficient  

 ( ) ( ) ( ) ( )2
Re Im

iµ ω ρβ ω µ ω µ ω= = −        (27) 

results in 

 ( ) ( ) ( )
Im Re

1 Q ω µ ω µ ω=        . (28) 

Assume that at some reference circular frequency, 2R Rfω π=  a reference 
absorption(quality) factor, ( )R RQ Q ω= , and reference SH – wave velocity, ( )R Rβ ω , are 
known. These quantities are real valued. At some other frequency, ω , the values of 
( )Q ω  and ( )Rβ ω  are given by the relations 

 
( )
1( )  ( ) 1 lnR

R R

Q Q
Q

ωω ω
π ω ω

  
= −  

  
 (29) 

and 
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 ( ) ( ) ( )
( )

 R
R R R

Q
Q
ω

β ω β ω
ω

= . (30) 

The two values ( )Q ω  and ( )Rβ ω  obtained above are also real. Viscoelasticity or 
absorption is introduced into a medium through a complex velocity obtained by an 
analysis of the attenuating mechanism. The high frequency expression for this complex 
velocity, ( )β ω , in terms of the real parameters ( )Q ω  and ( )Rβ ω  used in this paper is 
defined by  

 
( )

1 1  1  
( ) ( ) 2R

i
Qβ ω β ω ω

 
= + 

 
. (31) 

Equations (29)-(31) are the same as those presented in Zharadnik. et al. (2002). 

This simple model consisting of a single low velocity surface layer was chosen so that 
analytical expressions for the quantities 1, 1n nR + +  and SHC  could be obtained in forms that 
are not cumbersome to manipulate. The motivation for this is to obtain some insight 
regarding the behaviour of the surface conversion coefficient analogue, in particular, with 
varying layer thickness, degree of viscoelasticity, ray parameter and frequency. The 
equations for the reflectivity and surface conversion coefficient analogue may be written 
as 

 [ ] [ ]( )1, 1 sin cosn n I IR H i Hµη ωη µ η ωη+ + = + ∆  (32) 

and 

 2SH I IC iµ η= ∆  (33) 

where 

 [ ] [ ]sin cosI IH i Hµη ωη µ η ωη∆ = − + . (34) 

The subscripted quantities refer to the thick layer and the unsubscripted ones are 
related to the thin surface layer, which may be viscoelastic. It may be inferred from 
equation (33) that for a low velocity surface layer model the minimum values of SHC  

occur at ( ), 0,1, 2,Hω η π= =A A … , and the maximums of SHC  when 2,Hω η π= A  

( )1,3,5,=A … . In the limit as 0H → , the surface conversion coefficient SHC  tends to 2, 
which is the constant value of the conventional SH surface conversion coefficient. 

For a preliminary investigation of the behaviour of SHC  the thickness of the surface 
layer will be varied from 0 to 50 m and the frequency from 0 to 50 Hz. The angle of the 
incident SH wave from the underlying layer is held constant at 30D . As the shear wave 
velocity in the thick layer is set to 2500 m/s, the corresponding horizontal slowness (ray 
parameter) is ( )sin 30 2500 0.0002p m s s m= =D . The velocity in the thin surface layer  
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FIG. 3. The surface conversion coefficient analogue computed with a constant angle of 
incidence from the underlying thick layer. The amplitude SHC  is plotted against the thin 
surface layer thickness, from 0m to 50m and a range of frequencies from 0Hz to 50Hz. 
In the upper plot the surface layer is elastic while in the lower plot it is viscoelastic with 
( ) 20RQ ω =  at 2R Rfω π= , 30Rf Hz= . 
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is 1000 m/s at the reference frequency 30Rf Hz=  and the quality factor in the surface 
layer is given as ( ) 20.0RQ ω = . The densities in the thick and surface layer are 

31.9 g cm  and 31.5 g cm , respectively. Surface plots of the modulus of SHC  for both the 
elastic and viscoelastic cases are shown in Figures (3.a) and (3.b).  

As the surface conversion coefficient at the interface between a solid halfspace and a 
vacuum is 2.0 for all angles of incidence, it would be expected that in the analogue case 
the maximum value that SHC  would attain is 2.0, which is the case for the elastic case 
shown in Figure (3.a). The viscoelastic effects are quite evident in Figure (3.b), with the 
amplitude of the surface conversion analogue decaying with increasing surface layer 
thickness and increasing frequency.  

Synthetic seismograms are shown for a variety of parameter variations involving both 
an elastic and viscoelastic surface layer in Figures (4) through (6). The time dependence 
of the source wavelet used in all of the synthetic traces is 

 ( ) ( ) 2
0

0

2
( ) sin 2 exp , 0 2h

h h

f t t
g t f t t t t

π
π

γ

 − 
 = − − < <        

, (35) 

where γ , a dimensionless factor controlling the pulse width and side lobes, was chosen to 
be 4.0 and 0f , the predominant frequency of the pulse, was set equal to 50Hz . A 
frequency of 30Hz is used to define the reference circular frequency, 2R Rfω π=  used in 
equations (29) and (30). The quantity 2 ht  is the time duration of the pulse in the time 
domain and is approximately equal to 0fγ . The source is located below the surface at 
the top of the thick layer. All phenomena associated with the direct arrival at the receivers 
located on the surface have not been included in the synthetic traces. 

The amplitude and phase of this arrival is dependent, apart from the frequency 
independent geometrical spreading in the thick layer and reflection coefficient at the thick 
layer-halfspace boundary, on the surface conversion coefficient analogue. This 
coefficient is dependent on frequency, thickness of the surface layer and angle of 
incidence. 

The first example pushes the theory to the limit as a 50m surface layer is assumed. 
When compared with the predominant frequency of the source pulse and the shear wave 
velocity in the incident medium this layer thickness is equal to one wavelength ( )WL . In 
the elastic surface layer a wavelength is 20m, or 2.5WL if the elastic velocity in the 
surface is used for this determination. This model was used to compare the surface 
multiples produced by the matrix method with ray theory in the elastic case where the 
surface layer is treated as a thick layer and the interbed multiples should be fairly well 
separated on the traces with this layer thickness. The results are displayed in Figure (4) 
where offsets vary from 800 m to 1200 m at 50 m increments. Near vertical offset ranges 
are avoided as the reflected SH particle displacement is zero at zero offset as may be seen 
from viewing equation (4). In the ray approach the first, second, and third order multiples  
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FIG. 4. An elastic 50m surface layer model for comparing the conversion coefficient analogue 
with the ray method. Apart from the primary arrival, first to third order interbed multiples are 
included in the ray synthetics. 

have been introduced in the surface layer for comparison with the synthetic traces 
produced by matrix based conversion coefficient method. Upon viewing this figure it 
becomes apparent that the two methods produce similar results, the difference being that 
all multiple reflections within the surface layer are included in the propagator matrix 
method synthetic. 

In the second example the matrix method is used to produce two sets of traces; one 
where the reference (elastic) model has Q = ∞  and the other having 20Q =  at the 
reference frequency 30Rf Hz= . The surface layer thickness is 20m (1WL). The effect of  
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FIG. 5. The comparison of the seismic response of an elastic surface layer with a viscoelastic 
surface layer. In the elastic case zero order asymptotic ray theory is used to generate the 
reverberations in the surface layer, while in the viscoelastic case matrix methods are employed in 
the surface zone. The thickness of the surface layer is 10m and the value of Q at the reference 
frequency, 30Rf Hz= , is 20. 
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FIG. 6. An example similar to that shown in Figure (5) with the exception that the value of Q in 
this case is 15 at the reference frequency. 

introducing attenuation in the surface layer is shown in Figure (5) where these two 
models are displayed. 

The synthetic traces shown in Figure (6) are similar to those in the previous figure 
with the exception that the degree of attenuation has been increased by setting Q = 15 in 
the surface layer. The decreased ringing in the wave train is a result of this. 

As the velocities in the surface layer are frequency dependent this effect should be 
noticeable in the spectrum of two traces at the same offset but with differing degrees of 
attenuation in the surface layer. Figure (7) compares the frequency spectrum of two traces 
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at an offset of 1200m; one elastic and the other viscoelastic with Q = 20 at 30Rf Hz= . 
The overall loss of energy in the viscoelastic trace is the first thing that becomes apparent 
when viewing this figure. The second is the loss of high frequency content in this trace, 
which is consistent with what is observed in actual field data. 

 

FIG. 7. A comparison of the amplitude spectrums of synthetic traces for a model with a 10m 
surface layer at an offset of 1200m. The elastic and viscoelastic spectrums are indicated in the 
figure. The viscoelastic surface layer has Q = 20 at 30Rf Hz= . 

CONCLUSIONS  
A more appropriate, from a mathematical perspective, manner of investigating the 

effects of a thin, possibly viscoelastic, surface or weathering layer has been presented. As 
this layer is often "thin" when compared with the predominant wavelength in the 
structure, the results produced using asymptotic ray theory or other high frequency ray 
based approximations are suspect due to the nature of the assumptions upon which they 
are formulated. As an alternative a matrix based method has been employed for 
determining the surface effects introduced through the surface conversion coefficient, or 
more correctly a surface conversion analogue. When the surface zone is composed of a 
single layer, asymptotic ray theory predicts the seismic response quite adequately for the 
elastic case. When a number of thin layers, some or all of which may be viscoelastic, are 



Daley and Krebes 

18 CREWES Research Report — Volume 15 (2003)  

used to define the surface layer this agreement with asymptotic ray theory deteriorates 
due to both the viscoelasticity and the number of rays which must be generated to achieve 
the total seismic response inherent in the matrix formulation. The method presented here 
for the solution of this seismic problem that is known to occur in practice is that, given a 
reasonable knowledge of the viscoelastic properties of the near surface zone, a technique 
may possibly be devised to recover some of attenuated high frequency content of surface 
recorded seismic traces. 

The decay of the reverberations when the elastic synthetics are compared with the 
viscoelastic traces is a point of note. These arguably could have been predicted a priori 
but a reasonably rigorous derivation from accepted mathematical and physical bases 
indicates that the method of treating the surface layer presented in this paper has possible 
potential in the numerical modeling of structures of this geological type. A more 
convincing argument for implementation of this type of analysis could probably be 
achieved by comparing P SV−  field data with the equivalent modeling presented here. 
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